EXTREME POINTS OF $\mathcal{A}_{2 n}^{(n)}$

Taeg Young Choi

1. Introduction

Let \mathcal{H} be a complex Hilbert space. If \mathcal{L} is a lattice of orthogonal projections acting on \mathcal{H}, then $\operatorname{Alg} \mathcal{L}$ is the algebra of all bounded operators acting on \mathcal{H} that leave invariant every orthogonal projections in \mathcal{L}. A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections acting on \mathcal{H}, containing 0 and I. Dually, if \mathcal{A} is a subalgebra of $\mathcal{B}(\mathcal{H})$, the algebra consisting of all bounded operators acting on \mathcal{H}, then Lat \mathcal{A} is the lattice of all orthogonal projections invariant for each operator in \mathcal{A}. An algebra \mathcal{A} is reflexive if $\mathcal{A}=\operatorname{Alg} \operatorname{Lat} \mathcal{A}$ and a lattice \mathcal{L} is reflexive if $\mathcal{L}=\operatorname{LatAlg} \mathcal{L}$. A lattice \mathcal{L} is commutative if each pair of projections in \mathcal{L} commutes. We write $(\mathcal{A})_{1}$ for the unit ball of the algebra \mathcal{A}. If $x_{1}, x_{2}, \ldots, x_{m}$ are vectors in some Hilbert space, then $\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ means the closed subspace generated by the vectors $x_{1}, x_{2}, \ldots, x_{m}$. Let A be in $\mathcal{B}(\mathcal{H})$ and let x be in \mathcal{H}. If $\|A x\|=\|A\|\|x\|$, then x is said to be a maximal vector for A and $\max A$ is the set of all maximal vectors for A. An element A of a subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H})$ is described as an extreme point of \mathcal{A} if the only way in which it can be expressed as a convex combination $A=\lambda B+(1-\lambda) C$, with $0 \leq \lambda \leq 1$ and B, C in \mathcal{A}, is by taking $B=C=A$.

Let \mathcal{H} be a n-dimensional complex Hilbert space with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and let \mathcal{L}_{n} be the lattice generated by $\left\{\left[e_{1}\right],\left[e_{3}\right]\right.$, $\left.\ldots,\left[e_{n-1}\right],\left[e_{1}, e_{2}, e_{3}\right],\left[e_{3}, e_{4}, e_{5}\right], \ldots,\left[e_{n-3}, e_{n-2}, e_{n-1}\right],\left[e_{n-1}, e_{n}\right]\right\}$ if n is even(or. $\left\{\left[e_{1}\right],\left[e_{3}\right], \ldots,\left[e_{n}\right],\left[e_{1}, e_{2}, e_{3}\right],\left[e_{3}, e_{4}, e_{5}\right], \ldots,\left[e_{n-2}, e_{n-1}, e_{n}\right]\right\}$ if n is odd). Let \mathcal{H} be an infinite separable Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}, \ldots\right\}$ and let \mathcal{L}_{∞} be the lattice generated by $\left\{\left[e_{2 i-1}\right],\left[e_{2 i-1}\right.\right.$, $\left.\left.e_{2 i}, e_{2 i+1}\right]: i=1,2, \ldots\right\}$. Then the extreme points of the algebras $A l g \mathcal{L}_{2 n}$ and $A l g \mathcal{L}_{\infty}$ are investigated in [8].

Let \mathcal{H} be a $2 n$-dimensional complex Hilbert space with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}$. Let $\mathcal{L}_{2 n}$ be the lattice generated by $\left\{\left[e_{1}\right],\left[e_{3}\right]\right.$, $\left.\ldots,\left[e_{2 n-1}\right],\left[e_{1}, e_{2}, e_{3}\right],\left[e_{3}, e_{4}, e_{5}\right], \ldots,\left[e_{1}, e_{2 n-1}, e_{2 n}\right]\right\}$ and let $\mathcal{A}_{2 n}$ be the tridiagonal algebra discovered by F. Gilfeather and D. Larson. Then $\mathcal{A}_{2 n}=A l g \mathcal{L}_{2 n}$ and $A \in \mathcal{A}_{2 n}$ has the form

$$
\left(\begin{array}{llllll}
* & * & & & & \\
& * & & & & \\
& * & * & * & & \\
& * & & & \\
& & * & \cdots & & \\
& & & & * & \\
& & & & & *
\end{array}\right)
$$

with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}$, where all non-starred entries are zero. The extreme points of $\mathcal{A}_{2 n}$ are investigated in [2]. If we write the basis in the order $\left\{e_{1}, e_{3}, \ldots, e_{2 n-1}, e_{2}, e_{4}, \ldots, e_{2 n}\right\}$, then the above matrix looks like this

where all non-starred entries are zero.
Let $\mathcal{A}_{2 n}^{(n)}=\left\{\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right): D_{1}\right.$ and D_{2} are $n \times n$ diagonal matrices and S is an $n \times n$ matrix $\}$. The isometries of $\mathcal{A}_{2 n}^{(n)}$ are investigated in [7]. In this paper we will investigate the extreme points of $\mathcal{A}_{2 n}^{(n)}$.

2. Preliminaries and general properties

Lemma 2.1 [8]. Let \mathcal{H} be a finite dimensional Hilbert space and let A be in $\mathcal{B}(\mathcal{H})$ such that $\|A\|=1$. Then A has at least one nonzero maximal vector.

Lemma 2.2 [8]. Let \mathcal{A} be a subalgebra of $\mathcal{B}(\mathcal{H})$. If A is an extreme point of $(\mathcal{A})_{1}$, then A^{*} is an extreme point of $\left(\mathcal{A}^{*}\right)_{1}$, where $\mathcal{A}^{*}=\left\{A^{*}\right.$: $A \in \mathcal{A}\}$.

Lemma 2.3 [8]. Let A be a nonzero operator in $\mathcal{B}(\mathcal{H})$. Then

$$
\max A=\operatorname{ker}\left(\|A\|^{2}-A^{*} A\right) \text { and } \operatorname{dim}(\max A)=\operatorname{dim}\left(\max A^{*}\right)
$$

Lemma 2.4 [8]. Let $\operatorname{dim} \mathcal{H}<\infty$ and let $P \geq 0$. Then $\operatorname{ran} P=\operatorname{ran} P^{\frac{1}{2}}$, where $\operatorname{ran} P=\{P x: x \in \mathcal{H}\}$.

Lemma 2.5 [11]. Let \mathcal{L} be a nest or a distributive lattice of orthogonal projections. If A is in $(A l g \mathcal{L})_{1}$, then A is an extreme point of $(A \lg \mathcal{L})_{1}$ if and only if for all E in \mathcal{L}, either $E \cap \operatorname{ran}\left(1-A A^{*}\right)^{\frac{1}{2}}=\{0\}$ or $E_{-}^{\perp} \cap \operatorname{ran}\left(1-A^{*} A\right)^{\frac{1}{2}}=\{0\}$, where $E_{-}=\vee\{F: F \in \mathcal{L}$ and $F \nsupseteq E\}$ and $E_{-}^{\perp}=\left(E_{-}\right)^{\perp}$.

Lemma 2.6 [8]. Let A be in $\mathcal{A}_{2 n}$ such that $\|A\|=1$. Then A is an extreme point of $\left(\mathcal{A}_{2 n}\right)_{1}$ if and only if for all E in $\mathcal{L}_{2 n}$, either $\max A^{*} \vee$ $E^{\perp}=\mathcal{H}$ or $\max A \vee E_{-}=\mathcal{H}$.

Lemma 2.7 [2]. Let \mathcal{A} and \mathcal{B} be subalgebras of $\mathcal{B}(\mathcal{H})$. Let U be a unitary operator such that $U \mathcal{A} U^{*}=\mathcal{B}$. Then A is an extreme point of $(\mathcal{A})_{1}$ if and only if $U A U^{*}$ is an extreme point of $(\mathcal{B})_{1}$.

Proof. If $U A U^{*}=\lambda B+(1-\lambda) C$ for some B and C in $(\mathcal{B})_{1}$, then $A=\lambda U^{*} B U+(1-\lambda) U^{*} C U$ and $U^{*} B U$ and $U^{*} C U$ are in $(\mathcal{A})_{1}$. Since A is an extreme point of $(\mathcal{A})_{1}, A=U^{*} B U=U^{*} C U$. Since U is unitary, $U A U^{*}=B=C$. Conversely, if $A=\lambda B+(1-\lambda) C$ for some B and C in $(\mathcal{A})_{1}$, then $U A U^{*}=\lambda U B U^{*}+(1-\lambda) U C U^{*}$ and $U B U^{*}$ and $U C U^{*}$ are in $(\mathcal{B})_{1}$. Since $U B U^{*}$ is an extreme point of $(\mathcal{B})_{1}, U A U^{*}=U B U^{*}=$ $U C U^{*}$. Hence $A=B=C$.

Lemma 2.8 [2]. Let A and U be in $\mathcal{B}(\mathcal{H})$ and let U be a unitary operator. Then $U^{*}(\max A)=\max \left(U^{*} A U\right)$.

Proof. Let x be in $\max A$. Then $\|A x\|=\|A\|\|x\|$ and so $\left\|U^{*} A U U^{*} x\right\|$ $=\left\|U^{*} A x\right\|=\|A x\|=\|A\|\|x\|=\left\|U^{*} A U\right\|\left\|U^{*} x\right\|$. Hence $U^{*} x$ is in $\max \left(U^{*} A U\right)$. Conversely, let x be in $\max \left(U^{*} A U\right)$. Then $\|A U x\|=$ $\left\|U^{*} A U x\right\|=\left\|U^{*} A U\right\|\|x\|=\|A\|\|x\|=\|A\|\|U x\|$. Hence $U x$ is in $\max A$.

Theorem 2.9. Let A and U be in $\mathcal{B}(\mathcal{H})$ and let U be a unitary operator. Then $\operatorname{dim}\left(\max \left(U A U^{*}\right)\right)=\operatorname{dim}(\max A)$.

3. Extreme point of $\mathcal{A}_{2 n}^{(n)}$

Let \mathcal{H} be a $2 n$-dimensional complex Hilbert space with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}$ and let $\mathcal{L}_{2 n}^{(n)}$ be the lattice generated by $\left\{\left[e_{1}\right]\right.$, $\left.\left[e_{2}\right], \ldots,\left[e_{n}\right],\left[e_{1}, e_{2}, \ldots, e_{n}, e_{n+i}\right]: i=1,2, \ldots, n\right\}$. Then $\mathcal{A}_{2 n}^{(n)}=$ Alg $\mathcal{L}_{2 n}^{(n)}$ and $\mathcal{A}_{2 n}^{(n)}$ and $\mathcal{L}_{2 n}^{(n)}$ are reflexive.

First we consider the extreme points of $\mathcal{A}_{2}^{(1)}$ and $\mathcal{A}_{4}^{(2)}$. Since $\mathcal{A}_{2}^{(1)}=$ \mathcal{A}_{2}, we have the following theorem.

Theorem 3.1 [2]. Let $A=\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)$ be in $\mathcal{A}_{2}^{(1)}$ such that $\|A\|=$ 1. Then A is an extreme point of $\left(\mathcal{A}_{2}^{(1)}\right)_{1}$ unless A is diagonal such that $\left|a_{i i}\right|<1$ for some $i(i=1,2)$.

Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right) \in \mathcal{A}_{4}^{(2)}$ such that $\|A\|=1$, where

$$
D_{1}=\left(\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right), D_{2}=\left(\begin{array}{cc}
a_{33} & 0 \\
0 & a_{44}
\end{array}\right) \text { and } S=\left(\begin{array}{cc}
a_{13} & a_{14} \\
a_{23} & a_{24}
\end{array}\right) .
$$

Let U be a 4×4 unitary matrix with 1 in (1,1)-, (2,3)-, (3,2)-, and (4,4)-components and 0 elsewhere. Then $U=U^{*}$ and $U \mathcal{A}_{4} U^{*}=\mathcal{A}_{4}^{(2)}$. By Lemma 2.8, A is an extreme point of $\left(\mathcal{A}_{4}^{(2)}\right)_{1}$ if and only if $U A U^{*}$ is an extreme point of $\left(\mathcal{A}_{4}\right)_{1}$. Using the result in [2] we have the following theorems.

Theorem 3.2. Let A be in $\mathcal{A}_{4}^{(2)}$ such that $\|A\|=1$. If every entry of S is nonzero, then A is an extreme point of $\left(\mathcal{A}_{4}^{(2)}\right)_{1}$ if and only if $\operatorname{dim}(\max A)=2$.

THEOREM 3.3. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{4}^{(2)}$ such that $\|A\|=1$. If exactly one element of S is zero, then A is not an extreme point of $\left(\mathcal{A}_{4}^{(2)}\right)_{1}$.

Theorem 3.4. Let A be in $\mathcal{A}_{4}^{(2)}$ such that $\|A\|=1$ and let exactly $k(2 \leq k \leq 4)$ elements of S be zero. Then A is an extreme point of $\left(\mathcal{A}_{\mathbf{4}}^{(2)}\right)_{1}$ if and only if $\operatorname{dim}(\max A)=k$.

From now on, we will consider the extreme points of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$ for all positive integers n. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$, where D_{1} is an $n \times n$ diagonal matrix with $a_{i i}$ in (i, i)-components, D_{2} is an $n \times n$ diagonal matrix with $a_{n+j, n+j}$ in (j, j)-components and S is an $n \times n$ matrix with $a_{i, n+j}$ in (i, j)-components for all $i, j(1 \leq i, j \leq n)$. Then

$$
A^{*} A=\left(\begin{array}{cc}
D_{1}^{*} D_{1} & D_{1}^{*} S \\
S^{*} D_{1} & S^{*} S+D_{2}^{*} D_{2}
\end{array}\right)
$$

If $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \in \max A$, where $\mathbf{x}_{1}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{x}_{2}=\left(x_{n+1}, x_{n+2}, \ldots, x_{2 n}\right)$, then by Lemma 2.3, we have the following equation

$$
\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}}=\left(\begin{array}{cc}
D_{1}^{*} D_{1} & D_{1}^{*} S \\
S^{*} D_{1} & S^{*} S+D_{2}^{*} D_{2}
\end{array}\right)\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}} .
$$

From this we have the following relations;
(*) $\quad \alpha_{1} x_{1}=\sum_{k=1}^{n} \bar{a}_{11} a_{1, n+k} x_{n+k}$

$$
\alpha_{2} x_{2}=\sum_{k=1}^{n} \bar{a}_{22} a_{2, n+k} x_{n+k}
$$

$$
\begin{aligned}
\alpha_{n} x_{n} & =\sum_{k=1}^{n} \bar{a}_{n n} a_{n, n+k} x_{n+k} \\
\alpha_{n+1} x_{n+1} & =\sum_{k=1}^{n} \bar{a}_{k, n+1} a_{k k} x_{k}+\sum_{j=2}^{n}\left(\sum_{k=1}^{n} \bar{a}_{k, n+1} a_{k, n+j}\right) x_{n+j} \\
\alpha_{n+2} x_{n+2} & =\sum_{k=1}^{n} \bar{a}_{k, n+2} a_{k k} x_{k}+\sum_{j \neq 2, j=1}^{n}\left(\sum_{k=1}^{n} \bar{a}_{k, n+2} a_{k, n+j}\right) x_{n+j} \\
& \vdots \\
\alpha_{2 n} x_{2 n} & =\sum_{k=1}^{n} \bar{a}_{k, 2 n} a_{k k} x_{k}+\sum_{j=1}^{n-1}\left(\sum_{k=1}^{n} \bar{a}_{k, 2 n} a_{k, n+j}\right) x_{n+j}
\end{aligned}
$$

where $\alpha_{i}=1-\left|a_{i i}\right|^{2}$, and $\alpha_{n+i}=1-\left|a_{n+i, n+i}\right|^{2}-\sum_{k=1}^{n}\left|a_{k, n+i}\right|^{2}$ for all $i=1,2, \ldots, n$.

From this relations we have the following theorem.
Theorem 3.5. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=$ 1. If each row vector of S has at least one nonzero element, then $\operatorname{dim}(\max A) \leq n$.

Corollary 3.6. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=$ 1. If each column vector of S has at least one nonzero element, then $\operatorname{dim}\left(\max A^{*}\right) \leq n$.

Theorem 3.7. Let A be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. If A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$, then $\operatorname{dim}(\max A) \geq n$.

Proof. Suppose that $\operatorname{dim}(\max A)=k<n$. Take $E=\left[e_{1}, e_{2}, \ldots\right.$, $\left.e_{k+1}\right]$ in $\mathcal{L}_{2 n}^{(n)}$. Then $E_{-}=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ and $E^{\perp}=\left[e_{1}, e_{2}, \ldots, e_{k+1}\right]^{\perp}$. Hence $\operatorname{dim}\left(E_{-}\right)=n$ and $\operatorname{dim}\left(E^{\perp}\right)=2 n-(k+1)$. Thus max $A \vee E_{-} \neq \mathcal{H}$ and $\max A^{*} \vee E^{\perp} \neq \mathcal{H}$.

Corollary 3.8. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$ and let each row vector of S be nonzero or each column vector of S be nonzero. If A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$, then $\operatorname{dim}(\max A)=n$.

Corollary 3.9. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$ and each row vector of S has at least one nonzero element. If for some $i(1 \leq i \leq n), x_{n+i}=0$ for all $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \in \max A$, then A is not an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$.

Proof. From the equation $(*), \operatorname{dim}(\max A) \leq n-1$. Hence by Theorem 3.7, A is not extreme.

Corollary 3.10. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=$ 1 and each column vector of S has at least one nonzero element. If for some $i(1 \leq i \leq n), y_{i}=0$ for all $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{2 n}\right) \in \max A^{*}$, then A is not an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$.

TheOrem 3.11. Let A be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. If A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$, then for each $i(1 \leq i \leq n)$, either there exists $\mathbf{x}_{n+i}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \in \max A$ such that $x_{n+i}=1$ and $x_{n+j}=0$ for all $j(j \neq i, 1 \leq j \leq n)$ or there exists $\mathbf{y}_{i}=\left(y_{1}, y_{2}, \ldots, y_{2 n}\right) \in \max A^{*}$ such that $y_{i}=1$ and $y_{j}=0$ for all $j(j \neq i, 1 \leq j \leq n)$.

Proof. Let $E=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$. Then $E_{-}=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ and $E^{\perp}=$ $\left[e_{n+1}, e_{n+2}, \ldots, e_{2 n}\right]$. Since A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$, either $\max A \vee E_{-}=\mathcal{H}$ or $\max A \vee E^{\perp}=\mathcal{H}$. If $\max A \vee E_{-}=\mathcal{H}$, then $e_{n+i} \in \max A \vee E_{-}$for all $i=1,2, \ldots, n$. So $e_{n+i}=\sum_{k=1}^{2 n} x_{k} e_{k}+$ $\sum_{k=1}^{n} \mu_{k} e_{k}$ for some $\sum_{k=1}^{2 n} x_{k} e_{k} \in \max A$ and $\sum_{k=1}^{n} \mu_{k} e_{k} \in E_{-}$. Hence $x_{n+i}=1$ and $x_{n+j}=0$ for all $j(j \neq i, 1 \leq j \leq n)$. Thus there exists $\mathbf{x}_{i}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \in \max A$ such that $x_{n+i}=1$ and $x_{n+j}=0$ for all $j(j \neq i, 1 \leq j \leq n)$. Similarly, if $\max A \vee E^{\perp}=\mathcal{H}$, then there exists $\mathbf{y}_{i}=\left(y_{1}, y_{2}, \ldots, y_{2 n}\right) \in \max A^{*}$ such that $y_{i}=1$ and $y_{j}=0$ for all $j(j \neq i, 1 \leq j \leq n)$.

Theorem 3.12. Let A be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. If for each $i(1 \leq i \leq n)$, there exists a vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \in \max A$ such
that $x_{n+i} \neq 0$ and $x_{n+j}=0$ for all $j(j \neq i, 1 \leq j \leq n)$, and there exists a vector $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{2 n}\right) \in \max A^{*}$ such that $y_{i} \neq 0$, then A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$.

Proof. Let $E=\left[e_{k}\right]$ for $k=1,2, \ldots, n$. Then $E^{\perp}=\left[e_{k}\right]^{\perp}$ and so $\max A^{*} \vee E^{\perp}=\mathcal{H}$. Let $E=\left[e_{1}, e_{2}, \ldots, e_{n}, e_{n+k}\right]$ for some $k=1,2, \ldots, n$. Then $E_{-}=\left[e_{n+k}\right]^{\perp}$ and so $\max A \vee E_{-}=\mathcal{H}$. Let E be in $\mathcal{L}_{2 n}^{(n)}$ such that $\left[e_{j}\right] \subsetneq E \subset\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ for some $j(1 \leq j \leq n)$. Then $E_{-}=$ $\left[e_{1}, e_{2}, \ldots, e_{n}\right]$. Since $e_{n+k} \in \max A \vee E_{-}$for all $k=1,2, \ldots, n, \max A \vee$ $E_{-}=\mathcal{H}$. Let E be in $\mathcal{L}_{2 n}^{(n)}$ such that $\left[e_{1}, e_{2}, \ldots, e_{n}, e_{n+j}\right] \subsetneq E$ for some $j(1 \leq j \leq n)$. Then $E_{-}=\mathcal{H}$ and so $\max A \vee E_{-}=\mathcal{H}$. If $E \in \mathcal{L}_{2 n}^{(n)}$ such that E is different from above cases, then $E_{-}=\mathcal{H}$ and so $\max A \vee E_{-}=\mathcal{H}$.

By an argument similar to Theorem 3.12, we can get the following theorem.

THEOREM 3.13. Let A be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. If for each $i(1 \leq i \leq n)$, there exists a vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \in \max A$ such that $x_{n+i} \neq 0$ and there exists a vector $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{2 n}\right) \in \max A^{*}$ such that $y_{i} \neq 0$ and $y_{j}=0$ for all $j(j \neq i, 1 \leq j \leq n)$, then A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$.

Theorem 3.14. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=$ 1. If each row vector of S is nonzero and $\mathbf{x}_{n+k} \in \max A$ for all $k=$ $1,2, \ldots, n$, where $\mathbf{x}_{n+k}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)$ with $x_{n+k}=1$ and $x_{n+j}=0$ for all $j(j \neq k, 1 \leq j \leq n)$, then A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$.

Proof. Let $D_{1}=\left(a_{i i}\right)$ and $D_{2}=\left(a_{n+i, n+i}\right)$ be $n \times n$ diagonal matrices and let $S=\left(a_{i, n+j}\right)$ be $n \times n$ matrix. Suppose that $a_{1, n+p_{1}} \neq 0, a_{2, n+p_{2}} \neq$ $0, \ldots, a_{n, n+p_{n}} \neq 0\left(1 \leq p_{1}, p_{2}, \ldots, p_{n} \leq n\right)$. Then $\left|a_{i i}\right| \neq 1$ for all $i=1,2, \ldots, n$. Since $\mathbf{x}_{n+p_{j}} \in \max A, A \mathbf{x}_{n+p_{j}} \in \max A^{*}$ and the j th component of $A \mathbf{x}_{n+p_{j}}$ is $a_{j j} x_{j}+a_{j, n+p_{j}}$. Since $x_{j}=\alpha_{j}^{-1} \bar{a}_{j j} a_{j, n+p_{j}}$, $a_{j j} x_{j}+a_{j, n+p_{j}}=a_{j j} \alpha_{j}^{-1} \bar{a}_{j j} a_{j, n+p_{j}}+a_{j, n+p_{j}}=a_{j, n+p_{j}}\left(\alpha_{j}^{-1}\left|a_{j j}\right|^{2}+1\right)=$ $\alpha_{j}^{-1} a_{j, n+p_{j}} \neq 0$. Hence for each $j(1 \leq j \leq n)$, there exist $\mathbf{y}_{j}=\left(y_{1}, y_{2}\right.$, $\left.\ldots, y_{2 n}\right) \in \max A^{*}$ such that $y_{j} \neq 0$. By Theorem $3.12, A$ is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$.

By an argument similar to Theorem 3.14, we can get the following theorem.

Theorem 3.15. Let A be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. If each column vector of S is nonzero and $\mathbf{y}_{k} \in \max A^{*}$ for all $k=1,2, \ldots, n$, where $\mathbf{y}_{k}=\left(y_{1}, y_{2}, \ldots, y_{2 n}\right)$ with $y_{k}=1$ and $y_{j}=0$ for all $j(j \neq k, 1 \leq j \leq n)$, then A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$.

Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. Let $k(1 \leq k \leq n)$ be given and let $\mathbf{x}_{n+k}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)$ with $x_{n+k}=1$ and $x_{n+j}=0$ for all $j(j \neq k, 1 \leq j \leq n)$. Then $\mathbf{x}_{n+k} \in \max A$ if and only if $x_{i}=$ $\alpha_{i}^{-1} \bar{a}_{i i} a_{i, n+k}$ for all $i(1 \leq i \leq n)$ provided $\alpha_{i} \neq 0$ and

$$
\left(\begin{array}{cccc}
\bar{a}_{1, n+1} a_{1, n+k} & \bar{a}_{2, n+1} a_{2, n+k} & \cdots & \bar{a}_{n, n+1} a_{n, n+k} \\
\bar{a}_{1, n+2} a_{1, n+k} & \bar{a}_{2, n+2} a_{2, n+k} & \cdots & \bar{a}_{n, n+2} a_{n, n+k} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot \\
\bar{a}_{1,2 n} a_{1, n+k} & \bar{a}_{2,2 n} a_{2, n+k} & \cdots & \bar{a}_{n, 2 n} a_{n, n+k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1}^{-1} \\
\alpha_{2}^{-1} \\
\cdot \\
\cdot \\
\cdot \\
\alpha_{n}^{-1}
\end{array}\right)=\left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\cdot \\
\cdot \\
\cdot \\
\gamma_{n}
\end{array}\right)
$$

where $\alpha_{j}=1-\left|a_{j j}\right|^{2}$ and $\alpha_{j}^{-1}=0$ if $\alpha_{j}=0$ for all $j=1,2, \ldots, n$ and $\gamma_{k}=1-\left|a_{n+k, n+k}\right|^{2}$ and $\gamma_{j}=0$ for all $j(j \neq k, 1 \leq j \leq n)$. Suppose that $S_{i}^{*}=\left(\bar{a}_{i, n+1}, \bar{a}_{i, n+2}, \ldots, \bar{a}_{i, 2 n}\right)^{t}$, that is, S_{i}^{*} is the i-th column vector of S^{*}, for all $i=1,2, \ldots, n$. Let $B=\left(\alpha_{1}^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{n}^{-1}\right)^{t}$ and let $P_{k}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)^{t}$. Then the above equation holds if and only if

$$
\left(a_{1, n+k} S_{1}^{*}, a_{2, n+k} S_{2}^{*}, \ldots, a_{n, n+k} S_{n}^{*}\right) B=P_{k} .
$$

From this fact we have the following theorem.
Theorem 3.16. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$.
Let $k(1 \leq k \leq n)$ be given and let $\mathbf{x}_{n+k}=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)$ with $x_{n+k}=$ 1 and $x_{n+j}=0$ for all $j(j \neq k, 1 \leq j \leq n)$. Then $\mathbf{x}_{n+k} \in \max A$ if and only if

$$
\left(a_{1, n+k} S_{1}^{*}, a_{2, n+k} S_{2}^{*}, \ldots, a_{n, n+k} S_{n}^{*}\right) B=P_{k}
$$

and $x_{i}=\alpha_{i}^{-1} \bar{a}_{i i} a_{i, n+k}$ for all $i(1 \leq i \leq n)$ provided $\alpha_{i} \neq 0$.
Let S_{i} be the i th-column vector of S and let $C=\left(\beta_{1}^{-1}, \beta_{2}^{-1}, \ldots, \beta_{n}^{-1}\right)^{t}$, where $\beta_{i}=1-\left|a_{n+i, n+i}\right|^{2}$ and $\beta_{i}^{-1}=0$ if $\beta_{i}=0$ for all $i=1,2, \ldots, n$. Let $Q_{k}=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)^{t}$, where $\eta_{k}=\alpha_{k}$ and $\eta_{j}=0$ if $j \neq k$. By an argument similar to Theorem 3.16, we can get the following theorem.

Theorem 3.17. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. Let $k(1 \leq k \leq n)$ be given and let $\mathbf{y}_{k}=\left(y_{1}, y_{2}, \ldots, y_{2 n}\right)$ with $y_{k}=1$ and $y_{i}=0$ for all $i(i \neq k, 1 \leq i \leq n)$. Then $\mathbf{y}_{k} \in \max A^{*}$ if and only if

$$
\left(\bar{a}_{k, n+1} S_{1}, \bar{a}_{k, n+2} S_{2}, \ldots, \bar{a}_{k, 2 n} S_{2 n}\right) C=Q_{k}
$$

and $y_{n+i}=\beta_{i}^{-1} \bar{a}_{k, n+i} a_{n+i, n+i}$ for all $i(1 \leq i \leq n)$ such that $\beta_{i} \neq 0$.
From Theorem 3.11, 3.12, 3.13, 3.16 and 17 , we have the following theorems.

THEOREM 3.18. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$. If A is an extreme point of $\left(\mathcal{A}_{2 n}^{(n)}\right)_{1}$, then for each $k(1 \leq k \leq n)$,

$$
\left(a_{1, n+k} S_{1}^{*}, a_{2, n+k} S_{2}^{*}, \ldots, a_{n, n+k} S_{n}^{*}\right) B=P_{k}
$$

or

$$
\left(a_{k, n+1} S_{1}, a_{k, n+2} S_{2}, \ldots, a_{k, 2 n} S_{n}\right) C=Q_{k}
$$

Theorem 3.19. Let $A=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{(n)}$ such that $\|A\|=1$ and let each row and column vector has at least one nonzero element. If for each $k(1 \leq k \leq n)$,

$$
\left(a_{1, n+k} S_{1}^{*}, a_{2, n+k} S_{2}^{*}, \ldots, a_{n, n+k} S_{n}^{*}\right) B=P_{k}
$$

or

$$
\left(a_{k, n+1} S_{1}, a_{k, n+2} S_{2}, \ldots, a_{k, 2 n} S_{n}\right) C=Q_{k}
$$

then A is extreme.

References

1. W. Arveson, Operator algebras invariant subspaces, Ann. of Math. 100 (1974), 443-532.
2. T. Y. Choi and Y. S. Jo, Extreme points of tridiagonal algebra, Preprint.
3. F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras, Topics in Modern Operator Theory; Advances and Applications 2, Birkhauser, Basel, 1981.
4. F. Gilfeather and R. Moore, Isomorphisms of certain CSL-algebras, J. Funct. Anal. 67 (1986), 264-291.
5. P. Halmos, A Hilbert space problem book, Second Edition, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
6. Y. S. Jo, Isometries of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
7. Y. S. Jo and I. B. Jung, Isometries of $\mathcal{A}_{2 n}^{(n)}$, Math. J. Toyama Univ. 13 (1990), 139-149.
8. Y. S. Jo and T. Y. Choi, Extreme points of \mathcal{B}_{n} and \mathcal{B}_{∞}, Math. Japon. 35 (1990), 439-449.
9. R. Kadison and J. Ringrose, Fundamentals of theory of operator algebras, vol. I, II, Academic press, New York, 1983, 1986.
10. C. Laurie and W. Longstaff, A note on rank one operators in reflexive algebras, Proc. Amer. Math. Soc. 89 (1983), 293-297.
11. W. Longstaff, Operators of rank one in Reflexive algebras, Canad. J. Math. 28 (1976), 19-23.

Department of Mathematics Education
Andong National University
Andong 760-749, Korea

