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ON POSITIVE MULTILINEAR MAPS

SHIN DONG-YUN

1. Introduction and Preliminaries

Let £ be a vector space over C. Throughout this paper let Mm,n(£)
denote the vector space of m X n matrices with entries from £, let M m n,
denote the m X n complex matrices with C*-norm. We set M n (£) =
Mn,n(£) and Mn = Mn,n.

If B is a C*-algebra and £ is a subspace, then we call £ an operator
space. If £ is a subset of a C* -algebra B, then we set

t:*={a: a*E£},

and we call £ self-adjoint when £ = £*. If B has a unit I and £ is
a self-adjoint subspace of B containing I, then we call £ an operator
system.

Suppose that £ and F are operator spaces and </> : £ ---+ F is a linear
map. We define the map </>n : M n(£) ---+ Mn(F) by </>n([Xij]) = [</>(Xij)]
for [Xij] E M n(£). We write 11</>llcb = suP{II</>nll : n EN}, where 11</>11 =
sup{II</>(x)11 : x E £, Ilxll = 1}. We call </> completely bounded if 1I</>lIcb <
00, and completely contractive if 11</>lIcb ::; 1. We call </> a complete
isometry if for each n E N, </>n : Mn(£) ---+ Mn(F) is an isometry.

Let Band C be two C*-algebras, let S be an operator system of B, and
let </> : S ---+ C be a linear map. We call </> n-positive if </>n is positive and
we call </> completely positive if </> is n-positive for all positive integers n.

Many people have studied the positive linear maps and the completely
positive linear maps ([1], [2], [3] e.t.c.).

Throughout the paper B, Bk, and C will denote unital C*-algebras, S
will denote operator system, and S will denote the norm closure of S.
And C(Xk ) will denote the set of all continuous functions on a compact
space Xk, 1{ will denote a Hilbert space.
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For P = (Pl, ... ,Pn),Q = (qI, ... ,qn) E SI X ••. X Sn, set P ~ Q if
Pk ~ qk for 1 ~ k ~ n, and IIPII = (1Ipll1,···, IIPnll)·

If P = (PI, ... ,Pn) E SI X ..• X Sn, let P* = (pr, ... ,p~) and P is
said to be self-adjoint if P = P*, and positive if Pk ;::: 0 for 1 ~ k ~ n.

In this paper we introduce the positive multilinear maps and the com
pletely positive multilinear maps, and we study some basic properties.

2. Positive Multilinear Maps

DEFINITION 1. A multilinear map ¢ : SI X ... X Sn -4 B is said to be
self-adjoint if ¢(xr, ... ,x:) = ¢(Xl""'Xn)* for Xk E Sk ( 1 ~ k ~ n).
A multilinear map ¢ : SI X ••. X Sn -4 A is said to be positive if
¢(XI,' .. , x n) is positive whenever Xk is positive in Sk for 1 ~ k ~ n,
and bounded if II¢II = sup{II¢(XI, ... ,xn)1I : Xk E Sk, Ilxkll ~ I} is finite.

LEMMA 1. Let ¢ : SI X ••. X Sn -4 B be positive multilinear. For a
self-adjoint element H in SI x ... X Sk, define ¢H : Sk+l x ... X Sn -4 B
by ¢H(Xk+I,'" ,xn) = ¢(H,xk+I,'" ,xn) for 1 ~ k ~ n -1. Then ¢H
is self-adjoint.

Proof. By induction, it is trivial.

PROPOSITION 2. H ¢ : 81 x ... X Sn -4 B is positive multilinear, then
¢ is self-adjoint.

+ • •
Proof. Let (x,X) E 8 1 x ... X Sn and h = x t , k = x2: . Then

¢(x*, X*) = ¢h(X*) - i¢k(X*) = [¢h(X)]* - i[¢k(X)]* = [¢(h, X)]* +
[¢(ik,X)]* = [¢(x,X)]*. Hence ¢ is self-adjoint.

PROPOSITION 3. H ¢ : SI X X 8 n -4 B is positive multilnear, then
¢ is bounded and II¢II ~ 2n ll¢(1, , 1)11 (d. [13, Proposition 2.1]).

Proof. Let P = (PI, ... ,Pn), Q = (qI, ... ,qn) with P ~ Q and A k =
(PI,'" ,Pk,qk+I, .. ·, qn) for 0 ~ k ~ n. Then ¢(Ak-l - Ak) = ¢(Ak-l)
-¢(Ak) is positive and ¢(P) ~ ¢(Q). Note that if P and q are positive,
then IIp-qll ~ max{lIplI,lIqll}· Let H = (h1 , ... ,hn) be self-adjoint in
8 1 x ... X 8n. Then ¢(H) ~ ¢(IIHID and -¢(H) = ¢(-hI, h2 , • •• , hn) ~
¢(IIHID. Hence -¢(IIHID ~ ¢(H) ~ ¢(IIHII) and II¢(H)II ~ II¢(IIHII)II =
IIh1 11·· ·lIhn ll·II¢(l, ... , 1)11·
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Finally, let A = (a1,"" an) be an arbitrary element of 8 1 x ... X

8 n . Put hm = a",-;a;" and km = a",~a;". Then Ilhmll ~ Ilamil and

IIkmII ~ Ilamil and 114>(A)11 = II Ll",E{h""ik",},l$m$n 4>(11,' .. , In)1I ~

2n ll¢(IIAII)II·
Next an example shows that 2n is the best constant in the above

Proposition.

EXAMPLE 4. Let T denote the unit circle in the complex plane, G(T)
the continuous functions on T, z the coordinate function, and 8 E G(T)
the subspace spanned by 1, z, z. We define ¢ : [8]n ---+ M2 by

By elementary calculation, a+bz+cZ of Sk is positive if and only if c = b
and a ~ 21bl. They are well-known that a self -adjoint element of M 2 is
positive if and only if its diagonal entries and its determinant are non
negative real numbers, and the Schur product of two positive matrices is
positive. Combining these facts, it is clear that ¢ is positive. However,

4>(z, ... , z) = [20n 20

n
] and 2n ll¢(1, ... ,1)11 = 2n = 114>(z, ... , z)11 ~

114>11, so that 114>11 = 2n ll4>(1, ... , 1)11 (cf. [13, Example 2.2]).
PROPOSITION 5. Let 4> : G(Xd x ... X G(Xn) ---+ B be positive mul

tilinear. Then 114>11 = 114>(1, ... ,1)11 (d. [13, Theorem 2.4]).

Proof. We may assume that ¢(1, ... ,1) ~ 1. Let h E C(Xk), IIhll ~
1, and let c > 0 be given. Choose a finite open covering {Ukd~~l of Xk
and a finite subset {Ykd~~l of Xk such that Ifk(X) - h(Yki)! < c for x E
Uki, and let {Pki } be a partition of unity subordinate to the covering. Set
Aki = fk(Yki) and Pk = LiAkiPki. Then !Ipkll ~ 1 and 1I¢(P1, ... ,Pn)11
~ 1by [13, Lemma 2.3]. Note that if Pki(X) =J. 0 for some i, then Ifk(X)
Aki! < c. Hence, for any x, Ih(x) - Pk(x)1 ~ L Ih(x) - Aki\Pki(X) < c.
Put F = (ft, ... ,in) and Fk = (PI,··· ,Pk, fk+I,'" ,in). Then 4>(F) =

¢(Fn)+L~l {4>(Fk-d - ¢(Fk)}. Hence 1I¢(Fk) - 4>(Fk+dll < cll4>11 and
114>(Fn )1I ~ 1, so that 114>(F)11 ~ ncll4>11 + 1, and since c is arbitrary,
II¢II ~ 1.
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If a is an element of some unital C*-algebra B, with lIall ::::; 1, then
there is a unital homomorphism </> : C(T) ---+ B with </>(p) = p(a) [conse
quence of 13, Theorem 2.6].

PROPOSITION 6. Let Ak be a subalgebra of Bk with lk E Ak, and
let Sk = Ak + Ak. If </> : Sl x ... X Sn ---+ C is positive multilinear, then
1I</>(a1, ... ,an)11 ::::; 1I</>(1, ... ,I)llIla111···lIanll for all ak in Ak (cf. [13,
Corollary 2.8]).

Proof. Let A = (a1,'" ,an) E Al x··· X An, Ilakll ::::; 1 for 1 :::; k :::; n.
By the proof of [13, Corollary 2.8], there is a unital homomorphism
'l/Jk : C(T) ---+ Sk with '1/;k(p) = p(ak). Since </> is positive, </> is bounded,
so that </> is extended to a multilinear positive map of 51 x ... X 5n .

Define 'l1 = ('l/Jl"'" 'l/Jn) : [C(T)]n ---+ 51 x ... X 5n by 'l1(Xl,' .. , xn) =
('tf1(XI), ... , 'tfn(xn)) for Xk E 5k. Then </> 0 'l1 is a multilinear positive
map, so that by Proposition 5, II</>(al , .,. ,an)1I = II(</> 0 'l1)(z, ... ,z)1I ::::;
II</> 0 'l111 = II</> 0 'l1(I, .. . ,1)11 = 11</>(1, ... ,1)11·

COROLLARY 7. Let </> : B1 x ... x Bn ---+ C be positive multilinear.
Then 11</>11 = 11</>(1,···,1)11·

Proof. Apply Proposition 6.

REMARK 8. If </> : S ---+ B is a unital contraction, then </> is positive.
But in case of a unital multilinear contraction, it is not true. For an
example, define </>: M 2 x M 2 ---+ C by </>(a, b) = ![1,I]ab[1,1p. Then </>
. . al . b A.' 't" ,1..([1 -i] [0 0])IS a unIt contractIOn, ut 'f' IS not POSI lve smce 'f' iI' ° 1

= !(1- i).

Let </> : SI X .•• Sn ---+ B be positive multilinear. If we define </>k
Mk(SI) x ... X Mk(Sn) ---+ Mk(B) by

k

</>k([X}j],[x~j], ... ,[xij]) = [ L </>(x}il,x~ri2,···,xjn_ri],
iI,···,jn-l=l

[ 1 1] [1 i1] [ 1 0] [1 0] tthen [1,0] </>2( 1 1 ' -i1 1 ' ° 1 , ... , ° 1 ) [1,0] = (1-
i)</>(1, ... ,1). Hence </>2 is not positive except trivial case. Thus in this
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paper, we define cPk : Mk(Sd X ... x Mk(Sn) ~ Mk(B) by

cPk([xtj ], [x;jJ, ... , [xij]) = [cP(xtj , X;j"'" xij)]'

We say cP is k-positive if and only if cPk is positive, cP is completely
positive if and only if cPk is positive for kEN and cP is completely
bounded if and only if IIcPllcb = SUp{lIcPkll : kEN} is finite.

PROPOSITION 9. Let cP : SI X ... X Sn ~ B be a unital 2-positive
multilinear map. Then cP is contractive (d. [13, Proposition 3.2]).

Proof. Let ak E Sk, Ilak II ~ 1 and Ak = [a
1
;; a1

k
] for 1 ~ k ~ n.

Th '" (A A) [ 1 cP(aI, ... , an)] . . . den 'f'2 1, ... , n = "'( * *) 1 IS pOSItIve an
'f' a l ,··· ,an

hence IIcP(al,"" an)11 ::; 1.

REMARK 10. If f : S ~ C is positive, then f is completely positive.
But in case of multilinear maps, it is not true. For an example, let
S be the same as in Example 4 and define by cP : S x S ~ C by
cP(al + bIZ + CI Z, a2 +b2z +C2 Z) = al a2 + 2bl b2+2CIC2. Then cP is unital
positive and cP( z, z) = 2. Hence cP is not 2-positive by Proposition 9.

PROPOSITION 11. Let cP : SI X ... X Sn ~ B be a completely positive
multilinear map. Then cP is completely bounded and IIcP(l, .. . ,1)11 = IIcPll
= IlcPlicb (cf. [13, Proposition 3.5]).

Proof. Clearly we have that IlcP(l, ... ,1)11 ::; IIcPli ::; IlcPllcb, so it is
sufficient to show IIcPlicb ::; IlcP(l, ... ,1)11·

Let Am be in Mk(Sm) with IIAml1 ::; 1, and let Imk be the unit

of Mk(Sm) for 1 ::; m ::; n. Then cP2k( [~i t~],···, [~t t:]) =

[
cPk(Ilk, ... ,Ink) cPk(Al, ... ,An)]) . .. £ h ...
'" (A* A* ) '" (I I) IS pOSItIve or eac pOSItIve mteger
'f'k 1"'" n 'f'k lk,···, nk

k. Thus IIcPk(A ll ... , A n)1I ::; IlcPk(Ilk, ... ,Ink) II = IlcP(l, ... , 1)11, which
completes the proof.

PROPOSITION 12. Let cP : C(Xd x ... X C(Xn) ~ B be positive
multilinear. Then cP is completely positive (d. [13, Theorem 3.10]).

Proof. Let Pk be positive in Mm(C(Xk) and let E be given. Choose
a finite open covering {Okd ~::1 of Xk and a finite subset {Yki} ~::1 of Xk
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such that IIPk( x) - Pk(Yki)1I < c for x E Oki, and let Uki be a partition of
unity subordinate to the covering. Then IIPk(x) - L~~l Uki (x)Pk(Yki)1I

= II L~::l Uki(X)(Pk(X) - Pk(Yki»1I ::s; L~::l Uki(X)llPk(X) - Pk(Yki)1I <
c. But 4>m(UlilPl(Ylil),,··,UninPn(YniJ) = [P1(Yli1)*···*Pn(Ynin)]*
4>(U1i1 , ... , Unin ), where A * B denotes the Schur product of A and B.
Since P1(Yli1) * ... *Pn(Ynin) is positive in Mm and 4>(U1i1, ... , Unin) is
positive, [P1(Yli1) * ... * Pn(Ynin)] * 4>(Ulil' ... ' UniJ is positive. Thus
4>m(P}, .. . , Pn), to within c, is a sum of positive elements and hence is
positive.

Let Eij and Fij denote the stand matrix units for Mm and Mn, re
spectively. For a matrix A, let Ak = [Aij] denote the k x k matrix with
Aij = A for 1 ::s; i, j ::s; k.

PROPOSITION 13. Let 4> : M m x M n -+ B be bilinear. Tben tbe
following are equivalent (d. [13, Theorem 3.12]):

(1) 4> is completely positive.
(2) ¢J is run-positive.
(3) ¢Jmn([EijJ, [Fij]m) is positive in Mmn(B).

Proof. (1) =? (2). Trivial.
(2) =? (3). Since [EijJ is positive in Mm2 n and [Fij]m is positive in

Mmn2, it is clear.
(3) =? (1). For this it is sufficient to assume that B = 8(1-£). Fix

k and let Xl, ... ,Xk E 1-£, A1, ... ,Ak E Mm and BI, ... ,Bk E Mn.
It is sufficient to prove that L~j=l(4)(Ai Aj, BiBj)x j, Xi) is positive.

Write Al = 2:;:S=l arslErs and Bl = L:,f=l beflFef so that AiA j =

2: o'rsiartjEst and BiBj = E befibegjFst . Set X = (XI, ... , Xk)t, Yretg =

2:~=1 artjbegjxj, Yre = (YrelI, ... , Yreln, Yre21,··· , Yremn). Then

(4)k([Ai Aj], [Bi BjDX, X)
k

= L ¢J(AiAj,BiBj)xj,xi)
ij=l

m n k

= L L (4)(Est ,Ffg)(L o'rsibefiartjbegjXj,Xi)
rst=l efg=l ij=l
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m n

L L (¢>(Est , Ffg)Yretg, Yresf)
rst=l efg=l

m n
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= L L(¢>mn([Eijn], [Fij]m)Yre, Yre).
r=le=l

Since (¢>mn([EijJ, [Fij]m) is positive, this last sum is positive for each r

and e. Hence </> is completely positive.

In multilinear case, by similar way we get the following.

PROPOSITION 14. Let </> : Mk 1 x· .. X Mkn -t B be a multilinear map,
let {E;;} denote the standard matrix units for Mk, and let a = k1 ..• kn ,

tl = k1 ... k l - b SI = kl+1 ... kn, t 1 = 1, Sn = 1, EI = [Efjs/]t, : Then the
following are equivalent:

(1) ¢> is completely positive.
(2) ¢> is a-positive.
(3) ¢>a(E1 , .•• , En) is positive.

LEMMA 15. Let a, b, c E B, let a be positive, and let e be invertible
and positive. H a 2:: b*c-1b, then IIclla ~ b*b.

Proof. Since e-~ lIellc-~ ~ I, Ilellb*c-1b ~ b*b, so !leila ~ b*b.

PROPOSITION 16. Let </> : B1 x x Br -t B(11.) be n-positive multi-
linear. Then for aki E Bk, i = 1,2, , n -1 k = 1, , r, we have

[¢>(a~i'··· ,a;i)¢>(a1j, ... ,arj)] :s; 1I¢>1I[</>(a~ia1j, ,a;iarj)]
in M n - 1(B(11.)) (d. [6, Theorem 2].

Proof. For some fixed ak = akO E Bk and arbitrary abE Bk, put Ak
= [ak' akl, .. · ,akn-1]*[ak, ak1,···, akn-d, Aij = [a~ia1j, ... , a;iarj], put
X = (Xo, ... , xn_dt for Xo,···, Xn-1 E 11..

Then

n-1 n-1

= L(¢>(Aij)xj,Xi) + L(¢>(AiO)xo,Xi)
ij=l i=l

n-1

+ 4=(</>(AOi)Xi, xo) + (</>(Aoo)xo, xo)
i=l
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is positive. Wenowfixxl, ... ,Xn-l andgivene > 0, put Ae; = [¢>(Aoo )+
e]-I, Xo = -[¢>(Aoo ) + e]-l L:7:11(¢>(AOi)Xi. Then

n-l n-l
= I)¢>(Aij)Xj, Xi) - 2 I)¢>(AiO)Ae;¢>(Aoj)xj,Xi)

ij=l ij=l
n

+ L)¢>(AiO)Ae¢>(Aoo)Ae¢>(AOj)xj, Xi)
ij=l

is positive. But 2Ae; -A;¢>(Aoo ) = Ae +c:A;. Hence

n-l
L (¢>(AiO)Ae;¢>(AOj)Xj, Xi)
ij=l

n-l
~ L (¢>(A iO ){Ae; + eA~ }¢>(Aoj)x j, Xi)

ij=l
n-l

~ L(¢>(Aij)Xj,Xi).
ij=l

So [¢>(A10 ), •.• , ¢>(An_lO)]tAe;[¢>(Ao1 ), .. ·, ¢>(Aon-d] ~ [¢>(Aij )].
Note that [¢>(Aod, ... , ¢>(AOn - I ]* = [¢>(A10 ), .•• , ¢>(An-lOJ!. So by

Lemma 15,

[¢>(Aod,···, ¢>(Aon-d]*[¢>(Ao1 ), ... , ¢>(Aon-d] ~ 1I¢>(Aoo ) + c:II[¢>(Aij)].

Since c; is arbitrary and each Ak has approximate unit,

. [a b] [x Y] [ak bk]In followmg, we set V = cd' U = z w ,Vk = Ck d
k

'

[
Xk Yk] [e k h] M bUk = , Wk = h E M 2 , set ¢> : M 2 x M 2 ~ 2 e
Zk Wk 9k k
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bilinear, set V * U the Schur product of A and B, and set

By elementary calculation,we get the following Lemmas.

625

LEMMA 17. H <p(A, B) = (V* AV) * (U* BU), then E = X* X, where
X = (ax, by, az, bw, cx, dy, cz, dw).

LEMMA 17'. H <p(A, B) = V*(A * B)V, then E = X* X, where X =
(a, b, 0, 0, 0, 0, c, d).

LEMMA 18. HE = X* X, where X = (Xl,"" xs) with X1X7 = X3X5,
X2XS = X4X6, then there exist V, U such that <p(A, B) = (V* AV) *
(U* BU).

LEMMA 18'. HE = X* X, where X = (a, b, 0, 0,0,0, c, d), then there
exists V such that <p(A, B) = V*(A * B)V.

LEMMA 19. H <p(A, B)= 2:k(V: AVk)*(U;BUk), then E= 2:k XkXk,
where X k=(akXk, bkyk, akzk, bkWk, CkXk, dkYk, CkZk, dkWk).

LEMMA 19'. H <p(A, B) = 2:k V:(A * B)Vk), then E = 2:k XkXk,
where Xk=( ak, h, 0, 0, 0, 0, Ck, dk).

LEMMA 20. H E= 2:k XkXk, where X k=(Xk1, ... ,XkS) with Xk1Xk7
= Xk3Xk5, Xk2XkS = Xk4Xk6, then there exist Vk, Uk such that <p(A, B)
= L:k(Vt AVk) * (UkBUk).

LEMMA 20'. HE = L:~=1 X;Xk, whereXk = (ak, bk, 0,0,0, O,Ck, dk),
then there exists Vk such that <p(A, B) = 2:;=1 V:(A * BVk).

PROPOSITION 21. <p(A, B) = 2:k(Vk*AVk)* (UkBUk) for some Vk, Uk
in M2 if and only if there exist X k = (x k1, ... , XkS) such that E =
2:k X;Xk with Xk1 Xk7 = Xk3 Xk5, Xk2 XkS = Xk4 Xk6·

Proof. By Lemma 19 and Lemma 20, it is clear.
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PROPOSITION 21'. <,b(A, B) = Lk Vk*(A * B)Vk for some Vk E M 2

if and only if there exist X k = (ak,bk,O,O,O,O,Ck,dk) such that E -
LkXZXk .

Proof. By Lemma 19' and Lemma 20', it is clear.

PROPOSITION 22. <,b(A, B)= Ld(Vk*AVk)*(U,tBUk)+W:(A*B)Wd
for some Vk, Uk, Wk E M2 if and only if there exist X k = (Xkl'.'.' XkS)
such that E = L:=l X;Xk with Xk1Xk7 = Xk3XkS, Xk2XkS = Xk4Xk6 or,
X3 = X4 = Xs = X6 = 0.

Proof. By Proposition 21 and Proposition 21', it is clear.

REMARK 23. A linear map <,b from M n to M m is completely pos
itive if and only if it admits an expression <,b(A) = Li Vi* AVi where
Vi are n x m matrices. But in multilinear case it is not true. For
an example, Let <,b : M 2 x M 2 -l- M 2 be a bilinear map with E
(1,0,1,0,1,0,0, O)t(1, 0,1,0,1,0,0,0). Then <,b is completely positive, but
<,b(A, B) =1= Lk(V:AVk)*(U;BUk)+Lk W;(A*B)Wk for any Vk, Uk, Wk
in M2 by [2, Remark 4].
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