ADDITIVE FUNCTIONS ON ARITHMETIC PROGRESSIONS

JUNGSEOB LEE AND KWANG YOUNG LEE

A complex-valued function f, defined on the set of positive integers, is called additive if f(mn) = f(m) + f(n) for any relatively prime integers m and n. For any integers a, d and real x > 0, we define

$$E_f(x;d,a) = \sum_{\substack{n \le x \\ n \equiv a \bmod d}} f(n) - \frac{1}{\varphi(d)} \sum_{\substack{n \le x \\ (n,\overline{d}) = 1}} f(n).$$

This quantity measures the uniformity of the distribution of values of additive functions on arithmetic progressions. It is natural to expect that $E_f(x; d, a)$ is small for all reduced residue classes a modulo d and all integers d up to x.

In Chapter 7 of his book [4], Elliott has extensively investigated the behavior of additive functions on arithmetic progressions. Later Hildebrand [7], motivated by Elliott's work, proved the following.

For any given $c < \frac{1}{2}$ and all additive functions f,

$$\sum_{p^{\alpha} \leq x^c} p^{\alpha} \max_{\substack{a \\ (a,p)=1}} |E_f(x;p^{\alpha},a)|^2 \ll_c \frac{x^2 \log \log x}{\log x} \sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}$$

where p^{α} runs through prime powers, and the implicit constant depends only on c.

One can find in Elliott [5] a similar inequality under more severe restrictions. Their results can legitimately be considered as counterparts in the theory of additive functions to the Bombieri-Vinogradov theorem in prime number theory. As in the case of the Bombieri-Vinogradov

Received May 6, 1993.

The work of the second author was supported by the Ajou University Research Fund.

theorem, it is desired to prove a theorem which allows the constant c in the above theorem to be as large as 1.

In this note, considering the mean square average of $E_f(x;d,a)$, we will prove, in a relatively simple manner, results which are useful for large moduli. The following theorem has been sought as an analogue of the result on primes in arithmetic progressions, due to Davenport-Halberstam [4] and Gallagher [6, Theorem 3].

THEOREM 1. For any x > 0, Q > 0 and all additive functions f,

$$\sum_{d \le Q} \sum_{\substack{a=1 \ (a,d)=1}}^{d} |E_f(x;d,a)|^2 \ll B \sum_{p^{\alpha} \le x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}$$

where

$$B = B(x, Q) = \min\left(Qx \log\log x, Qx + \frac{Q^2 \log\log x}{x^2}\right).$$

One finds that the above inequality holds with B = Qx for $Q \le x^3/\log\log x$.

Confining the moduli to prime powers, we obtain an inequality in a slightly strengthened form.

THEOREM 2. For any x > 0, Q > 0 and all additive functions f,

$$\sum_{p^{\alpha} \leq Q} \max_{y \leq x} \sum_{\substack{a=1 \\ (a,p)=1}}^{p^{\alpha}} |E_f(y;p^{\alpha},a)|^2 \ll B \sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}$$

where

$$B=B(x,Q)=\min\left((x+Q)x\log\log x,x^2+Qx+rac{Q^2\log\log x}{x^2}
ight).$$

The following theorem is concerning general moduli though it is meaningful when Q is significantly smaller than x.

THEOREM 3. Let $\epsilon > 0$ be given. Then for any x > 0, Q > 0 and all additive functions f, we have

$$\sum_{d \leq Q} d \max_{y \leq x} \max_{\substack{a \ (a,d)=1}} |E_f(y;d,a)| \ll \frac{Q^{\frac{19}{9}+\epsilon}x}{\sqrt{\log x}} \left(\sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}} \right)^{\frac{1}{2}}.$$

To prove the theorems, we will need several lemmas. The first one is the well-known maximal version of the large sieve inequality, due to Montgomery [8].

LEMMA 1. For any real x > 0, Q > 0 and any complex numbers a_n ,

$$\sum_{d \le Q} \frac{d}{\varphi(d)} \sum_{\chi \bmod d} \max_{y \le x} |\sum_{n \le y} a_n \chi(n)|^2 \ll (x + Q^2) \sum_{n \le x} |a_n|^2$$

where $\sum_{x \bmod d}^*$ denotes the sum over all primitive characters modulo d.

LEMMA 2. For any real number Q > 0, and any complex numbers a_n ,

$$\sum_{d \le Q} \frac{1}{\varphi(d)} \sum_{\chi \bmod d} \max_{y \le x} |\sum_{n \le y} a_n \chi(n)|^2 \ll (x+Q) \sum_{n \le x} |a_n|^2.$$

Proof. We see that for any U > 0,

$$\sum_{U < d \le 2U} \frac{1}{\varphi(d)} \sum_{\chi \bmod d} \max_{y \le x} |\sum_{n \le x} a_n \chi(n)|^2$$

$$\ll \frac{1}{U} \sum_{U < d \le 2U} \frac{d}{\varphi(d)} \sum_{\chi \bmod d} \max_{y \le x} |\sum_{n \le x} a_n \chi(n)|^2.$$

By Lemma 1, this is $\ll (xU^{-1} + U) \sum_{n \leq x} |a_n|^2$. Summing over $U = 2^k$, $1 < U \leq Q$, we complete the proof.

LEMMA 3. For any integer d and real x > 0,

$$\sum_{\substack{a=1\\ (a,d)=1}}^{d} |E_f(x;d,a)|^2 = \frac{1}{\varphi(d)} \sum_{\chi \bmod d} |\sum_{n \le x} f(n) \chi(n)|^2$$

where $\sum_{\chi \bmod d}'$ denotes the sum over all non-principal characters modulo d.

Proof. We recall the orthogonal properties of Dirichlet characters. If (a, d) = 1, then

(1)
$$\sum_{\chi \bmod d} \overline{\chi}(a)\chi(n) = \begin{cases} \varphi(d) & \text{if } a \equiv n \bmod d, \\ 0 & \text{otherwise.} \end{cases}$$

For any two characters χ and ξ modulo d,

(2)
$$\sum_{a=1}^{d} \chi(a)\overline{\xi}(a) = \begin{cases} \varphi(d) & \text{if } \chi = \xi, \\ 0 & \text{otherwise.} \end{cases}$$

By the relation (1), we find that for any a with (a, d) = 1,

(3)
$$E_f(x;d,a) = \frac{1}{\varphi(d)} \sum_{\chi \bmod d} \overline{\chi}(a) \sum_{n \le x} f(n) \chi(n).$$

On squaring this out and summing over all reduced residue classes a modulo d,

$$\begin{split} \sum_{\substack{a=1\\(a,d)=1}}^{d} |E_f(x;d,a)|^2 \\ &= \frac{1}{\varphi(d)^2} {\sum_{\chi}}' {\sum_{\xi}}' \sum_{n < x} f(n) \chi(n) \sum_{m < x} \overline{f}(m) \overline{\xi}(m) \sum_{a=1}^{d} \chi(a) \overline{\xi}(a). \end{split}$$

Applying the relation (2), we finish the proof.

LEMMA 4. Let f be an additive function. Then for any x > 0,

$$\sum_{n < x} |f(n)|^2 \ll x \log \log x \sum_{p^{\alpha} < x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

Proof. Using the additivity of f and changing the order of summations, we find that the left hand is

$$\sum_{n \leq x} |\sum_{p^{\alpha} || n} f(p^{\alpha})|^2 \leq \sum_{p^{\alpha} \leq x} \sum_{q^{\beta} \leq x} |f(p^{\alpha})f(q^{\beta})| \sum_{\substack{n \leq x \\ p^{\alpha} || n, q^{\beta} || n}} 1,$$

where $p^{\alpha}||n|$ means p^{α} divides n but $p^{\alpha+1}$ does not. First we estimate the contribution of those terms with $p \neq q$. In this case the innermost sum is not greater than $x/p^{\alpha}q^{\beta}$. Thus by Cauchy's inequality we find that the last sum with the restriction $p \neq q$ is

$$\leq x \left(\sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|}{p^{\alpha}} \right)^{2} \leq x \sum_{p^{\alpha} \leq x} \frac{1}{p^{\alpha}} \sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|^{2}}{p^{\alpha}}.$$

Since $\sum_{p^{\alpha} \leq x} p^{-\alpha} \ll \log \log x$, we obtain the wanted bound. The contribution of those terms with p = q to the sum is bounded by

$$x\sum_{\substack{p,\alpha\\p^{\alpha}< x}}\sum_{\beta\leq \alpha}\frac{|f(p^{\alpha})|}{p^{\alpha}}|f(p^{\beta})|=x\sum_{\substack{p,\alpha\\p^{\alpha}< x}}\sum_{\beta\leq \alpha}\frac{|f(p^{\alpha})|}{p^{3\alpha/4}}p^{\beta/4}\frac{|f(p^{\beta})|}{p^{\alpha/4}}p^{-\beta/4}.$$

By the inequality of arithmetic and geometric means, this is

$$\leq x \sum_{\substack{p,\alpha \\ p^{\alpha} \leq x}} \sum_{\beta \leq \alpha} \left(\frac{|f(p^{\alpha})|^2}{p^{3\alpha/2}} p^{\beta/2} + \frac{|f(p^{\beta})|^2}{p^{\alpha/2}} p^{-\beta/2} \right)$$

$$= x \left(\sum_{\substack{p^{\alpha} \leq x}} \frac{|f(p^{\alpha})|^2}{p^{3\alpha/2}} \sum_{\beta \leq \alpha} p^{\beta/2} + \sum_{\substack{p^{\beta} \leq x}} \frac{|f(p^{\beta})|^2}{p^{\beta/2}} \sum_{\alpha \geq \beta} p^{-\alpha/2} \right)$$

$$\ll x \sum_{\substack{p^{\alpha} \leq x}} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

This is less than the wanted bound.

Proof of Theorem 1. Squaring out $E_f(x; d, a)$ using the definition, we have

$$|E_f(x;d,a)|^2 = |\sum_{\substack{n \leq x \\ n \equiv a \bmod d}} f(n)|^2 - \frac{1}{\varphi(d)} \sum_{\substack{n \leq x \\ n \equiv a \bmod d}} f(n) \sum_{\substack{n \leq x \\ (n,d)=1}} \overline{f}(n) - \frac{1}{\varphi(d)} \sum_{\substack{n \leq x \\ n \equiv a \bmod d}} \overline{f}(n) \sum_{\substack{n \leq x \\ (n,d)=1}} f(n) + \frac{1}{\varphi(d)^2} |\sum_{\substack{n \leq x \\ (n,d)=1}} f(n)|^2.$$

Summing over all reduced residue classes a modulo d and interchanging the summations, we find that

$$\sum_{\substack{a=1\\(a,d)=1}}^{d} |E_f(x;d,a)|^2 = \sum_{\substack{n \leq x\\(n,d)=1}} |f(n)|^2 - \frac{1}{\varphi(d)} |\sum_{\substack{n \leq x\\(n,d)=1}} f(n)|^2$$

$$\leq \sum_{n \leq x} |f(n)|^2.$$

Using Lemma 4, we see that the summation of the above over all positive integers $d \leq Q$ is bounded by

$$Qx \log \log x \sum_{p^{\alpha} < x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

To get the second bound, we define $A = A(f,x) = x^{-1} \sum_{p^{\alpha} \leq x} f(p^{\alpha})/p^{\alpha}$ and an arithmetic function g(n) = f(n) - A. Then a straightforward calculation leads to

$$E_f(x;d,a) = E_g(x;d,a) + A \left(\sum_{\substack{n \leq x \\ n \equiv a \bmod d}} 1 - \frac{1}{\varphi(d)} \sum_{\substack{n \leq x \\ (n,d)=1}} 1 \right)$$

$$= E_g(x;d,a) + O(A).$$

We use the same argument as above to get

$$\sum_{\substack{a=1\\(a,d)=1}}^{d} |E_g(x;d,a)|^2 \le \sum_{n \le x} |g(n)|^2 = \sum_{n \le x} |f(n) - A|^2.$$

By the Turán-Kubilius inequality, this is

$$\ll x \sum_{p^{\alpha} < x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

Summing over all positive integers $d \leq Q$,

(4)
$$\sum_{\substack{d \leq Q \\ (a,d)=1}} \sum_{\substack{a=1 \\ (a,d)=1}}^{d} |E_g(x;d,a)|^2 \ll Qx \sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

Now we estimate the contribution of O(A) term. First we find by Cauchy's inequality that

$$|A|^2 \le \frac{1}{x^2} \sum_{p^{\alpha} < x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}} \sum_{p^{\alpha} < x} \frac{1}{p^{\alpha}} \ll \frac{\log \log x}{x^2} \sum_{p^{\alpha} < x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

Summing over all reduced residue classes a modulo d and all integers $d \leq Q$, we get

(5)
$$\sum_{\substack{d \le Q \\ (a,d)=1}} \sum_{\substack{a=1 \\ (a,d)=1}}^{d} |A|^2 \ll \frac{Q^2 \log \log x}{x^2} \sum_{p^{\alpha} \le x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

Combining (4) and (5), we obtain the second bound and complete the proof.

Proof of Theorem 2. By Lemma 3, we find that (6)

$$\sum_{p^{\alpha} \leq Q} \max_{y \leq x} \sum_{\substack{a=1 \ (a,p)=1}}^{p^{\alpha}} |E_f(y; p^{\alpha}, a)|^2 = \sum_{p^{\alpha} \leq Q} \frac{1}{\varphi(p^{\alpha})} \max_{y \leq x} \sum_{\chi \bmod p^{\alpha}} |\sum_{n \leq y} f(n) \chi(n)|^2.$$

Since any non-principal character χ modulo p^{α} is induced by some primitive character χ_1 modulo p^{β} , $1 \leq \beta \leq \alpha$, and $\chi(n) = \chi_1(n)$ for every

integer n, the above is

$$\sum_{p^{\alpha} \leq Q} \frac{1}{\varphi(p^{\alpha})} \max_{y \leq x} \sum_{\beta=1}^{\alpha} \sum_{\chi \bmod p^{\beta}}^{*} |\sum_{n \leq y} f(n)\chi(n)|^{2}$$

$$\leq \sum_{p^{\beta} \leq Q} \frac{1}{\varphi(p^{\beta})} \sum_{t \geq 1} \frac{1}{p^{t}} \max_{y \leq x} \sum_{\chi \bmod p^{\beta}}^{*} |\sum_{n \leq y} f(n)\chi(n)|^{2}$$

$$\ll \sum_{p^{\beta} \leq Q} \frac{1}{\varphi(p^{\beta})} \max_{y \leq x} \sum_{\chi \bmod p^{\beta}}^{*} |\sum_{n \leq y} f(n)\chi(n)|^{2}$$

$$\ll (x+Q) \sum_{n < x} |f(n)|^{2}$$

by Lemma 2. Applying Lemma 4, we obtain the first bound. In order to get the second bound, we define A and g as in the proof of Theorem 1, and see that

$$E_f(y;d,a) = E_g(y;d,a) + O(A).$$

On successively applying Lemma 4 and the Turán-Kubilius inequality, we find that the contribution of $E_g(y;d,a)$ to the sum on the left hand of (6) is

$$\ll (x+Q)x\sum_{p^{\alpha} \le x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}.$$

We treat the contribution of O(A) term as in the proof of Theorem 1.

Proof of Theorem 3. By the identity (3), we have

$$\max_{\substack{a \ (a,d)=1}} |E_f(y;d,a)| = \max_{\substack{a \ (a,d)=1}} \left| \frac{1}{\varphi(d)} \sum_{\chi \bmod d}' \overline{\chi}(a) \sum_{n \le y} f(n) \chi(n) \right|$$

$$\leq \frac{1}{\varphi(d)} \sum_{\chi \bmod d} \left| \sum_{n \le y} f(n) \chi(n) \right|.$$

Since f is additive,

$$\sum_{n \leq y} f(n)\chi(n) = \sum_{n \leq y} \sum_{p^{\alpha} \parallel n} f(p^{\alpha})\chi(n) = \sum_{p^{\alpha} \leq y} f(p^{\alpha})\chi(p^{\alpha}) \sum_{\substack{m \leq y/p^{\alpha} \\ p \nmid m}} \chi(m).$$

It is known that $\sum_{m \leq y} \chi(m) \ll y^{\frac{2}{3}} d^{\frac{1}{9} + \epsilon}$ for any non-principal character χ modulo d(See Burgess [2]). Thus the above is

$$\ll y^{\frac{2}{3}}d^{\frac{1}{9}+\epsilon}\sum_{p^{\alpha}\leq y}\frac{|f(p^{\alpha})|}{p^{2\alpha/3}}.$$

Hence

$$\begin{split} & \sum_{d \leq Q} d \max_{y \leq x} \max_{\substack{a \\ (a,d)=1}} |E_f(y;d,a)| \\ \ll x^{\frac{2}{3}} \sum_{d \leq Q} d^{\frac{10}{9} + \epsilon} \sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|}{p^{2\alpha/3}} \\ & \leq x^{\frac{2}{3}} Q^{\frac{19}{9} + \epsilon} \sum_{p^{\alpha} < x} \frac{|f(p^{\alpha})|}{p^{2\alpha/3}}. \end{split}$$

By Cauchy's inequality the last sum above is not greater than

$$\left(\sum_{p^{\alpha} \leq x} \frac{1}{p^{\alpha/3}}\right)^{\frac{1}{2}} \left(\sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}\right)^{\frac{1}{2}} \ll \frac{x^{\frac{1}{3}}}{\sqrt{\log x}} \left(\sum_{p^{\alpha} \leq x} \frac{|f(p^{\alpha})|^2}{p^{\alpha}}\right)^{\frac{1}{2}}.$$

This completes the proof.

References

- 1. E. Bombieri, Le grand crible dans la théorie des nombres, Astérique 18 (1974).
- 2. D. A. Burgess, The character sum estimate with r=3, J. London Math. Soc. 33 (1986), 219-226.
- 3. H. Davenport and H. Halberstam, Primes in arithmetic progressions, Michigan Math. J. 13 (1966), 485-489.
- 4. P. D. T. A. Elliott, Arithmetic function and integer products, Springer, New York, 1985.
- 5. P. D. T. A. Elliott, Additive arithmetic functions on arithmetic progression, Proc. London Math. Soc. 54 (1987), 15-37.
- 6. P. X. Gallagher, The large sieve, Mathematika 14 (1967), 14-20.

- 7. A. Hildebrand, Additive functions on arithmetic progressions, J. London Math. Soc. 34 (1986), 394-402.
- 8. H. L. Montgomery, Maximal variants of the large sieve, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1982), 805-812.

Department of Mathematics
Ajou University
Suwon 441-749, Korea