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EXTREME POINTS OF ~:)

TAEG YOUNG CHOI

1. Introduction

Let H be a complex Hilbert space. If L is a lattice of orthogonal pro
jections acting on H, then AlgL is the algebra of all bounded operators
acting on H that leave invariant every orthogonal projections in L. A
subspace lattice L is a strongly closed lattice of orthogonal projections
acting on H, containing 0 and I. Dually, if A is a subalgebra of B(H),
the algebra consisting of all bounded operators acting on H, then LatA
is the lattice of all orthogonal projections invariant for each operator in
A. An algebra A is reflexive if A = AlgLatA and a lattice L is reflexive
if L = LatAlgL. A lattice L is commutative if each pair of projections
in L commutes. We write (Ah for the unit ball of the algebra A. If
Xl, Xz,· •• , X m are vectors in some Hilbert space, then [XI, Xz, ... ,Xm ]

means the closed subspace generated by the vectors X I, XZ, •.• , X m' Let
A be in B(H) and let X be in H. If IIAxl1 = IIAllllxlI, then x is said to be
a maximal vector for A and maxA is the set of all maximal vectors for
A. An element A of a subalgebra A of B(H) is described as an extreme
point of A if the only way in which it can be expressed as a convex
combination A = >..B + (1 - >")C, with 0 ::; >.. ::; 1 and B, C in A, is by
taking B = C = A.

Let H be a n-dimensional complex Hilbert space with an orthonormal
basis {eI,ez, ... ,en} and let L n be the lattice generated by {[eI],[e3],
... , [en-I], [eI' ez, e3], [e3, e4, e5], ... , [e n-3' en-Z, en-I], [en-I, en]} if n is
even(or. {[ed, [e3], ... , [en], leI, ez, e3], [e3, e4, e5],' .. , [en-z, en-I, en]} if
n is odd). Let H be an infinite separable Hilbert space with orthonormal
basis {eI' ez, . .. } and let L oo be the lattice generated by {[ezi-I], [eZi-I,
eZi, eZi+I] : i = 1,2, ... }. Then the extreme points of the algebras
AlgLzn and AlgLoo are investigated in [8].
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Let 1i be a 2n-dimensional complex Hilbert space with an orthonor
mal basis {e}, e2,' .. ,e2n}. Let £2n be the lattice generated by {[ell, [e3],

... , [e2n-l], [ell e2, e3], [e3, e4, es], ... , [ell e2n-l, e2n]} and let A2n be
the tridiagonal algebra discovered by F. Gilfeather and D. Larson. Then
A2n = Alg£2n and A E A2n has the form

* *
*
* * *

*
*

*

*
*

with respect to the basis {el' e2, ... , e2n}, where all non-starred entries
are zero. The extreme points of A2n are investigated in [2]. If we write
the basis in the order {el' e3, ... , e2n-}, e2, e4, ... , e2n}, then the above
matrix looks like this

*
*

*

* *
* *

*

* *
*

*
where all non-starred entries are zero.

Let ~:) = {( ~l g2): D 1 and D2are n X n diagonal matrices

and 5 is an n X n matrix }. The isometries of A~:) are investigated in

[7]. In this paper we will investigate the extreme points of A~:).



Extreme points of A~:)

2. Preliminaries and general properties

645

LEMMA 2.1 [8]. Let H be a finite dimensional Hilbert space and let
A be in 8(H) such that IIAII = 1. Then A has at least one nonzero
maximal vector.

LEMMA 2.2 [8]. Let A be a subalgebra of 8(H). If A is an extreme
point of(A)1, then A* is an extreme point of(A*)l, where A* = {A* :
AE A}.

LEMMA 2.3 [8]. Let A be a nonzero operator in 8(H). Then

maxA = ker(IIA1I 2
- A*A) and dim(maxA) = dim(maxA*).

LEMMA 2.4 [8]. Let dim H < 00 and let P :2: O. Then ranP=ranPt,
where ranP={Px : x E H}.

. LEMMA 2.5 [11]. Let I: be a nest or a distributive lattice of orthog
onal projections. If A is in (Algl:)1, then A is an extreme point of
(Algl:)1 if and only if for all E in 1:, either En ran(l - AA*)t = {O}
or E!: n ran(l - A* A)t = {O}, where E_ = V{F : F E I: and F t E}
and E!: = (E_)-L.

LEMMA 2.6 [8]. Let A be in A 2n such that IIAII = 1. Then A is an
extreme point of (A2n )1 if and only if for all E in 1:2n , either maxA* V
E-L = H or maxA V E_ = H.

LEMMA 2.7 [2]. Let A and B be subalgebras of B(H). Let U be a
unitary operator such that UAU* = B. Then A is an extreme point of
(Ah if and only if UAU* is an extreme point of (8h.

Proof. If UAU* = >..B + (1 - >")C for some B and C in (Bh, then
A = >..U* BU + (1 - >..)U*CU and U* BU and U*CU are in (A)1' Since
A is an extreme point of (Ah, A = U* BU = U*CU. Since U is unitary,
UAU* = B = C. Conversely, if A = >..B + (1 - >")C for some Band C
in (Ah, then U AU* = >..UBU* + (1 - >..)UCU* and UBU* and UCU*
are in (8)1' Since UBU* is an extreme point of (Bh, UAU* = UBU* =
UCU*. Hence A = B = C.
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LEMMA 2.8 [2]. Let A and U be in 8(11.) and let U be a unitary
operator. Then U*(maxA) = max(U*AU).

Proof. Let x be in maxA. Then l\Axil = 11Al11~1 and so II U* AUU*x II
= IIU* Axil = IIAxll = II Allllxll = IIU*AUIIIIU*xll· Hence U*x is in
max(U*AU). Conversely, let x be in max(U*AU). Then II AUxII =
IIU* AUxll = IIU* AUllllxll = IIAllllxl1 = II AIIIIUxll· Hence Ux is in maxA.

THEOREM 2.9. Let A and U be in 8(11.) and let U be a unitary
operator. Then dim(max(UAU*)) = dim(maxA).

3. Extreme point of -4:>
Let 11. be a 2n-dimensional complex Hilbert space with an orthonor

mal basis {el' ez, ... , ezn } and let £~~) be the lattice generated by {[el],

[ez]' ... , [en], [el, ez, ... , en, en+i] : i = 1,2, ... , n}. Then A~:> =
Alg r(n) and A(n) and £(n) are reflexive

,t.,Zn "'2n Zn •

First we consider the extreme points of A~l) and A~Z). Since A~l) =
Az, we have the following theorem.

THEOREM 3.1 [2]. Let A = (a~l :~~) be in A~l) such that IIAII =

1. Then A is an extreme point of(A~l)h unless A is diagonal such that
laii I< 1 for some i (i = 1,2).

Let A - (Dl- 0

D - (an
1 - 0

gz) E AiZ) such that IIAII = 1, where

Let U be a 4 x 4 unitary matrix with 1 in (1,1)-, (2,3)-, (3,2)-,and

(4,4)-components and 0 elsewhere. Then U = U* and U~U* = A~Z).

By Lemma 2.8, A is an extreme point of (A~Z)h if and only if U AU* is
an extreme point of (~h. Using the result in [2] we have the following
theorems.
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THEOREM 3.2. Let A be in AiZ
) sum that IIAII = 1. If every entry

of S is nonzero, then A is an extreme point of (A~Z)h if and only if
dim(maxA) = 2.

THEOREM 3.3. Let A = (~l i
z

) be in A~Z) such that IIAII = 1.

If exactly one element of S is zero, then A is not an extreme point of

(AiZ)h·

THEOREM 3.4. Let A be in A~Z) such that IIAII = 1 and let exactly
k (2 :::; k :::; 4) elements of S be zero. Then A is an extreme point of

(A~Z»1 if and only ifdim(maxA) = k.

From now on, we will consider the extreme points of (A~:»l for all

positive integers n. Let A = (~l gz) be in A~:> such that II All = 1,

where D I is an n x n diagonal matrix with aii in (i, i)-components, Dz is
an n x n diagonal matrix with an+i,n+i in (j,j)-components and S is an
n x n matrix with ai,n+i in (i,j)-components for all i,j (1 :::; i,j :::; n).
Then

A*A=(DiDI
S*DI

If x = (Xl, Xz) = (XI, XZ,· .. , XZ n ) E maxA , where Xl = (Xl, XZ,· .. , x n )
and Xz = (Xn+l' Xn+Z, .. . , xzn ), then by Lemma 2.3, we have the follow
ing equation

FroID this we have the following relations;

n

(*) alxl = L(111 al,n+kXn+k
k=l

n

azxz = L (1zZaZ,n+k Xn+k
k=l
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n

QnXn = L annan,n+kXn+k
k=l

n n n

Qn+1Xn+l = Lak,n+lakkXk + L(Lak,n+lak,n+j)Xn+j
k=l j=Z k=l

n n n

Qn+ZXn+Z = Lak,n+zakkXk + L (Lak,n+zak,n+j)Xn+j
k=l j#Z,j=l k=l

n n-l n

QZnXZn = Lak,znakkXk + L(Lak,znak,n+j)Xn+j
k=l j=l k=l

1. HAlsan

where Qi = 1-laid z , and Qn+i = 1-lan+i,n+dz - L::~=l lak,n+il z for all
i = 1,2, ... ,n.

From this relations we have the following theorem.

THEOREM 3.5. Let A = (~l gz) be in A~:> such that IIAII
1. H each row vector of S has at least one nonzero element, then
dim(maxA) ::; n.

COROLLARY 3.6. Let A = (~l gz) be in ~:> such that IIAII =

1. H each column vector of S has at least one nonzero element, then
dimemaxA*) ::; n.

THEOREM 3.7. Let A be in A~~ such that IIAII
extreme point of(A~:»)l, then dim(maxA) 2:: n.

Proof. Suppose that dim(maxA) = k < n. Take E = [el,ez, ... ,

ek+l] in £~:). Then E_ = [el,ez, ... ,en] and E.l. = [el,eZ, ... ,ek+l].l..
Hence dime E_) = nand dimeE.l.) = 2n - (k +1). Thus maxAVE_ i= 1t
and maxA* vEl. =f:. 1t.
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COROLLARY 3.8. Let A = (~l %2) be in A~:) such that IIAII = 1

and let each row vector of S be nonzero or each colurrm vector of S be
nonzero. H A is an extreme point of(A~:))l' then dim(maxA) = n.

COROLLARY 3.9. Let A = (~l %2) be in A~:) such that IIAII = 1

and each row vector of S has at least one nonzero element. H for some
i (1 ::; i ::; n), Xn+i = 0 for all X=(XhX2"",X2n) E maxA, then A is

not an extreme point of (A~:)h.
Proof. From the equation (*), dim(maxA) S n - 1. Hence by Theo

rem 3.7, A is not extreme.

COROLLARY 3.10. Let A = (~l %2) be in A~:) such that IIAII =
1 and each column vector of S has at least one nonzero element. H for
some i (1 SiS n), Yi = 0 for all Y=(Yh Y2,' .. , Y2n) E maxA*, then A
is not an extreme point of (A~:)h.

THEOREM 3.11. Let A be in ~:) such that HAil = 1. H A is an

extreme point of(A~:)h, then for each i (1 S i::; n), either there exists
Xn+i = (Xl,X2, ... ,X2n) E maxA such that Xn+i = 1 and xn+j = 0 for
all j (j =f:. i, 1 ::; j S n) or there exists Yi = (Yl' Y2,"" Y2n) E maxA*
such that Yi = 1 and Yj = 0 for all j (j =/: i, 1 ::; j S n).

Proof. Let E = [el, e2, ... , en]. Then E_ = [el, e2, ... , en] and E.l =

[en+h en+2, ... , e2n]' Since A is an extreme point of (A~:>h, either
maxA V E_ = 1{ or maxA V E.l = Ti. If maxA V E_ = Ti, then

en+i E maxA V E_ for all i = 1,2, ... , n. So en+i = z:=i:l Xkek +
Z:=~=l {lkek for some L:i:l Xkek E maxA and L:~=l {lkek E E_. Hence
Xn+i = 1 and xn+j = 0 for all j (j =/: i,l S j S n). Thus there exists
Xi = (Xl,X2, ... ,X2n) E maxA such that Xn+i = 1 and xn+j = 0 for
all j (j =f:. i,l S j ::; n). Similarly, if maxA V E.l = Ti, then there
exists Yi = (Yh Y2,' .. , Y2n) E maxA* such that Yi = 1 and Yj = 0 for
all j (j =f:. i, 1 S j ::; n).

THEOREM 3.12. Let A be in ~:) such that IIAII = 1. H for each
i (1 ::; i ::; n), there exists a vector X= (Xl, X2, ... ,X2n) E maxA such
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that Xn+i 1= 0 and xn+j = 0 for all j (j 1= i, 1 ~ j ~ n), and there exists
a vector Y=(Yl, yz,· .. , YZn) E maxA* such that Yi 1= 0, then A is an

extreme point of (A~:)h.
Proof. Let E = [ek] for k = 1,2, ... , n. Then EJ.. = [ek]J.. and so

maxA*V EJ.. = H. Let E = tel, ez, ... , en, en+k] for some k = 1,2, ... , n.

Then E_ = [en+k]J.. and so maxA V E_ = H. Let E be in £~;! such
that [ej] s;: E c [ellez, ... ,en] for some j (1 ~ j ~ n). Then E_ =
[el' ez,··., en]. Since en+k E maxA V E_ for all k = 1,2, ... , n, maxA V

E_ = 1i. Let E be in £~r;; such that let, ez, ... , en, en+j] s;: E for
some j (1 ~ j ~ n). Then E_ = H and so maxA V E_ = H. If

E E £~r;; such that E is different from above cases, then E_ = H and
so maxA V E_ = H.

By an argument similar to Theorem 3.12, we can get the following
theorem.

THEOREM 3.13. Let A be in A~:) such that IIAII = 1. If for each
i (1 ~ i ~ n), there exists a vectorx=(xllxz, .. "xzn) E maxA such
that Xn+i 1= 0 and there exists a vector Y=(Yl,YZ, ... ,Yzn) E maxA*
such that Yi 1= 0 and Yj = 0 for all j (j 1= i, 1 ~ j ~ n), then A is an

extreme point of(A~:)h.

THEOREM 3.14. Let A = (~l gz) be in A~;! such that IIAII =

1. If each row vector of S is nonzero and Xn+k E maxA for all k =
1,2, ... , n, where Xn+k = (Xl, Xz, ... , xZn) with Xn+k = 1 and Xn+j = 0

for all j (j 1= k, 1 ~ j ~ n), then A is an extreme point of(A~:)h.

Proof. Let D l = (aii) and D z = (an+i,n+i) be n x n diagonal matrices
and let S = (ai,n+j) be nXn matrix. Suppose that al,n+Pl 1= 0, aZ,n+P2 1=
0, ... , an,n+Pn 1= 0 (1 ~ Pl,PZ,··· ,Pn ~ n). Then laiil 1= 1 for all
i = 1,2, ... , n. Since x n+Pi E maxA, AXn+Pi E maxA* and the j-

th component of Axn+Pi is ajjxj + aj,n+Pi. Since: Xj = ajlajjaj,n+Pi'

ajjxj + aj,n+Pi = ajjajlajjaj,n+Pi +aj,n+Pi = aj,n+Pi (ajl lajjlZ +1) =
ajlaj,n+Pi 1= o. Hence for each j (1 ~ j ~ n), there exist Yj=(YllYz,
... , YZn) E maxA* such that Yj 1= o. By Theorem 3.12, A is an extreme

point of (A~:»l.
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By an argument similar to Theorem 3.14, we can get the following
theorem.

THEOREM 3.15. Let A be in A~:) such that IIAII = 1. If each column
vector of 5 is nonzero and Yk E maxA* for all k = 1,2, ... , n, where
Yk = (YllY2,'" ,Y2n) with Yk = 1 andYj = 0 forallj (j =1= k, 1 ~ j ~ n),
then A is an extreme point of (A~:>h.

Let A = (~l g2) be in A~:) such that IIAII = 1. Let k (1 ~ k ~ n)

be given and let Xn+k = (Xl,X2"",X2n) with Xn+k = 1 and xn+j = 0
for all j (j =1= k, 1 ~ j ~ n). Then Xn+k E maxA if and only if Xi

a;laiiai,n+k for all i (1 ~ i ~ n) provided ai =1= 0 and

al,n+1 a1,n+k

a1,n+2 a1,n+k

a2,n+1 a2,n+k

a2,n+2 a2,n+k

a n ,n+1 an,n+k

a n ,n+2an.n+k

/"1

12

In

where aj = 1 -lajjl2 and aj1 = 0 if aj = 0 for all j = 1,2, ... ,n and

Ik = 1 - !an+k,n+kI2 and /"j = 0 for all j (j =1= k, 1 ~ j ~ n). Suppose
that 5; = (ai,n+1, ai,n+2, , ai,2n)t, that is, 5; is the i-th column
vector of 5*, for all i = 1,2, , n. Let B = (ai""l, a;l, .. . , a;;:-l)t and
let Pk = (/1,/2, ... , In)t. Then the above equation holds if and only if

From this fact we have the following theorem.

THEOREM 3.16. Let A = (~1 g2) be in A~~ such that IIAII = 1.

Let k (1 ~ k ~ n) be given and let Xn+k = (Xl,X2, ... ,X2n) with Xn+k =
1 and xn+j = 0 for all j (j =1= k, 1 ~ j ~ n). Then Xn+k E maxA if and
only if
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and Xi = a;luiiai,n+k for all i (1 :::; i :::; n) provided ai =1= o.
Let Si be the ith-column vector of S and let C = (13}1, 13:;1, ... , 13;;l)t,

where 13i = 1 -lan+i,n+iI2 and 13;1 = 0 if 13i = 0 for all i = 1,2, ... , n.
Let Qk = (1]1,1]2, ... , 1]n)t, where 1]k = ak and 1]j = 0 if j =1= k. By an
argument similar to Theorem 3.16, we can get the following theorem.

THEOREM 3.17. Let A= (~1 g2) be in A~~ such that IIAII = 1.

Let k (1:::; k:::; n) be given and let Yk = (Y1,Y2, ... ,Y2n) with Yk = 1
and Yi = 0 for all i (i of k, 1 :::; i :::; n). Then Yk E maxA* if and only if

and Yn+i = 13;luk,n+ian+i,n+i for all i (1 :::; i :::; n) such that 13i =1= o.
From Theorem 3.11, 3.12, 3.13, 3.16 and 17, we have the following

theorems.

THEOREM 3.18. Let A= (~1 g2) be in A~~ such that IIAII = 1.

IfA is an extreme point of(A~:»)l' then for each k (1 :::; k :::; n),

or
... ,

THEOREM 3.19. Let A= (~1 g2) be in A~:> such that IIAII = 1

and let each row and column vector has at least one nonzero element. If
"

for each k (1 :::; k :::; n),

... ,

or
(ak,n+1 S 1, ak,n+2 S 2, ... , ak,2n S n)C = Qk,

then A is extreme.
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