Comm. Korean Math. Soc. 8 (1993), No. 4, pp. 643-653

EXTREME POINTS OF $\mathcal{A}_{2n}^{(n)}$

TAEG YOUNG CHOI

1. Introduction

Let \mathcal{H} be a complex Hilbert space. If \mathcal{L} is a lattice of orthogonal projections acting on \mathcal{H} , then $Alq\mathcal{L}$ is the algebra of all bounded operators acting on \mathcal{H} that leave invariant every orthogonal projections in \mathcal{L} . A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections acting on \mathcal{H} , containing 0 and I. Dually, if \mathcal{A} is a subalgebra of $\mathcal{B}(\mathcal{H})$, the algebra consisting of all bounded operators acting on \mathcal{H} , then $Lat\mathcal{A}$ is the lattice of all orthogonal projections invariant for each operator in \mathcal{A} . An algebra \mathcal{A} is reflexive if $\mathcal{A} = AlgLat\mathcal{A}$ and a lattice \mathcal{L} is reflexive if $\mathcal{L} = LatAlg\mathcal{L}$. A lattice \mathcal{L} is commutative if each pair of projections in \mathcal{L} commutes. We write $(\mathcal{A})_1$ for the unit ball of the algebra \mathcal{A} . If x_1, x_2, \ldots, x_m are vectors in some Hilbert space, then $[x_1, x_2, \ldots, x_m]$ means the closed subspace generated by the vectors x_1, x_2, \ldots, x_m . Let A be in $\mathcal{B}(\mathcal{H})$ and let x be in \mathcal{H} . If ||Ax|| = ||A|| ||x||, then x is said to be a maximal vector for A and $\max A$ is the set of all maximal vectors for A. An element A of a subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H})$ is described as an extreme point of \mathcal{A} if the only way in which it can be expressed as a convex combination $A = \lambda B + (1 - \lambda)C$, with $0 \le \lambda \le 1$ and B, C in \mathcal{A} , is by taking B = C = A.

Let \mathcal{H} be a *n*-dimensional complex Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots, e_n\}$ and let \mathcal{L}_n be the lattice generated by $\{[e_1], [e_3], \ldots, [e_{n-1}], [e_1, e_2, e_3], [e_3, e_4, e_5], \ldots, [e_{n-3}, e_{n-2}, e_{n-1}], [e_{n-1}, e_n]\}$ if *n* is even(or. $\{[e_1], [e_3], \ldots, [e_n], [e_1, e_2, e_3], [e_3, e_4, e_5], \ldots, [e_{n-2}, e_{n-1}, e_n]\}$ if *n* is odd). Let \mathcal{H} be an infinite separable Hilbert space with orthonormal basis $\{e_1, e_2, \ldots\}$ and let \mathcal{L}_∞ be the lattice generated by $\{[e_{2i-1}], [e_{2i-1}, e_{2i}, e_{2i+1}] : i = 1, 2, \ldots\}$. Then the extreme points of the algebras $Alg\mathcal{L}_{2n}$ and $Alg\mathcal{L}_\infty$ are investigated in [8].

Received April 8, 1993.

Supported by TGRC-KOSEF 1992.

Let \mathcal{H} be a 2n-dimensional complex Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots, e_{2n}\}$. Let \mathcal{L}_{2n} be the lattice generated by $\{[e_1], [e_3], e_{2n}\}$. $\ldots, [e_{2n-1}], [e_1, e_2, e_3], [e_3, e_4, e_5], \ldots, [e_1, e_{2n-1}, e_{2n}] \}$ and let \mathcal{A}_{2n} be the tridiagonal algebra discovered by F. Gilfeather and D. Larson. Then $\mathcal{A}_{2n} = Alg \mathcal{L}_{2n}$ and $A \in \mathcal{A}_{2n}$ has the form

with respect to the basis $\{e_1, e_2, \ldots, e_{2n}\}$, where all non-starred entries are zero. The extreme points of \mathcal{A}_{2n} are investigated in [2]. If we write the basis in the order $\{e_1, e_3, \ldots, e_{2n-1}, e_2, e_4, \ldots, e_{2n}\}$, then the above matrix looks like this

where all non-starred entries are zero. Let $\mathcal{A}_{2n}^{(n)} = \left\{ \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix} : D_1 \text{ and } D_2 \text{ are } n \times n \text{ diagonal matrices} \right\}$ and S is an $n \times n$ matrix }. The isometries of $\mathcal{A}_{2n}^{(n)}$ are investigated in [7]. In this paper we will investigate the extreme points of $\mathcal{A}_{2n}^{(n)}$.

Extreme points of $\mathcal{A}_{2n}^{(n)}$ 645

2. Preliminaries and general properties

LEMMA 2.1 [8]. Let \mathcal{H} be a finite dimensional Hilbert space and let A be in $\mathcal{B}(\mathcal{H})$ such that ||A|| = 1. Then A has at least one nonzero maximal vector.

LEMMA 2.2 [8]. Let \mathcal{A} be a subalgebra of $\mathcal{B}(\mathcal{H})$. If A is an extreme point of $(\mathcal{A})_1$, then A^* is an extreme point of $(\mathcal{A}^*)_1$, where $\mathcal{A}^* = \{A^* : A \in \mathcal{A}\}$.

LEMMA 2.3 [8]. Let A be a nonzero operator in $\mathcal{B}(\mathcal{H})$. Then

 $\max A = \operatorname{ker}(\|A\|^2 - A^*A)$ and $\dim(\max A) = \dim(\max A^*)$.

LEMMA 2.4 [8]. Let dim $\mathcal{H} < \infty$ and let $P \ge 0$. Then $\operatorname{ran} P = \operatorname{ran} P^{\frac{1}{2}}$, where $\operatorname{ran} P = \{Px : x \in \mathcal{H}\}$.

LEMMA 2.5 [11]. Let \mathcal{L} be a nest or a distributive lattice of orthogonal projections. If A is in $(Alg\mathcal{L})_1$, then A is an extreme point of $(Alg\mathcal{L})_1$ if and only if for all E in \mathcal{L} , either $E \cap \operatorname{ran}(1 - AA^*)^{\frac{1}{2}} = \{0\}$ or $E_{-}^{\perp} \cap \operatorname{ran}(1 - A^*A)^{\frac{1}{2}} = \{0\}$, where $E_{-} = \vee\{F : F \in \mathcal{L} \text{ and } F \not\geq E\}$ and $E_{-}^{\perp} = (E_{-})^{\perp}$.

LEMMA 2.6 [8]. Let A be in \mathcal{A}_{2n} such that ||A|| = 1. Then A is an extreme point of $(\mathcal{A}_{2n})_1$ if and only if for all E in \mathcal{L}_{2n} , either $\max A^* \vee E^{\perp} = \mathcal{H}$ or $\max A \vee E_{-} = \mathcal{H}$.

LEMMA 2.7 [2]. Let \mathcal{A} and \mathcal{B} be subalgebras of $\mathcal{B}(\mathcal{H})$. Let U be a unitary operator such that $U\mathcal{A}U^* = \mathcal{B}$. Then A is an extreme point of $(\mathcal{A})_1$ if and only if $U\mathcal{A}U^*$ is an extreme point of $(\mathcal{B})_1$.

Proof. If $UAU^* = \lambda B + (1 - \lambda)C$ for some B and C in $(\mathcal{B})_1$, then $A = \lambda U^*BU + (1 - \lambda)U^*CU$ and U^*BU and U^*CU are in $(\mathcal{A})_1$. Since A is an extreme point of $(\mathcal{A})_1$, $A = U^*BU = U^*CU$. Since U is unitary, $UAU^* = B = C$. Conversely, if $A = \lambda B + (1 - \lambda)C$ for some B and C in $(\mathcal{A})_1$, then $UAU^* = \lambda UBU^* + (1 - \lambda)UCU^*$ and UBU^* and UCU^* are in $(\mathcal{B})_1$. Since UBU^* is an extreme point of $(\mathcal{B})_1$, $UAU^* = UBU^* = UCU^*$. Hence A = B = C.

LEMMA 2.8 [2]. Let A and U be in $\mathcal{B}(\mathcal{H})$ and let U be a unitary operator. Then $U^*(\max A) = \max(U^*AU)$.

Proof. Let x be in max A. Then ||Ax|| = ||A|| ||x|| and so $||U^*AUU^*x|| = ||U^*Ax|| = ||Ax|| = ||A|| ||x|| = ||U^*AU|| ||U^*x||$. Hence U^*x is in max (U^*AU) . Conversely, let x be in max (U^*AU) . Then $||AUx|| = ||U^*AUx|| = ||U^*AUx|| = ||U^*AUx|| = ||A|| ||x|| = ||A|| ||x|| = ||A|| ||Ux||$. Hence Ux is in max A.

THEOREM 2.9. Let A and U be in $\mathcal{B}(\mathcal{H})$ and let U be a unitary operator. Then dim $(\max(UAU^*)) = \dim(\max A)$.

3. Extreme point of $\mathcal{A}_{2n}^{(n)}$

Let \mathcal{H} be a 2n-dimensional complex Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots, e_{2n}\}$ and let $\mathcal{L}_{2n}^{(n)}$ be the lattice generated by $\{[e_1], [e_2], \ldots, [e_n], [e_1, e_2, \ldots, e_n, e_{n+i}] : i = 1, 2, \ldots, n\}$. Then $\mathcal{A}_{2n}^{(n)} = Alg\mathcal{L}_{2n}^{(n)}$ and $\mathcal{A}_{2n}^{(n)}$ and $\mathcal{L}_{2n}^{(n)}$ are reflexive.

First we consider the extreme points of $\mathcal{A}_2^{(1)}$ and $\mathcal{A}_4^{(2)}$. Since $\mathcal{A}_2^{(1)} = \mathcal{A}_2$, we have the following theorem.

THEOREM 3.1 [2]. Let $A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$ be in $\mathcal{A}_2^{(1)}$ such that ||A|| = 1. 1. Then A is an extreme point of $(\mathcal{A}_2^{(1)})_1$ unless A is diagonal such that $||a_{ii}| < 1$ for some $i \ (i = 1, 2)$.

Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix} \in \mathcal{A}_4^{(2)}$ such that ||A|| = 1, where $D_1 = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix}, D_2 = \begin{pmatrix} a_{33} & 0 \\ 0 & a_{44} \end{pmatrix}$ and $S = \begin{pmatrix} a_{13} & a_{14} \\ a_{23} & a_{24} \end{pmatrix}$.

Let U be a 4×4 unitary matrix with 1 in (1,1)-, (2,3)-, (3,2)-, and (4,4)-components and 0 elsewhere. Then $U = U^*$ and $U\mathcal{A}_4U^* = \mathcal{A}_4^{(2)}$. By Lemma 2.8, A is an extreme point of $(\mathcal{A}_4^{(2)})_1$ if and only if UAU^* is an extreme point of $(\mathcal{A}_4)_1$. Using the result in [2] we have the following theorems.

Extreme points of
$$\mathcal{A}_{2n}^{(n)}$$
 647

THEOREM 3.2. Let A be in $\mathcal{A}_4^{(2)}$ such that ||A|| = 1. If every entry of S is nonzero, then A is an extreme point of $(\mathcal{A}_4^{(2)})_1$ if and only if dim $(\max A) = 2$.

THEOREM 3.3. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_4^{(2)}$ such that ||A|| = 1. If exactly one element of S is zero, then A is not an extreme point of $(\mathcal{A}_4^{(2)})_1$.

THEOREM 3.4. Let A be in $\mathcal{A}_4^{(2)}$ such that ||A|| = 1 and let exactly $k \ (2 \le k \le 4)$ elements of S be zero. Then A is an extreme point of $(\mathcal{A}_4^{(2)})_1$ if and only if dim $(\max A) = k$.

From now on, we will consider the extreme points of $(\mathcal{A}_{2n}^{(n)})_1$ for all positive integers n. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1, where D_1 is an $n \times n$ diagonal matrix with a_{ii} in (i, i)-components, D_2 is an $n \times n$ diagonal matrix with $a_{n+j,n+j}$ in (j, j)-components and S is an $n \times n$ matrix with $a_{i,n+j}$ in (i, j)-components for all i, j $(1 \le i, j \le n)$. Then

$$A^*A = \begin{pmatrix} D_1^*D_1 & D_1^*S \\ S^*D_1 & S^*S + D_2^*D_2 \end{pmatrix}.$$

If $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) = (x_1, x_2, \dots, x_{2n}) \in \max A$, where $\mathbf{x}_1 = (x_1, x_2, \dots, x_n)$ and $\mathbf{x}_2 = (x_{n+1}, x_{n+2}, \dots, x_{2n})$, then by Lemma 2.3, we have the following equation

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} D_1^* D_1 & D_1^* S \\ S^* D_1 & S^* S + D_2^* D_2 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}.$$

From this we have the following relations;

$$(*) \qquad \alpha_1 x_1 = \sum_{k=1}^n \overline{a}_{11} a_{1,n+k} x_{n+k}$$
$$\alpha_2 x_2 = \sum_{k=1}^n \overline{a}_{22} a_{2,n+k} x_{n+k}$$

$$\vdots \\ \alpha_{n}x_{n} = \sum_{k=1}^{n} \overline{a}_{nn}a_{n,n+k}x_{n+k} \\ \alpha_{n+1}x_{n+1} = \sum_{k=1}^{n} \overline{a}_{k,n+1}a_{kk}x_{k} + \sum_{j=2}^{n} (\sum_{k=1}^{n} \overline{a}_{k,n+1}a_{k,n+j})x_{n+j} \\ \alpha_{n+2}x_{n+2} = \sum_{k=1}^{n} \overline{a}_{k,n+2}a_{kk}x_{k} + \sum_{j\neq 2, j=1}^{n} (\sum_{k=1}^{n} \overline{a}_{k,n+2}a_{k,n+j})x_{n+j} \\ \vdots \\ \alpha_{2n}x_{2n} = \sum_{k=1}^{n} \overline{a}_{k,2n}a_{kk}x_{k} + \sum_{j=1}^{n-1} (\sum_{k=1}^{n} \overline{a}_{k,2n}a_{k,n+j})x_{n+j} \\ \end{cases}$$

where $\alpha_i = 1 - |a_{ii}|^2$, and $\alpha_{n+i} = 1 - |a_{n+i,n+i}|^2 - \sum_{k=1}^n |a_{k,n+i}|^2$ for all i = 1, 2, ..., n.

From this relations we have the following theorem.

THEOREM 3.5. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If each row vector of S has at least one nonzero element, then $\dim(\max A) \leq n$.

COROLLARY 3.6. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If each column vector of S has at least one nonzero element, then $\dim(\max A^*) \leq n$.

THEOREM 3.7. Let A be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$, then dim $(\max A) \ge n$.

Proof. Suppose that dim(maxA) = k < n. Take $E = [e_1, e_2, \ldots, e_{k+1}]$ in $\mathcal{L}_{2n}^{(n)}$. Then $E_- = [e_1, e_2, \ldots, e_n]$ and $E^{\perp} = [e_1, e_2, \ldots, e_{k+1}]^{\perp}$. Hence dim $(E_-) = n$ and dim $(E^{\perp}) = 2n - (k+1)$. Thus max $A \lor E_- \neq \mathcal{H}$ and max $A^* \lor E^{\perp} \neq \mathcal{H}$.

Extreme points of $\mathcal{A}_{2n}^{(n)}$ 649

COROLLARY 3.8. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1and let each row vector of S be nonzero or each column vector of S be nonzero. If A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$, then dim $(\max A) = n$.

COROLLARY 3.9. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1and each row vector of S has at least one nonzero element. If for some $i \ (1 \le i \le n), \ x_{n+i} = 0$ for all $\mathbf{x} = (x_1, x_2, \dots, x_{2n}) \in \max A$, then A is not an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$.

Proof. From the equation (*), dim $(\max A) \le n - 1$. Hence by Theorem 3.7, A is not extreme.

COROLLARY 3.10. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1 and each column vector of S has at least one nonzero element. If for some $i \ (1 \le i \le n), \ y_i = 0$ for all $\mathbf{y} = (y_1, y_2, \dots, y_{2n}) \in \max A^*$, then A is not an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$.

THEOREM 3.11. Let A be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$, then for each $i \ (1 \le i \le n)$, either there exists $\mathbf{x}_{n+i} = (x_1, x_2, \ldots, x_{2n}) \in \max A$ such that $x_{n+i} = 1$ and $x_{n+j} = 0$ for all $j \ (j \ne i, 1 \le j \le n)$ or there exists $\mathbf{y}_i = (y_1, y_2, \ldots, y_{2n}) \in \max A^*$ such that $y_i = 1$ and $y_j = 0$ for all $j \ (j \ne i, 1 \le j \le n)$.

Proof. Let $E = [e_1, e_2, \ldots, e_n]$. Then $E_- = [e_1, e_2, \ldots, e_n]$ and $E^{\perp} = [e_{n+1}, e_{n+2}, \ldots, e_{2n}]$. Since A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$, either $\max A \vee E_- = \mathcal{H}$ or $\max A \vee E^{\perp} = \mathcal{H}$. If $\max A \vee E_- = \mathcal{H}$, then $e_{n+i} \in \max A \vee E_-$ for all $i = 1, 2, \ldots, n$. So $e_{n+i} = \sum_{k=1}^{2n} x_k e_k + \sum_{k=1}^n \mu_k e_k$ for some $\sum_{k=1}^{2n} x_k e_k \in \max A$ and $\sum_{k=1}^n \mu_k e_k \in E_-$. Hence $x_{n+i} = 1$ and $x_{n+j} = 0$ for all j $(j \neq i, 1 \leq j \leq n)$. Thus there exists $\mathbf{x}_i = (x_1, x_2, \ldots, x_{2n}) \in \max A$ such that $x_{n+i} = 1$ and $x_{n+j} = 0$ for all j $(j \neq i, 1 \leq j \leq n)$. Similarly, if $\max A \vee E^{\perp} = \mathcal{H}$, then there exists $\mathbf{y}_i = (y_1, y_2, \ldots, y_{2n}) \in \max A^*$ such that $y_i = 1$ and $y_j = 0$ for all j $(j \neq i, 1 \leq j \leq n)$.

THEOREM 3.12. Let A be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If for each $i \ (1 \le i \le n)$, there exists a vector $\mathbf{x} = (x_1, x_2, \dots, x_{2n}) \in \max A$ such

that $x_{n+i} \neq 0$ and $x_{n+j} = 0$ for all j $(j \neq i, 1 \leq j \leq n)$, and there exists a vector $\mathbf{y} = (y_1, y_2, \dots, y_{2n}) \in \max A^*$ such that $y_i \neq 0$, then A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$.

Proof. Let $E = [e_k]$ for k = 1, 2, ..., n. Then $E^{\perp} = [e_k]^{\perp}$ and so $\max A^* \vee E^{\perp} = \mathcal{H}$. Let $E = [e_1, e_2, ..., e_n, e_{n+k}]$ for some k = 1, 2, ..., n. Then $E_- = [e_{n+k}]^{\perp}$ and so $\max A \vee E_- = \mathcal{H}$. Let E be in $\mathcal{L}_{2n}^{(n)}$ such that $[e_j] \subsetneq E \subset [e_1, e_2, ..., e_n]$ for some j $(1 \leq j \leq n)$. Then $E_- = [e_1, e_2, ..., e_n]$. Since $e_{n+k} \in \max A \vee E_-$ for all k = 1, 2, ..., n, $\max A \vee E_- = \mathcal{H}$. Let E be in $\mathcal{L}_{2n}^{(n)}$ such that $[e_1, e_2, ..., e_n, e_{n+j}] \subsetneq E$ for some j $(1 \leq j \leq n)$. Then $E_- = \mathcal{H}$ and so $\max A \vee E_- = \mathcal{H}$. If $E \in \mathcal{L}_{2n}^{(n)}$ such that E is different from above cases, then $E_- = \mathcal{H}$ and so $\max A \vee E_- = \mathcal{H}$.

By an argument similar to Theorem 3.12, we can get the following theorem.

THEOREM 3.13. Let A be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If for each $i \ (1 \leq i \leq n)$, there exists a vector $\mathbf{x} = (x_1, x_2, \ldots, x_{2n}) \in \max A$ such that $x_{n+i} \neq 0$ and there exists a vector $\mathbf{y} = (y_1, y_2, \ldots, y_{2n}) \in \max A^*$ such that $y_i \neq 0$ and $y_j = 0$ for all $j \ (j \neq i, 1 \leq j \leq n)$, then A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$.

THEOREM 3.14. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If each row vector of S is nonzero and $\mathbf{x}_{n+k} \in \max A$ for all $k = 1, 2, \ldots, n$, where $\mathbf{x}_{n+k} = (x_1, x_2, \ldots, x_{2n})$ with $x_{n+k} = 1$ and $x_{n+j} = 0$ for all j $(j \neq k, 1 \leq j \leq n)$, then A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$.

Proof. Let $D_1 = (a_{ii})$ and $D_2 = (a_{n+i,n+i})$ be $n \times n$ diagonal matrices and let $S = (a_{i,n+j})$ be $n \times n$ matrix. Suppose that $a_{1,n+p_1} \neq 0, a_{2,n+p_2} \neq 0, \ldots, a_{n,n+p_n} \neq 0$ $(1 \leq p_1, p_2, \ldots, p_n \leq n)$. Then $|a_{ii}| \neq 1$ for all $i = 1, 2, \ldots, n$. Since $\mathbf{x}_{n+p_j} \in \mathbf{max}A$, $A\mathbf{x}_{n+p_j} \in \mathbf{max}A^*$ and the jth component of $A\mathbf{x}_{n+p_j}$ is $a_{jj}x_j + a_{j,n+p_j}$. Since $x_j = \alpha_j^{-1}\overline{a}_{jj}a_{j,n+p_j}$, $a_{jj}x_j + a_{j,n+p_j} = a_{jj}\alpha_j^{-1}\overline{a}_{jj}a_{j,n+p_j} + a_{j,n+p_j} = a_{j,n+p_j}(\alpha_j^{-1}|a_{jj}|^2 + 1) = \alpha_j^{-1}a_{j,n+p_j} \neq 0$. Hence for each j $(1 \leq j \leq n)$, there exist $\mathbf{y}_j = (y_1, y_2, \ldots, y_{2n}) \in \mathbf{max}A^*$ such that $y_j \neq 0$. By Theorem 3.12, A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$.

Extreme points of
$$\mathcal{A}_{2n}^{(n)}$$
 651

By an argument similar to Theorem 3.14, we can get the following theorem.

THEOREM 3.15. Let A be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If each column vector of S is nonzero and $\mathbf{y}_k \in \max A^*$ for all $k = 1, 2, \ldots, n$, where $\mathbf{y}_k = (y_1, y_2, \ldots, y_{2n})$ with $y_k = 1$ and $y_j = 0$ for all $j \ (j \neq k, 1 \leq j \leq n)$, then A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$.

Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. Let $k \ (1 \le k \le n)$ be given and let $\mathbf{x}_{n+k} = (x_1, x_2, \dots, x_{2n})$ with $x_{n+k} = 1$ and $x_{n+j} = 0$ for all $j \ (j \ne k, 1 \le j \le n)$. Then $\mathbf{x}_{n+k} \in \max A$ if and only if $x_i = \alpha_i^{-1} \overline{a}_{ii} a_{i,n+k}$ for all $i \ (1 \le i \le n)$ provided $\alpha_i \ne 0$ and

where $\alpha_j = 1 - |a_{jj}|^2$ and $\alpha_j^{-1} = 0$ if $\alpha_j = 0$ for all j = 1, 2, ..., n and $\gamma_k = 1 - |a_{n+k,n+k}|^2$ and $\gamma_j = 0$ for all j $(j \neq k, 1 \leq j \leq n)$. Suppose that $S_i^* = (\overline{a}_{i,n+1}, \overline{a}_{i,n+2}, \ldots, \overline{a}_{i,2n})^t$, that is, S_i^* is the *i*-th column vector of S^* , for all $i = 1, 2, \ldots, n$. Let $B = (\alpha_1^{-1}, \alpha_2^{-1}, \ldots, \alpha_n^{-1})^t$ and let $P_k = (\gamma_1, \gamma_2, \ldots, \gamma_n)^t$. Then the above equation holds if and only if

$$(a_{1,n+k}S_1^*, a_{2,n+k}S_2^*, \ldots, a_{n,n+k}S_n^*)B = P_k.$$

From this fact we have the following theorem.

THEOREM 3.16. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. Let $k \ (1 \le k \le n)$ be given and let $\mathbf{x}_{n+k} = (x_1, x_2, \dots, x_{2n})$ with $x_{n+k} = 1$ and $x_{n+j} = 0$ for all $j \ (j \ne k, 1 \le j \le n)$. Then $\mathbf{x}_{n+k} \in \max A$ if and only if

$$(a_{1,n+k}S_1^*, a_{2,n+k}S_2^*, \ldots, a_{n,n+k}S_n^*)B = P_k$$

Taeg Young Choi

and $x_i = \alpha_i^{-1} \overline{a}_{ii} a_{i,n+k}$ for all $i \ (1 \le i \le n)$ provided $\alpha_i \ne 0$.

Let S_i be the *i*th-column vector of S and let $C = (\beta_1^{-1}, \beta_2^{-1}, \ldots, \beta_n^{-1})^t$, where $\beta_i = 1 - |a_{n+i,n+i}|^2$ and $\beta_i^{-1} = 0$ if $\beta_i = 0$ for all $i = 1, 2, \ldots, n$. Let $Q_k = (\eta_1, \eta_2, \ldots, \eta_n)^t$, where $\eta_k = \alpha_k$ and $\eta_j = 0$ if $j \neq k$. By an argument similar to Theorem 3.16, we can get the following theorem.

THEOREM 3.17. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. Let $k \ (1 \le k \le n)$ be given and let $\mathbf{y}_k = (y_1, y_2, \dots, y_{2n})$ with $y_k = 1$ and $y_i = 0$ for all $i \ (i \ne k, 1 \le i \le n)$. Then $\mathbf{y}_k \in \max A^*$ if and only if

$$(\overline{a}_{k,n+1}S_1, \ \overline{a}_{k,n+2}S_2, \ \ldots, \ \overline{a}_{k,2n}S_{2n})C = Q_k$$

and $y_{n+i} = \beta_i^{-1} \overline{a}_{k,n+i} a_{n+i,n+i}$ for all $i \ (1 \le i \le n)$ such that $\beta_i \ne 0$.

From Theorem 3.11, 3.12, 3.13, 3.16 and 17, we have the following theorems.

THEOREM 3.18. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1. If A is an extreme point of $(\mathcal{A}_{2n}^{(n)})_1$, then for each k $(1 \le k \le n)$,

$$(a_{1,n+k}S_1^*, a_{2,n+k}S_2^*, \ldots, a_{n,n+k}S_n^*)B = P_k$$

or

$$(a_{k,n+1}S_1, a_{k,n+2}S_2, \ldots, a_{k,2n}S_n)C = Q_k.$$

THEOREM 3.19. Let $A = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(n)}$ such that ||A|| = 1 and let each row and column vector has at least one nonzero element. If for each k $(1 \le k \le n)$,

$$(a_{1,n+k}S_1^*, a_{2,n+k}S_2^*, \ldots, a_{n,n+k}S_n^*)B = P_k$$

or

$$(a_{k,n+1}S_1, a_{k,n+2}S_2, \ldots, a_{k,2n}S_n)C = Q_k,$$

then A is extreme.

Extreme points of $\mathcal{A}_{2n}^{(n)}$

References

- 1. W. Arveson, Operator algebras invariant subspaces, Ann. of Math. 100 (1974), 443-532.
- 2. T. Y. Choi and Y. S. Jo, Extreme points of tridiagonal algebra, Preprint.
- 3. F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras, Topics in Modern Operator Theory; Advances and Applications 2, Birkhauser, Basel, 1981.
- F. Gilfeather and R. Moore, Isomorphisms of certain CSL-algebras, J. Funct. Anal. 67 (1986), 264-291.
- 5. P. Halmos, A Hilbert space problem book, Second Edition, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- 6. Y. S. Jo, Isometries of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
- 7. Y. S. Jo and I. B. Jung, *Isometries of* $A_{2n}^{(n)}$, Math. J. Toyama Univ. 13 (1990), 139-149.
- 8. Y. S. Jo and T. Y. Choi, Extreme points of \mathcal{B}_n and \mathcal{B}_{∞} , Math. Japon. 35 (1990), 439-449.
- 9. R. Kadison and J. Ringrose, Fundamentals of theory of operator algebras, vol. I, II, Academic press, New York, 1983, 1986.
- C. Laurie and W. Longstaff, A note on rank one operators in reflexive algebras, Proc. Amer. Math. Soc. 89 (1983), 293-297.
- 11. W. Longstaff, Operators of rank one in Reflexive algebras, Canad. J. Math. 28 (1976), 19-23.

Department of Mathematics Education Andong National University Andong 760–749, Korea