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ADDITIVE FUNCTIONS ON

ARITHMETIC PROGRESSIONS

JUNGSEOB LEE AND KWANG YOUNG LEE

A complex-valued function f, defined on the set of positive integers, is
called additive if f(mn) = f(m) + f(n) for any relatively prime integers
m and n. For any integers a, d and real x > 0, we define

1L f(n) - (d5 L f(n).
n<x ~ n<x

n=a mod d (n,d)=l

This quantity measures the uniformity of the distribution of values of
additive functions on arithmetic progressions. It is natural to expect
that Ef( x; d, a) is small for all reduced residue classes a modulo d and all
integers d up to x.

In Chapter 7 of his book [4], Elliott has extensively investigated the
behavior of additive functions on arithmetic progressions. Later Hilde­
brand [7], motivated by Elliott's work, proved the following.

For any given c < t and all additive functions f,

L 0< IE ( 0< )1 2 x
2

loglogx L If(pO<W
p max f Xi P ,a ~c 1

a ~x ~
p"'::;x C (a,p)=l P"'::;x

where pO< runs through prime powers,and the implicit constant depends
only on c.

One can find in Elliott [5] a similar inequality under more severe
restrictions. Their results can legitimately be considered as counterparts
in the theory of additive functions to the Bombieri-Vinogradov theorem
in prime number theory. As in the case of the Bombieri-Vinogradov
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theorem, it is desired to prove a theorem which allows the constant c in
the above theorem to be a~darge as l.

In this note, cons~dering the mean square average of Ef(x; d, a), we
will prove, in a relatively simple manner, results which are useful for
large moduli. The following theorem has been sought as an analogue
of the result on primes in arithmetic progressions, due to Davenport­
Halberstam [4] and Gallagher [6, Theorem 3].

THEOREM 1. For any x> 0, Q > 0 and all additive functions!,

where

. ( . Q210g10gx)
B=B(x,Q)=mm Qxloglogx,Qx+ x2 •

One finds that the above inequality holds with B = Qx for Q <
x3 flog log x. .

Confining the moduli to prime powers, we obtain an inequality in a
slightly strengthened form.

THEOREM 2. For any x> 0, Q > 0 and all additive functions!,

where

. ( Q2
log log x)B=B(x,Q)=mm (x+Q)xloglogx,x2 +QX1- x2 •

The following theorem is concerning general moduli though it is mean­
ingful when Q is significantly smaller than x.
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THEOREM 3. Let € > °be given. Then for any x > 0, Q > °and all
additive functions !, we have

To prove the theorems, we will need several lemmas. The first one
is the well-known maximal version of the large sieve inequality, due to
Montgomery [8].

LEMMA 1. For any real x > 0, Q > °and any complex numbers an,

d *
L (d) L ~t:ILanX(nW~(x+Q2)LlanI2
ds,Q <.p xmodd - ns,y ns,x

where L:~modd denotes the sum over all primitive characters modulo d.

LEMMA 2. For any real number Q > 0, and any complex numbers

Proof. We see that for any U > 0,

~ 1 *
.Lt d L ~t:ILanX(n)12

U<ds,2U <.p( ) xmod d - ns,x

1 ~ d ~* ~ 2
~ U Lt (d) Lt ~~ ILt anx(n)1 .

U<d<2U<.p xmodd - n<x- -

By Lemma 1, this is ~ (xU- 1 + U) L:n<x lan l2 . Summing over U = 2\
1 < U ::; Q, we complete the proof. -

LEMMA 3. For any integer d and real x > 0,

d 1 I

~ IE/(x; d, a)12
= <.p(d)X~d I~ !(n)x(n)1

2

(a,d)=l -
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where 2.:~modd denotes the sum over all non-principal characters modulo
d.

Proof. We recall the orthogonal properties of Dirichlet characters. If
(a, d) = 1, then

(1) 2:
- { 'P(d) if a == n mod d,
x(a)x(n) = .o otherwIse.

x modd

For any two characters X and ~ modulo d,

(2)
d _ { 'P(d) if X = e,

Xaea = .f; ()() 0 otherwIse.

By the relation (1), we find that for any a with (a,d) = 1,

(3)
. 1 '

Ef(x; d, a) = (d) 2: x(a) 2: f(n)x(n).
'P x mod d n::S;x

On squaring this out and summing over all reduced residue classes a
modulo d,

d

2: IEf(x; d, a)1 2

a=l
(a,d)=l

d

= (~)2 2:'2:' 2: f(n)x(n) 2: ](mYe(m) 2:x(a)e(a).
'P x ~ n::S;x m:5x a=1

Applying the relation (2), we finish the proof.

LEMMA 4. Let f be an additive function. Then for any x > 0,

L If(nW ~ x loglog x 2: If~:)12
n::S;x p<>::S;x
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Proof. Using the additivity of f and changing the order of summa­
tions, we find that the left hand is

L I L f(pQW S L L If(pQ)f(qP)1
n<x p"lIn p"$xqP$x

1,

where pQlln means pQ divides n but pQ+l does not. First we estimate
the contribution of those terms with p =/= q. . In this case the innermost
sum is not greater than xjp Q qf3. Thus by Cauchy's inequality we find
that the last sum with the restriction p =/= q is

Since l:P"$x p-Q ~ log log x, we obtain the wanted bound.
The contribution of those terms with p = q to the sum is bounded by

By the inequality of arithmetic and geometric means, this is

This is less than the wanted bound.
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Proof of Theorem 1. Squaring out Ef(x; d,a) using the definition, we
have

2 '" 2 1 '" '"IEf(x; d, a)1 = I ~ f(n)1 - V'(d) ftx fen) ~ len)

n=a mod d n=a mod d (n,d)=l

- V'td) L f(n) L fen) + (~)21 L f(n)1
2

•
n<x n<x V' n<x

n=a mod d (n,d)=l (n,d)=l

Summing over all reduced residue classes a modulo d and interchanging
the summations, we find that

d 1
L IEf(x;d,aW = L If(n)1

2
- (d) I L f(nW

a=l n<x V' n<x
(a,d)=l (n,d)=l (n,d)=l

Using Lemma 4, we see that the summation of the above over all positive
integers d ::; Q is bounded by

To get the second bound, we define A=A(J, x )=x-1 L:po«x f(pa)/pOi
and an arithmetic function g(n) = f( n) - A. Then a stratghtforward
calculation leads to

Ef(x;d,a) = Eg(x;d,a) + A( L 1 - td) L 1)
n<x V' n<x

n= amod d (n,d)=l

= Eg(x;d,a) +O(A).

We use the same argument as above to get

d

L IEg(x;d,a)1 2
::; L Ig(nW = L If(n) - A1 2

•

a=l n<x n<x
(a,d)=l - -
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By the Turan-Kubilius inequality, this is

Summing over all positive integers d ~ Q,

593

(4)

Now we estimate the contribution of O(A) term. First we find by
Cauchy's inequality that

Summing over all reduced residue classes a modulo d and all integers
d ~ Q, we get

(5)

Combining (4) and (5), we obtain the second bound and complete the
proof.

Proof of Theorem 2. By Lemma 3, we find that
(6)

pO< 1 I

L max L IEf(y;pa,aW = L -(-) max L ILf(n)x(n)12
•

y<x ep pa y<x
pO<~Q - a=l p"'~Q - xmodp'" n~y

(a,p)=l

Since any non-principal character X modulo pa is induced by some prim­
itive character Xl modulop,B, 1 ~ (3 ~ a, and x(n) = XI(n) for every
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integer n, the above is

1 0' *L -(-) max L L IL f(n)x(n)1
2

<p pO' y<x .
po<$Q - fJ=l x mod p/3 n$y

~ L (1 P) L -; m<ax L* IL f(n)x(nW
<p p p LX

p/3$Q t~l XmodpP n$y

~ L (1 ~) max L* IL f(n)x(nW
<p pI' y<x

pP$Q - x mod p/3 n$y

~ (x + Q) L If(nW
n$x

by Lemma 2. Applying Lemma 4, we obtain the first bound. In order
to get the second bound, we define A and 9 as in the proof of Theorem
1, and see that

Ef(Y; d, a) = Eg(y; d, a) + O(A).

On successively applying Lemma 4 and the Turan-Kubilius inequality,
we find that the contribution of Eg(y; d, a) to the sum on the left hand
of(6) is

We treat the contribution of O(A) term as in the proof of Theorem l.

Proof of Theorem 3. By the identity (3), we have

1 'mF IEf(y;d,a)1 = m~ I (d) L x(a) L f(n)x(n)1
(a,d)=l . (a,d)=l <P X mod d n$y·

1 , ""~ (d) L IL...J f(n)x(n)l·
<P X mod d n$y

Since f is additive,

L f(n)x(n) = L L f(pO')x(n) = L f(pO')x(pO') L x(m).
n$y n$y pO< lin pO< $y m$y/pO<

ptm
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It is known that I:m::;y x(m) ~ yfd~+€ for any non-principal character
X modulo d(See Burgess [2]). Thus the above is .

Hence

By Cauchy's inequality the last sum above is not greater than

This completes the proof.
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