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CONVERGENCE OF NONLINEAR SEMIGROUPS

AND RESOLVENTS OF THEIR GENERATORS

JONG Sao JUNG AND JONG SEa PARK

1. Introduction

Let E be a real Banach space with norm 1111. We denote the identity
operator by I, and the closure of a subset D of E by d(D). Let A c
Ex E be an operator with domain D(A) and range R(A), and w E R.
Recall that A + wI is said to be accretive (or, for short, A E A(w)) if
(1- rw)llxl - x211 :=:; Ilxl - Xz + r(Yl - yz)1I for all r > O,rw < 1, and
Yi E AXi' i = 1,2. A is called accretive if w = O. Let Jr = (I+rA)-I, r >
0, be the resolvent of A. If A E A(w) (A is accretive) and satisfies the
range condition R(I+rA) :J cl(D(A)) for all r > 0, then -A generates a
semigroup S of type w (semigroup S) via the exponential formula. It was
shown by Benilan [1] that if E is a Hilbert space, then the convergence
of a sequence of semigroups implies the convergence of the resolvents of
their generators. This result was extended to a restricted class of Banach
spaces [8]. In particular, Reich [10] provide a result in reflexive Banach
spaces with a uniformly Gateaux differentiable norm.

In this paper, we show that if E is a Banach space with a uniformly
Gateaux differentiable norm, then the convergence of a sequence of semi
groups of type w implies the convergence of the resolvents of their gener
ators. Furthermore, we investigate a condition equivalent to the conver
gence of the resolvents of generators of semigroups in uniformly convex
and uniformly smooth Banach spaces. Our proofs are of interest in view
of use of Banach limits.
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2. Preliminaries

Let E be a real Banach space and let E* be its dual. Let U = {x E
E : IIxli = I} be its unit sphere of E. The norm of E is said to be
Gateaux differentiable (or E is said to be smooth) if

(1.1 ) 1. IIx + ty II - II x II1m ""-------"'--..:.:-..:.:.
t-+O t

exists for each x, y E U. The norm is said to be uniformly Gateaux
differentiable if for each y E U, the limit (1.1) is attained uniformly
for x E U. It is said to be uniformly Frechet differentiable (or E is
said to be uniformly smooth) if the limit is said attained uniformly for
(x, y) E Ex E. Every Banach space with a uniformly convex dual has
a uniformly Gateaux differentiable norm, but there are reflexive Banach
spaces with a uniformly Gateaux differentiable norm that are not even
isomorphic to a uniformly smooth Banach spaces [9, P. 149]

Recall that the duality mapping F from E into the family of nonempty
(by the Hahn-Banach theorem) weak-star compact convex subsets of E*
is defined by

F(x) = {x* E E* : (x,x*) = IIxll2 = Ilx*1I2
}

for each x E E. It is well known that if E is smooth, then duality
mapping F is single-valued. It is also known that if E has a uniformly
Gateaux differentiable norm, then F is uniformly continuous on bounded
subsets of E from the strong topology of E to the weak-star topology of
E*, and that if E has a uniformly Frechet differentiable norm, then F is
uniformly continuous on bounded subsets of E from the strong topology
of E to the strong topology of E*.

A Banach limit LIM is a bounded linear functional on £00 such that

and LIMtn = LIMtn+1 for all {tn} in £00. Let {xn} be a bounded
sequence in E. Then we can define the real valued continuous convex
function ¢> on E by

¢>(z) = LIMllxn - zll2

for each z E E. The following lemma was proved in [6, 7].
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LEMMA 1. Let C be a nonempty closed convex subset of a Banach
space E with a uniformly Gateaux differentiable nonn and let {x n } be
a bounded sequence in E. Let LIM be a Banach limit and u E C. Then
the function <jJ : E -+ R, defined by <jJ(z) = LIMllx n - zllz, attains its
minimum over C at u if and only if

LIM(z - u,F(xn - u)) ~ 0

for all z E C, where F is the duality mapping of E.

Let AcE x E be ali operator and w E R. Recall that A is accretive
if and only if for each Xi E D(A) and Yi E AXi' i = 1,2, there exists
j E F(XI - xz) such that (Yl - Yz,j) ;::: O. An operator A is said to
be m-accretive if R(I + r A) = E for all r ;::: o. If A is accretive, we
can define, for each r ;::: 0, a single-valued mapping Jr : R(I + rA) -+

D(A) by J r = (I + r A) -1. It is called the resolvent of A. The Yosida
approximation of A, A r : R(I +rA) -+ E, is defined by A r = (I - Jr)/r.

A semigroup of type w on a subset C c E is a function S : [0,00) x
C -+ C satisfying the following conditions:

S(tl + tz)x = S(tdS(tz)x for tI, tz ;::: 0 and x E C;

IIS(t)x - S(t)yll ~ ewtllx - yll for t;::: 0 and x, y E C;

S(O)x = x for x E C;

S(t)x is continuous in t;::: 0 for each X E C.

We denote by S E Qw(C). If w = 0, Set) is said to be a continuous
semigroup of nonlinear contractions.

Finally, we recall that if A E A(w) and the range condition R(I +
r A) :J d(D(A)) holds for all r > 0, then -A generates a semigroup
S E Qw(cl(D(A))) via the exponential formula [4]

3. Main results

We begin this section by proving the following lemma, which is essen
tially due to the work [3] of Brezis.

LEMMA 2. Let S E Qw( cl(D(A))) be a semigroup. Then for each
x E c1(D(A)), t > 0 and r > 0, we have

(r + (r + 2t)ewt ) it
(3.1) IIx- Jrxll ~ (( ) t ) IIx - S(r)lldTt - r eW + r t 0
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and in particular

(1 + 3ewt ) t
(3.2) IIx - JtXIl ~ t 10 IIx - S(r)lIdr.

Proof. As usual, we denote for x, y E E

r(x, y) = lim !(lIx + ryll -lIxll) = inf !(/Ix + ryll - Ilxll).
r!O r r>O r

By a result of Benilan [2], we know that

for each v E D(A) and y E Av, where (x, y)s = sup{(y, x*) : x* E F(xn.
So we have

IIS(t)x - vll- ewtllv - xii:::; it ew(t-S)r(v - S(s)x,y)ds

~ ewt)(t r(v- S(s)x,y)ds

for y E Av. However we have for each r > 0

1
r(v - S(s)x,y):::; -(llv - S(s)x + ryll- IIv - S(s)xll),

r

for y E Av. If we choose v = Jrx, we obtain

1
r(Jrx - S(s)x,y) ~ -(llx - S(s)xll-IIJrx - S(s)xll)

r

for y E AJrx, and so we get
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But, -IIJrx - S(s)xll ~ IIx - S(s)xll-lIx - Jrxll and hence we have

t 2 it(- -1)ewtIlJrx - xII ~ -IIS(t)x - Jrxll + _ewt IIx - S(s)xllds
r r 0

~ IIx - S(t)xll-lIx - Jrxll

2 it+ _ewt IIx - S(s)xllds
r 0

that is,

t 2 it(3.3) ((--I)e wt +I)IIJrx-xll ~ Ilx-S(t)xll+-ewt Ilx-S(s)xllds.
r r 0

Finally, we note that

I + ewt t
(3.4) II x - S(t)xll ~ t 10 IIS(s)x - xllds.

Indeed

lit litIIS(t)x - - S(s)xdsll ~ - IIS(t)x - S(s)xllds
tot 0

1 t e
wt t

~ t 10 eW811S(t - s)x - xllds ::; -t- 10 II S (s)x - x lids

and hence

lit litIIx - S(t)xll ::; Ilx - - S(s)xdsll + - S(s)xds - S(t)xll
tot 0

lit wt it::; - IIx - S(S)xllds +~ IIS(s)x - xllds
tot 0

1 + e
wt

it= IIx - S(s )xllds.
t 0

Combining (3.3) and (3.4), we obtain (3.1), and further (3.2) with r = t.

Now, we state and prove a main theorem.
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THEOREM 1. Let E be a Banach space with a uniformly Gateaux
differentiable norm, {An E A(w) : n = 1,2, ...} a sequence of operators
in E that satisfy the range condition, J:n the resolvent of An, and
Sn E Qw(cl(D(An))) the semigroup generated by -An. Let A E A(w)
be another operator that satisfies the range condition, Jr the resolvent
of A, and S E Qw(cl(D(A))) the semigroup generated by -A. Suppose
that S(t)x is uniformly continuous on bounded (t, x) sets, that d(D(A))
is convex, and that for each x E cl(D(A)), there is a sequence {xn} such
that X n E d(D(An)) and X n --+ x. Assume that if X n E cl(D(An)) and
X n --+ x E d(D(A)), then

(I) lim Sn(t)x n = S(t)x
n-oo

exists uniformly on bounded (t,x) sets. Then whenever X n E cl(D(An))
and X n --+ x E d(D(A)), it follows that

(II) lim J:nx n = Jrx
n-oo

for each r > O.

Proof. Let X n --+ x E d(D(A)) and r > 0 with rw < 1, and denote
J:nX n by Yn' Then, by (3.2) of Lemma 2, we have

Since Sn( S )xn is bounded as n --+ 00 uniformly for S E [0, r], it follows
that {Yn} is bounded as n --+ 00. So for a Banach limit LIM, we can
define a function </J : d(D(A)) --+ [0,00) by

</J(z) = LIMIIYn - zl12

for each z E d(D(A)). Let L denote inf{ </J(z) : z E d(D(A))}, and
consider a sequence {uk} C c1(D(A)) such that limk_oo</J(Uk) = Land
</J(Uk) ~ </J(tuk + (1- t)x) for all 0 ~ t ~ 1 and all k. Then, by Lemma
1, we have

(3.5)
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for all k. Since <jJ(z) ---t 00 as IIzl1 ---t 00, the sequence {ud is bounded.
For each T > 0 and W n E cl(D(An )), we have

(3.6)

For each k, we choose w~ E cl(D(An)) such that limn->oo w~ = Uk, and
note that

(Yn - x, F(Yn - Uk)) - (Yn - X n, F(Yn - Sn(s)w~)

= llYn - ukl1 2 + (Uk - x,F(Yn - Uk)) -llYn - Sn(s)w~1I2

- (Sn(s)w~ - xn,F(Yn - Sn(s)w~))

= (llYn - Ukll-IIYn - Sn(s)w~II)(IIYn - ukll + llYn - Sn(s)w~11)

+ (Uk - X, F(Yn - Uk) - F(Yn - Sn(s)w~))

- (Sn(s)w~ - Uk + X - X n, F(Yn - Sn(s)w~)).

Since IISn(s)w~ - ukll ~ IISn(s)w~ - S(s )ukll + IIS(s )Uk - ukll, it follows
that for each e > 0 and w 2:: 0, there are T > 0 and no (c) such that for
all 0 ~ s < T,n 2:: no(e) and all Uk

(1-e-2wT )/(2T/r) < rw+e, and <p(Uk) ~ L+(2T/r)e for all k 2:: no(c).
Consequently, we have,
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for n :2: no(c:), such aT> 0, and all Uk, and hence

for all Uk. So if n is large enough and T is small enough, we have

(3.7)
(1- e-2wT)r

LIM(Yn - x, F(Yn - Uk» :::; 2T L + 2c:

< rwL + (2 + L)c:

for all k :2: no(c:). Combining (3.5) and (3.7), we have

for all k :2: no(c:). It follows that L = °and that {ud is a Cauchy
sequence. For w < 0, by setting w = -w' with w' > 0, we have the same
result. Thus </>( u) = °for some u E d(D( A» and there is a subsequence
{Ynk} of {Yn} such that the strong lim Ynk = u.

For A > 0, let Z,\ = (I + (r/A)(l - S(A»)-lx. We know that the
strong lim,\-;oo z,\ = Jrx = v(cf. [8]). We will now show that u = v. Put
Wn --+ z,\ in (3.6) and n = nk and let nk --+ 00. Then we have, for w :2: 0,

It follows that given c > 0,

2T ( I 2 2wTII 1/ 2 2T-(u-x,Fu-v»slu-z'\lI -e- u-S(T)z,\ +-c:
r r

if T and A are small enough. Choosing A = T, we obtain

2A
-(u-x,F(u-v»
r

2 2w,\ A 2 2AS lIu - z,\11 - e- lIu - z,\ - -(Z,\ - x)1I +-c:
r r

2 2w,\ 2 2w,\ 2A (» 2AS lIu - z,\11 - e- Ilu - z,\11 + e- -(z,\ - x, F u - z,\ +-c:
r r



so that
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( ( ))
2w'>" 1'(1 - e-2WA

) 2
u-x,F U-V -e- (z.>..-x,F(u-z.>..)) S 2'\ Ilu-zAIi +c.

Letting'\ -t 0, we get lIu - vIl 2 (1- rw) s 0, and hence lIu - vII SO. For
w < 0, we have the same result. Thus u = v.

Finally, suppose that a subsequence {Ynj} of {Yn} converges strongly
to y. Then we get just the same inequality as in (3.8) with Y replaced
by u. Therefore, by the same method, we obtain Y = v and hence the
whole sequence {Yn} converges strongly to Jrx.

Theorem 1 is a partial improvement of [10, Theorem 1].

REMARK 1. It is known [5] that (II) implies (1) in any Banach space
(even if cl(D(A)) is not convex). Consequently, (I) and (II) are equivalent
in Theorem 1. In contrast with the linear case, (I) does not imply (II)
in all Banach spaces [4].

REMARK 2. It cl(D(A)) C d(D(An)) for all n, then (1) is implied
by the assumption that limn-+CX) Sn(t)x = S(t)x uniformly on bounded
(t, x) sets (x E d(D(A))). If the nOrm of E* is Frechet differentiable and
A is m-accretive, then cl(D(A)) is convex [9, P. 160].

COROLLARY 1. Let E be a Banacb space. Assume tbat tbe norm
of E is uniformly Gateaux differentiable norm and tbe norm of its E*
is Frecbet differentiable. Let {An : n = 1, 2, ... } be a sequence of
m-accretive in E, J;:tn tbe resolvent ofAn, and Sn tbe semigroup gener
ated by -An. Let A be anotber m-accretive operator, J r tbe resolvent
of A, and 5 tbe semigroup generated by -A. Suppose tbat S(t)x is uni
formly continuous on bounded (t, x) sets, and tbat d(D(A)) C d(D( An))
for all n. If

lim Sn(t)x = S(t)xn-+CX)

exists uniformly on bounded (t,x) sets (x E d(D(A))), tben

(III) lim J:nx = Jrx
n-+oo

exists for each x E cl(D(A)) and l' > 0.
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REMARK 3. If {An} and A are m-accretive, then (II) is equivalent
to (III).

4. Equivalent conditions

Denote the element of minimal norm in Ax by A°x, and consider the
following condition:

(IV)
For each x E D(A), there is a sequence X n E D(An )

such that X n --7 x and A~xn --7 AOx.

THEOREM 2. Let E be a Banach space that is both uniformly convex
and uniformly smooth, and let {An: n = 1,2, ...} and A be m-accretive.
H D(A) is closed, then the property (III) is equivalent to (IV).

Proof. (III) --7 (IV). In order to show that (III) --7 (IV), we use a
variant of the idea of [3]. Let x E D(A). Given e > 0, there is a r > °
such that

e eIIx - Jrxll < "2 and IIAox - Arxll < 2"

Next, by (III), there is an integer N such that for n 2: N

Combining these estimates, we see that given e > 0, there are an integer
N(e), sequences Un(e) = J~nx and fn(c) = (An)rx such that fn(c) E
Aun(c) and for n 2: N(e),

Let Nk = N(i). Then we can always assume that nk is increasing to 00.

Now we define the sequences X n and 9n by X n = un(i) and 9n = In( i)
for N k :5 n < Nk+l. Then 9n E Anxn and for Nk ::; n < Nk+l' we have

Consequently, X n --7 x and 9n --7 AOx. Now we will prove that A~xn --7

AOx. Indeed, IIA~xnll ::; 119nll and hence there exists a subsequence
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{A~j X nj} of {A~X n} that converges weakly to Y for some Y E E. Let
v E D(A). Then we have

((An)rv - A~xn, F( J:n v - xn)) ;::: o.

Since F is uniformly continuous on bounded subsets of E from the strong
topology of E to the strong topology of E*, we obtain

as nj -? 00. Next, letting r -? 0, we have

(AOv - Y, F(v - x)) ;::: 0

for each v E D(A). Therefore Y E Ax. Since, on the other hand, lIylI ~
IIAoxll, we have Y = AOx. By the uniqueness of the limit and the fact
lim sup IIA~xnll ~ IIAoxll, we conclude that A~xn -? AOx.

(IV) -? (III). Let x E cl(D(A)), r > 0 and Yn = J:nx. If z E
D(A), Zn -? Z and A~zn -? AOz, then Zn = J:-n(Zn + rA~zn) and
llYn - znll ~ Ilx - Zn - rA~znll, so that {Yn} is bounded. Let C be a
closed convex subset of cl(D(A)) that contains x and is invariant under
h for all >. > 0, and let LIM be a Banach limit. Then we can define a
function </> on C by

<jJ(Z) = LIMIlYn - zIl 2

for each Z E C. Since <jJ is continuous, convex and <jJ(z) -? 00 as Ilzll -? 00,

while E is reflexive, <jJ attains its minimum over C at u E C. So by
Lemma 1, we have

LIM(z - u,F(Yn - u)) ~ 0

for all z E C. Since (x - Yn - rA~zn, F(Yn - zn)) ;::: 0, we also have for
z E D(A),

LIM(Yn - x,F(Yn - z)) ~ rLIM(-AOz,F(Yn - z)).

Given E > 0, choose>' > 0 such that I(AOu - AAU,F(Yn - u))1 < E for
all n. We obtain

r
LIM(Yn - x,F(Yn - u)) ~ (>:)LIM(hu - u,F(Yn - u)) + rE ~ rEo
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But we also have LIM(x - u,F(Yn - u»::; 0, so that

Thus we can choose a subsequence {Ynk} of {Yn} such that nk --+ 00 and
u = lim Ynk. Since (x - u - r A 0 z, F(u - z» ;::: 0 for all z E D(A), we have
u = Jrx. Finally, suppose that a subsequence {Ynj} of {Yn} converges
strongly to v. Then we also have

(x - v - r A 0 z, F(v - z» ;::: 0

for all z E D(A) and hence v = Jrx. Therefore we obtain u = v and the
whole sequence {Yn} converges strongly to Jrx.

Note that the proofs of Theorem 2 are simpler than [10, P. 80] on
account of using Banach limit.

REMARK 4. It follows that in case of Theorem 2, (I), (II), (III), and
(IV) are all equivalent. The Hilbert space case is due to Brezis [3].
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