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NUMERICAL RANGES IN NON

UNITAL NORMED ALGEBRAS

YOUNGOH YANG

1. Introduction

Let A denote a unital nonned algebra over a field K = lR or C and
let e be the identity of A. Given a E A and x E A with Ilxll = 1, let

V(A,a,x) = {f(ax): f E A',f(x) = 1 = Ilfll}·

Then the (Bonsall and Duncan) numerical range of an element a E A is
defined by

yea) = U{V(A,a,x) : x E A, IIxll = I},

where A' denotes the dual of A. In [2], yea) = {f(a) : f E A' ,fee) =
1 = Ilfll}. (see [2], [3] for details.)

We have two limitations in this numerical range: First this definition
of V (A, a) is dependent on the identity. There are many normed algebras
which do not possess an identity. Therefore it is of some interest to make
the notion of relative numerical range identity-free.

The second limitation is in the definition itself. For a E A, a normed
algebra, the scalars comprising the numerical range of a are of the form
f(ax) where x E A,f E A', and 1 = IIxll = Ilfll = f(x). No consideration
is given to scalars of the fonn f(xa), and as will be seen, these are
significant if progress is to be made.

In this paper we introduce the notion of right(left) relative numerical
range VxR(A, a)(VxL(A, a) of an element a of a non unital normed algebra
A relative to x E A. (See Definition 2.1) If x = e, the identity of A and
lIell = 1, then VxR(A,a) coincides with yea). Thus this concept extends
the (Bonsall and Duncan) numerical range. Among the results, it is
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shown that our numerical range is a compact convex subset of K. Also
we give a sufficient condition for our numerical range to be a singleton
set {1}.

Further, we show that the relative numerical range of an element in
a normed algebra is invariant under certain algebra homomorphism. An
example is given to show that the invariance of the relative numerical
range under homomorphism <p does not imply that <p is an isometry. Also
we introduce the concept of regular norm on a normed algebra and give
a sufficient condition for a normed algebra to have regular norm in terms
of our relative numerical range.

Throughout this paper let A be a non unital normed algebra over a
field K (IR or C).

2. Relative numerical ranges of elements

DEFINITION 2.1. Let A be a normed algebra over the field K = IR or
C, and A' its dual. For x E A, we write

D(A,x) = {I E A' : 11/11 = l,J(x) = II x ll}·

The right relative numerical range of a E A relative to x is defined
to be V!( A, a) = {/(ax) : I E D(A, x)}. The left relative numerical
range of a E A relative to x is defined to be VxL(A, a) = {f(xa) : I E
D(A, x)}. The relative numerical range of a relative to x is defined to
be Vx(A,a) = VxR(A,a) U VxL(A, a). The right relative numerical radius
of a relative to x is defined by v~(a) = sup{I,\1 : ,\ E VxR(A,a)}. The
left relative numerical radius of a relative to x is defined by v~(a) =
sup{1,\I : ,\ E Vx

L (A, a)}. The relative numerical radius of a relative to x
is defined by vx(a) = max{v~(a),v~(a)}.

Note that the set D(A,x) is nonempty by the Hahn-Banach Theorem,
and so V!(A, a) and VxL(A, a) are nonempty. If A is commutative, then
VxR(A, a) = VxL(A, a) = Vx(A, a) as I(ax) = I(xa). If b = e(identity of
A) with lIell = 1, then Ve(A,a) = V(a), where V(a) denotes the (Bonsall
and Duncan) numerical range of a [2]. Thus the concept of numerical
range is a special case of that of relative numerical range.
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LEMMA 2.2. Let a, b, x E A and a, f3 E K. Then

(1) VxCA,aa + f3b) ~ aVx(A,a) + f3Vx(A,b), and Vx(A,aa)
= aVx(A,a).

(2) vx(a + b) ~ vx(a) + vx(b) and vx(aa) = lalvx(a).
(3) vx(a) ~ max{llaxll, IIxall}.

Proof. (1) Let f E D(A,x). Since f((aa + f3b)x) = af(ax) + f3f(bx)
and f((aa)x) = f(a(ax)) = af(ax), V!(A,aa + f3b) ~ lYVxR(A, a) +
f3~(A, a) and V!(A,aa) = aVxR(A,a)

Similar statements hold in terms of V L, hence taking unions

Vx(A, aa + f3b) ~ aVx(A,a) + f3Vx(A, b) and Vx(A,aa) = aVx(A, a).

(2) This follows from (1).
(3) A E Vx(A,a) implies A = f(ax) or f(xa) for some f E D(A,x).

Hence IAI = If(ax)1 ~ Ilfllllaxll = lIaxll or IAI = If(xa)1 ~ IIxall·

We note that the inclusion relation in (1) cannot be replaced by the
equality in general e.g. take a = -b.

LEMMA 2.3. Let a, x EA. Then

(1) D(A,x) is a weak* compact convex subset of A'.
(2) VxR(A, a) and VxL(A, a) are compact convex subsets of K, hence

Vx(A,a) is a compact subset of K.

Proof. (1) Let f,g E D(A,x) and let A be any number in [0,1]. Then
IlAf + (1 - A)gll ~ Allfll + (1 - A)lIgll = 1 and (Af + (1- A)g)(X) = Ilxll·
So IIAf + (1 - A)gll = 1 and Af + (1 - A)g E D(A, x). Therefore D(A, x)
IS convex.

Define ex(J) = f(x). Then ex is weak* continuous, i.e., continuous in

the pointwise convergence topology on A'. By [3], D == {f E A' : Ilfll ~
1} is weak* compact. Hence

D(A, x) = D n e;l({lIxll})

is a weak* closed subset of D and so is weak* compact.
(2) Define eax(J) = f( ax). eax is weak* continuous, so VxR(A, a) =

eax(D(A, x)) is a compact subset of K. As eax is linear and D(A,x)
is convex, Vx

R ( A, a) is convex. Similarly Vx
L (A, a) is a compact convex

subset of K. Hence Vx(A, a) = Vx
R(A, a) U VxL (A, a) is a compact subset

of K.
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THEOREM 2.4. ITB is a subalgebra of a normed algebra A and b, x E
B, then Vx(B, b) = Vx(A, b).

Proof. The mapping f ---t fiB takes D(A,x) into D(B,x) because
IIfll = 1,f(x) = IIx ll implies fIB(X) = IIxll,lIflBIl = 1. Recall that
IIflBIl S IIfll· Given g E D(B,x), the Hahn- Banach Theorem implies
there exists an f E A' such that fiB = g and IIfll = IlgII. So f E D(A, x).
Hence VxR(B,b) = VxR(A,b) and VxL(B,b) = VxL(A, b). Taking unions
Vx(B, b) = Vx(A, b).

THEOREM 2.5. Let a E A and let x be any nonzero element of A.
Then

(1) H ax = x, then VxR(A,a) = {lIxll}.
(2) HVxR(A,a) = {lIxll}, then either ax = x or 0 < dist(x, Kax) <

IIxll·

Proof. (1) This follows from the definition.
(2) Suppose that VxR(A,a) = {llxll}. First we note that dist(x, Kax)

= inf IIx - Aaxll S IIxll· If ax =f:. x and x E Kax, then x = Aax, A=I­
l(A E K) implies that f(x) = Af(ax) = Allxll for any f E D(A,x). This
is a contradiction because f (x) =I- 1. Hence ax = x. If x rJ. K ax and
dist (x, Kax) = IIxll, then by ([3], p. 82 or [4], p.64) there exists f E A'
such that IIfll = 1, f(x) = IIxll and f(ax) = O. This is a contradiction to
our hypothesis. Hence 0 < dist(x, Kax) < IIxll.

We have the similar statement for the left relative numerical range:

THEOREM 2.6. Let a E A and let x be any nonzero element of A.
Then

(1) H xa = x, then VxL(A, a) = {lIxll}.
(2) HVxL(A,a) = {lIxll}, then either xa = x or 0 < dist(x, Kxa) <

Ilxll·

COROLLARY 2.7. IT a E A, and a2 = a, then VaR(A, a) = VaL (A, a) =

Va(A,a) = {lIall}·

LEMMA 2.8. Let a, b, x E A, and let N f = N(O, E). IT lIa - bll < €,

then VxR(A, b) ~ VxR(A, a) + IIxllNf and VxR(A, a) ~ VxR(A, b) + IlxllNf •
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Proof. Let .\ E V!(A, b). There exists f E D(A, x) such that .\ =
f(bx). Thus

1.\ - f(ax)1 = If(bx) - f(ax)1 = If((b - a)x)l::; IIflillb- allllxll

= lib - allllxll < IlxilE.

So .\ E VxR(A, a) + IlxIINE • Similarly VxR(A, a) ~ V.!(A, b) + IIxIiNE •

REMARK 2.9. The previous lemma is true for the left relative numer­
ical range by a similar proof.

THEOREM 2.10. Let a, b, x E A, and let N€ = N(O, E). Hila - bll < E,
then Vx(A,b) ~ Vx(A,a) + IlxllN€ and Vx(A,a) ~ Vx(A,b) + IIxIIN€.

Proof. By the Lemma 2.8 and Remark 2.9, Vx
R ( A, a) ~ Vx

R ( A, b) +
IlxlIN€ and VxL(A, a) ~ VxL(A, b) + IIxIlN€. Hence

Vx(A, a) = VxR(A, a) U VxL(A, a)

~ (VxR(A, b) + IIxIlN€) U (VxL(A, b) + IlxIIN€)

= {VxL(A, b) U VxR(A, b)} + IlxlIN€

= Vx(A, b) + IlxIlN€.

Therefore

Exchanging a and b,

Consider a pair of compact subsets of the complex plane, M and N
and define d(M,N) = inf{E: M ~ N+N€, N ~ M+N€}. Then
for a,b,x E A we can consider d(VxR(A, a), VxR(A, b)) as a metric, the
"Hausdorff metric" on sets associated with a and b.

THEOREM 2.11. For each x E A, Vx
R (.) is a continuous from A en­

dowed with the nonn topology to the set of compact subsets of <C, en­
dowed with the Hausdorff metric topology. Also v~(·) is a continuous
real-valued function on A.

Proof. Let a, b E A with lIa - bll < E. Then by Theorem 2.8,

d(VxR(A, a), V;\A, b)) ::; E,
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and Vx
R (.) is continuous.

Also v:(a) S; V:(b)+E and v:(b) S; v:(a) S; E imply Iv:(a)-v:(b)1 S;
E. SO v:(·) is a continuous function.

This theorem is true for the left relat,ive numerical range Vx
L and

numerical radius v~.

The following theorem gives the invariance of relative numerical ranges
under isometric algebraic homomorphism.

THEOREM 2.12. Let ¢ be an isometric algebraic homomorphism of a
normed algebra A into a nonned algebra B. Then

for all a EA.

Proof. Let'\ E V</>~x) (B, ¢(a)). Then there exists 9 E D(B, <p( x )) such
that ,\ = g(¢(ax)). Define f on A by f(z) = g(¢(z)), z E A. Clearly,
f is linear and IIfll ~ 1. Since ¢ is an isometry, 1I¢(x)11 = Ilxll implies
Ilfll = 1 and so ,\ = f(ax) E VxR(A, a).

Conversely if {L E Vx
R ( A, a), then there exists f E D(A, x) such that

f.l- = f(ax). Define 9 on ¢(A) = {¢(z) : z E A} by g(¢(z)) = f(z),z EA.
Then again we see that 9 is a bounded linear functional on ¢(A) with
IIgll = 1 because ¢> is an isometry. By ([3], p.81 or [4], p. 63) 9 can
be extended to a bounded linear functional hon B with Ilhll = IIgll =
1 and h(¢>(x)) = f(x). Hence f.l- = f(ax) = g(¢(ax)) = h(¢>(ax)) E

V</>~x)(B, ¢>(a)).

REMARK 2.13. The previous theorem is true for the left relative nu­
merical range.

COROLLARY 2.14. Let ¢> be an isometric algebraic homomorphism of
a nonned algebra A into a nonned algebra B. Then

for all a EA.

We note that the invariance of relative numerical ranges under an
algebraic homomorphism in Theorem 2.12 does not imply isometry. For
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we consider an algebra A having divisors of zero, a i= 0, b i= 0, ab = 0
and a zero homomorphism <P of A with an arbitrary algebra B. Then
Vf(A,a) = {O} = Vt/>~b)(B,<P(a)) but <P is not an isometry.

3. Topological divisors of zero and regular norm

DEFINITION 3.1. Let A be a normed algebra. An element a E A
is called a left(right) topological divisor of zero provided there exists a
sequence {zn} in A such that IIznll = 1 for all nand ZZn -----t O(znz -----t

0). An element which is either a left or right topological divisor of zero
is called a topological divisor of zero. We denote the set of all left(right )
divisors of zero in A, and the set of all left(right ) topological divisors of
zero in A by Idoz(A)(rdoz(A)), and ltdoz(A)(rtdoz(A)) respectively.

PROPOSITION 3.2. Let A be a normed algebra over K. Then

(1) a ¢ Idoz(A) implies Aa = Aa if and only if a ¢ Itdoz(A).
(2) a ¢ rdoz(A) implies aA = aA if and only if a t/: rtdoz(A).

Proof. Let La(x) = ax, Ra(x) = xa. Then La and Ra are one to
one and have continuous inverse if and only if a is not a left or right
topological divisor of zero, ([7], p.21).

THEOREM 3.3. Let a be any element of a normed algebra A. Then

(1) a E Idoz(A) implies 0 E VxR(Aa) for some x E A.
(2) a E rdoz(A) implies 0 E VxL(Aa) for some x E A.

Proof. (1) By hypothesis, there is a nonzero element x E A such
that ax = O. By the Hahn Banach theorem, there is f E A' such that
f(x) = Ilxll, and Ilfll = 1. So 0 = f(O) = f( ax) E VxR(A, a).

(2) By symmetry this follows from (1).

DEFINITION 3.4. Let A be a normed algebra over K. An element
a E A is said to have right(left ) regular norm if

IIall = sup lIaxll
IIxll9

(liall = sup Ilxall).
IIxll9

If each a E A has right (left ) regular norm, then A is said to have
right (left ) regular norm.
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PROPOSITION 3.5. Let A be a normed algebra over K. If A has a
right (left) approximate identity {Ua}aEI with sUPa lIuall :::; 1, then A
has right(left) regular norm.

Proof. Suppose that A has a right approximate identity. Then Iliall­
Ilaualll :::; lIa - auall for each a E A, and so lIauall --t lIall as n -+ 00.

Hence lIall :::; SUPa lIauall :::; sUPllxll911axil :::; lIall. Thus A has right
regular norm. By the similar proof A has left regular norm if A ha a left
approximate identity.

In particular, if A has identity e, Ilell = 1, then A has right and left
regular norm.

The following example shows that a normed algebra with a regular
norm need not have a bounded approximate identity.

EXAMPLE 3.6. Let Ll be the closed unit disc in <C and let A(Ll)
denote the disc algebra. Then A(Ll) is a commutative normed algebra
with identity, and so has (right and left) regular norm. Hence Ao = {I E

A(Ll) : 1(0) = O} is a commutative normed algebra with identity and so
has (right and left) regular norm.

Let 9 E Ao such that g(A) = A. The functional F on Ao defined by
F(J) = f' (0) (derivative of 1 evaluated at 0) is clearly continuous. If
{ua} is an approximate identity of Ao, then lima F(uag) = F(g) = l.
But this gives a contradiction since F(uag) = ua(O)+g(O)F(u o,) = 0 for
all Q. Thus Ao has no approximate identity (bounded or unbounded).

We give a sufficient condition in terms of relative numerical ranges
for a normed algebra to have a regular norm.

THEOREM 3.7. Let A be a normed algebra. If there is x E A such
that Ilxll = 1 and VxR(A, a) = {llaIlHVxL(A, a) = {llall}), then a has a
right (left ) regular norm.

Proof. There is an 1 E D(A,x) such that I(ax) = lIall, and so

lIall = If(ax)l:::; lIax ll :::; lI a llll x ll = Ilall·

Thus a has a right regular norm. A similar statement holds in terms of
V L .
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COROLLARY 3.8. Let A be a normed algebra. If there is x E A such
that IIxll = 1 and Vx(A, a) = {lIall}, then a has a right and left regular
norm.

THEOREM 3.9. Let A be a normed algebra with right regular norm.
Suppose B(A) is the algebra of all bounded linear operators on A. Then
for a,x E A,

where T z is the left regular representation on A.

Proof. Suppose A+ is the unitization of A when A has a right regular
norm. Let (a,..\) E A+ and define an operator T(a,.\) on A by

T(a,.\)(z) = az + ..\z,(z E A,..\ E C)

Then this operator is clearly linear and bounded. Also the function <p :
A+ ---t B(A) defined by <p(a,..\) = T(a,.\) is an algebra homomorphism.
In fact this homomorphism is a monomorphism.

Define the norm 11·11+ on A+ by lI(a, ..\)11+ = IIT(a,.\)II. Then since A
has right regular norm, we have

lI(a,O)II+ = II T(a,O)1I = sup IIT(a,O)(x)1I
IIxll9

= sup Ilaxll = Ilall·
II xII 9

This proves the extension of the original norm on A to the norm on A+
and so we have an isometric algebra homomorphism from A to B(A).
By Theorem 2.11,

REMARK 3.10. Let A be a normed algebra with left regular norm.
Suppose B(A) is the algebra of all bounded linear operators on A. Then
for a,x E A,

where Tx is the right regular representation on A.
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