Comm. Korean Math. Soc. 8 (1993), No. 4, pp. 569-578

MINIMUM PERMANENT ON CERTAIN FACE OF Ω_n

SUK-GEUN HWANG AND SUN-JEONG SHIN

I. Introduction

Let $X = [x_{ij}]$ be a nonnegative matrix of order n. X is called *doubly* stochastic if all of its row sums and column sums are equal to 1. The set of all $n \times n$ doubly stochastic matrices is denoted by Ω_n . It is well known that Ω_n is a convex polytope of dimension $n^2 - 2n + 1$ in the n^2 dimensional Euclidean space, of which the extreme points are the $n \times n$ permutation matrices [Birkhoff, 9].

The permanent perX of an $n \times n$ matrix $X = [x_{ij}]$ is defined by

$$\operatorname{per} X = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i\sigma(i)},$$

where S_n stands for the symmetric group on $\{1, 2, ..., n\}$.

For an *n*-square (0,1)-matrix $A = [a_{ij}]$, let $\mathcal{F}(A) = \{X = [x_{ij}] \in \Omega_n | X \leq A\}$, where $X \leq A$ means that every entry of X is less than or equal to the corresponding entry of A. In order for $\mathcal{F}(A)$ to be nonempty it is necessary and sufficient that per A > 0. For A with positive permanent, $\mathcal{F}(A)$ is a face of the polytope Ω_n , and every face of Ω_n is given in this fashion. As is a compact subset of a finite dimensional Euclidean space, $\mathcal{F}(A)$ contains a matrix \overline{A} such that per $\overline{A} \leq \text{per } X$ for all $X \in \mathcal{F}(A)$. Such a matrix \overline{A} is called a *minimizing matrix* on $\mathcal{F}(A)$.

One of the most famous problems in the theory of permanent was the van der Waerden conjecture appeared in 1926, which was proved in 1981 by Egoryĉev [3] and Falikman [4] independently.

Received April 13, 1993.

THEOREM (VAN DER WAERDEN-EGORYĈEV-FALIKMAN). For any $A \in \Omega_n$,

$$\operatorname{per} A \ge \operatorname{per} J_n = \frac{n!}{n^n}$$

with equality if and only if $A = J_n$, where J_n is the $n \times n$ matrix all of whose entries equal $\frac{1}{n}$.

Since the affirmative resolution of the van der Waerden conjecture, there has been a lot of interest in determining the minimum permanent over various faces of Ω_n [1, 5, 6, 7, 8, 10].

Determination of the minimum permanent and permanent-minimizing matrices over an arbitrary face $\mathcal{F}(A)$ is an extremely hard problem. However solutions to this problem have been achieved for several (0, 1)-matrices A.

For example, let

$$B_n = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}.$$

Knopp and Sinkhorn [7] showed that

$$\min\{ \operatorname{per} X | X \in \mathcal{F}(B_n) \} = (n-2)! \frac{(n-2)^{n-2}}{(n-1)^{2n-4}}$$

And Brualdi [1] proved that

$$\min\{\operatorname{per} X | X \in \mathcal{F}(H_n)\} = (\frac{1}{2})^{n-1},$$

where H_n is the lower Hessenberg matrix of order n given by

[1	1	0	•••	0	٢0	
1	1	1	•••	0	0	
:	÷	:	·	:	:	
1	1	1		1	0	
1 1 1	1	1	•••	1	1	
[1	1	1	•••	1	1	

570

A square matrix X is called *partly decomposable* if there exist permutation matrices P and Q such that

$$PXQ = \begin{bmatrix} X_1 & 0 \\ X_2 & X_3 \end{bmatrix}$$

where X_1 and X_3 are square matrices of order ≥ 1 . If X is not partly decomposable, it is called *fully indecomposable*. Since a partly decomposable doubly stochastic matrix can always be written as a direct sum of two doubly stochastic matrices(after interchanging rows and columns, if necessary) of strictly smaller orders, it is sufficient to look at only those matrices A which are fully indecomposable when considering problems concerning the permanent on $\mathcal{F}(A)$.

The face $\mathcal{F}(A)$ is *barycentric* provided the minimum permanent on $\mathcal{F}(A)$ is achieved at its barycenter, that is, at the matrix

$$\frac{1}{\operatorname{per} A} \sum_{P \le A} P$$

where the summation extends over all permutation matrices P with $P \leq A$.

Let A be a (0, 1)-matrix of order n and let k be an integer with $1 \le k \le n$. Let B be the (0, 1)-matrix of order n+1 obtained from A by appending on the right a new column equal to the k-th column of A and then appending on the bottom a new row whose only 1's are in positions k and n+1. We say that the matrix B is obtained from A by copying the k-th column. The matrix obtained from A by copying the k-th row is defined in a similar way. If there is a sequence of matrices $A = A_1, A_2, \ldots, A_p = C$ such that A_i can be obtained by copying a column or a row of A_{i-1} $(i = 2, \ldots, p)$, then we say that C is obtained from A by copying rows and columns. The Hessenberg matrix H_n can be obtained from $I_1 = [1]$ by successively copying the last row. A matrix which can be obtained from I_1 by copying rows and columns is called a generalized Hessenberg matrix [2]. It is easy to verify that each generalized Hessenberg matrix is fully indecomposable.

The generalized Hessenberg faces of Ω_n are the faces $\mathcal{F}(PAQ)$ where P and Q are permutation matrices and A is a generalized Hessenberg

matrix of order n. In [2], Brualdi and Shader investigated the generalized Hessenberg matrices. And, for each generalized Hessenberg face $\mathcal{F}(A)$ of Ω_n , they showed that the minimum permanent equals $(\frac{1}{2})^{n-1}$.

In this paper, we determine the minimum permanent on the face $\mathcal{F}(A)$ of Ω_n for A, an $n \times n$ matrix which can be obtained from I_1 by multicopying rows and columns.

Let A be a (0,1)-matrix of order n and let l be an integer with $1 \le l \le n$. Let B be the (0,1)-matrix of order n + k obtained from A by appending on the right k new columns equal to the l-th column of A and then appending on the bottom k new rows whose only 1's are in positions $\{(n+j,n+r), 1 \le j, r \le k\}$ and $\{(n+j,l), 1 \le j \le k\}$.

The matrix B will be called the matrix obtained from A by k-copying the l-th column. The matrix obtained from A by k-copying the l-th row is defined in a similar way. If there is a sequence of matrices $A = A_1, A_2, \ldots, A_p = C$ such that A_i can be obtained by k_{i-1} -copying a column or a row of $A_{i-1}(i=2,\ldots,p)$, then we will say that C can be obtained from A by multicopying rows and columns. It can be easily proved that this matrix C is fully indecomposable. Notice that C is a generalized Hessenberg matrix if $k_i=1$, for all j.

EXAMPLE.

 K_7 is a 7 × 7 matrix obtained from I_1 by alternately 2-copying the last column, 1-copying the last row and 3-copying the last column.

2. Some Preliminary Lemmas and Results

For a matrix A, $A(i_1, \ldots, i_s | j_1, \ldots, j_t)$ will denote the matrix obtained from A by striking out the rows numbered i_1, \ldots, i_s and the columns numbered j_1, \ldots, j_t and $A[i_1, \ldots, i_s | j_1, \ldots, j_t]$ is the $s \times t$ matrix whose (p, q)-entry is the same as the (i_p, j_q) -entry of A. If A is a (0, 1)-matrix

572

573

of order n, let $\mathcal{P}(A)$ denote the minimum permanent of the matrices in $\mathcal{F}(A)$, that is, $\mathcal{P}(A) = \min\{\operatorname{per} X : X \in \mathcal{F}(A)\}$, and let $\mathcal{F}^{\min}(A)$ denote the set of matrices in $\mathcal{F}(A)$ with minimum permanent.

LEMMA 2.1 [FOREGGER, 5]. Let $A = [a_{ij}]$ be an n-square fully indecomposable (0, 1)-matrix and let $X = [x_{ij}]$ be a minimizing matrix on $\mathcal{F}(A)$. Then X is fully indecomposable, and moreover, for (i, j) such that $a_{ij}=1$,

$$per X(i|j) = per X \quad \text{if} \quad x_{ij} > 0,$$
$$per X(i|j) \ge per X \quad \text{if} \quad x_{ij} = 0.$$

LEMMA 2.2 [MINC, 8]. Let $X = [x_{ij}]$ be a minimizing matrix on $\mathcal{F}(A)$, where $A = [a_1, \ldots, a_n]$ is an n-square (0, 1)-matrix. If, for some $k \leq n, a_{j_1} = \cdots = a_{j_k}$, and if, for some $i, x_{ij_1} + \cdots + x_{ij_k} \neq 0$, then

per $X(i|j_t) = \text{per } X$, for $t = 1, \dots, k$.

LEMMA 2.3 [MINC, 8]. Let $X = [x_{ij}]$ be a minimizing matrix on $\mathcal{F}(A)$, where $A = [a_1, \ldots, a_n]$ is an n-square (0, 1)-matrix. If, for some $k \leq n, a_1 = \cdots = a_k$, then for any $p \leq k$, $X(J_p \bigoplus I_{n-p}) \in \mathcal{F}(A)$ and per $X(J_p \bigoplus I_{n-p}) = \text{per } X$, where $J_p = [\frac{1}{p}]_{p \times p}$ and I_{n-p} is the identity matrix of order n-p, i.e., the matrix obtained from X by replacing each of its first p columns by their average remains a minimizing matrix on $\mathcal{F}(A)$. A similar statement holds for rows.

For a nonnegative matrix $X = [x_1, \ldots, x_n]$, let \tilde{X} denote the *n*-square matrix obtained from X by replacing each of its last k columns by their average, and let X^* denote the (n-1)-square matrix obtained from $\tilde{X}(n|n)$ by multiplying each of the last k-1 columns by $\frac{k}{k-1}$, i.e., $\tilde{X} = [x_1, \ldots, x_{n-k}, s, \ldots, s]_{n \times n}$, where

$$s=\frac{1}{k}(x_{n-k+1}+\cdots+x_n).$$

and $X^* = [x_1, \dots, x_{n-k}, \frac{k}{k-1}(s, \dots, s)](n|n).$

The matrix X^* will be called the (n, n)-contraction (or just a contraction, if no ambiguity arises) of X. And we define, inductively,

$$X^{[r]} = (X^{[r-1]})^*, \quad X^{[1]} = X^*, \quad r = 2, \dots, n-1.$$

For an *n*-square matrix X, X' will denote the matrix X(n|n), and inductively, we define

$$X^{(r)} = (X^{(r-1)})', \quad X^{(1)} = X', \quad r = 2, \dots, n-1.$$

LEMMA 2.4. Let $A = [a_{ij}]$ be a fully indecomposable (0, 1)-matrix of order n, let $B = [b_{ij}]$ be the matrix obtained by k-copying the last column of A and let $Y \in \mathcal{F}(B)$. If the last k + 1 columns of Y are identical, then for each $j = n, \ldots, n + k$,

$$\operatorname{per} Y(n+k|j) = \operatorname{per} Y,$$

and hence

$$\operatorname{per} Y^* = \left(\frac{k+1}{k}\right)^k \operatorname{per} Y.$$

Proof.

$$\operatorname{per} Y = \sum_{j=n}^{n+k} y_{n+k,j} \operatorname{per} Y(n+k|j)$$
$$= \operatorname{per} Y(n+k|j), \quad j = n, \dots, n+k.$$

And

$$\operatorname{per} Y^* = \left(\frac{k+1}{k}\right)^k \operatorname{per} Y(n+k|n+k)$$
$$= \left(\frac{k+1}{k}\right)^k \operatorname{per} Y.$$

LEMMA 2.5. Let $A = [a_{ij}]$ be a fully indecomposable (0, 1)-matrix of order n and let $B = [b_{ij}]$ be the matrix obtained by k-copying the last column of A. Then

$$\mathcal{P}(B) = \left(\frac{k}{k+1}\right)^k \left(\frac{k-1}{k}\right)^{k-1} \cdots \left(\frac{2}{3}\right)^2 \left(\frac{1}{2}\right) \mathcal{P}(A)$$
$$= \prod_{i=1}^k \left(\frac{i}{i+1}\right)^i \mathcal{P}(A).$$

Proof. Let Z be a matrix in $\mathcal{F}^{\min}(B)$. Then Z^* is in $\mathcal{F}(B')$ and by Lemma 2.3 we may assume, without loss of generality, that the last k+1 columns of Z are identical. Thus by Lemma 2.4,

$$\operatorname{per} Z^* = (\frac{k+1}{k})^k \operatorname{per} Z.$$

In particular,

$$\mathcal{P}(B) \ge (\frac{k}{k+1})^k \mathcal{P}(B').$$

And inductively,

$$\mathcal{P}(B^{(r)}) \ge (\frac{k-r}{k-r+1})^{k-r} \mathcal{P}(B^{(r+1)}), \quad r = 1, \dots, k-1.$$

Hence

$$\mathcal{P}(B) \ge \left(\frac{k}{k+1}\right)^k \left(\frac{k-1}{k}\right)^{k-1} \cdots \left(\frac{1}{2}\right) \mathcal{P}(A).$$

Now, let U be a matrix in $\mathcal{F}^{\min}(A)$. Let the *n*-th column of U be the vector u and let $u = u^1 + u^2$, where u^1 and u^2 are nonnegative vectors. Let \hat{U} be a matrix obtained from U by replacing the *n*-th column by u^1 , appending on the right a new column equal to u^2 , and appending on the bottom a new row whose only nonzero entries are $\frac{1}{2}$'s in the *n*-th column and (n + 1)-th column. Then \hat{U} belongs to $\mathcal{F}(B^{(k-1)})$ and

$$\operatorname{per} \hat{U} = (\frac{1}{2})\operatorname{per} U.$$

Thus

$$\mathcal{P}(B^{(k-1)}) \leq (\frac{1}{2})\mathcal{P}(A).$$

Next, let U_1 be a matrix in $\mathcal{F}^{\min}(B^{(k-1)})$. And let the *n*-th column vector u of U be also represented by $u = v^1 + v^2 + v^3$, where v^1, v^2 and v^3 are nonnegative vectors. Let \hat{U}_1 be a matrix of order n + 2 obtained from U by replacing the *n*-th column by v^1 , appending two new columns n + 1 and n + 2 equal to v^2 and v^3 respectively, and appending on the

bottom two new rows whose only nonzero entries are $\frac{1}{3}$'s in the *n*-th, (n+1)-th and (n+2)-th columns. Then \hat{U}_1 belongs to $\mathcal{F}(B^{(k-2)})$ and

$$\operatorname{per} \hat{U}_1 = (\frac{2}{3})^2 \operatorname{per} U_1.$$

Hence

$$\mathcal{P}(B^{(k-2)}) \le (\frac{2}{3})^2 \mathcal{P}(B^{(k-1)}).$$

Continue this process until \hat{U}_{k-1} belongs to $\mathcal{F}(B)$ and

per
$$\hat{U}_{k-1} = (\frac{k}{k+1})^k \operatorname{per} U_{k-1}.$$

Then

$$\mathcal{P}(B) \leq (\frac{k}{k+1})^k \mathcal{P}(B^{(1)}).$$

Therefore

$$\mathcal{P}(B) \le (\frac{k}{k+1})^k (\frac{k-1}{k})^{k-1} \cdots (\frac{2}{3})^2 (\frac{1}{2}) \mathcal{P}(A)$$

and hence the Lemma is proved.

THEOREM 2.6. Let B be an n-square matrix obtained from I_1 by k_j -copying rows and columns successively, where $j = 1, \ldots, m$, and $\sum_{j=1}^{m} k_j + 1 = n$. Then

$$\mathcal{P}(B) = \prod_{j=1}^m \frac{k_j!}{(k_j+1)^{k_j}}.$$

Proof. It follows from Lemma 2.5 by induction that

$$\mathcal{P}(B) = \prod_{j=1}^{m} \prod_{i=1}^{k_j} (\frac{i}{i+1})^i$$
$$= \prod_{j=1}^{m} \frac{\prod_{i=1}^{k_j} i}{(k_j+1)^{k_j}}$$
$$= \prod_{j=1}^{m} \frac{k_j!}{(k_j+1)^{k_j}}.$$

Letting $k_j = 1$ for all j = 1, ..., m, in the equality in Theorem 2.6, we obtain the following result.

576

COROLLARY [BRUALDI AND SHADER, 4]. For H_n a generalized Hessenberg matrix of order $n \geq 2$,

$$\mathcal{P}(H_n) = (\frac{1}{2})^{n-1}.$$

THEOREM 2.7. Let $A = [a_{ij}]$ be a fully indecomposable (0, 1)-matrix of order n and let $B = [b_{ij}]$ be the matrix obtained by k-copying the last column of A. Then

- (1) "(a)" $Z = [z_{ij}]$ is a minimizing matrix on $\mathcal{F}(B)$ if and only if $Z^{[k]}$ is a minimizing matrix on $\mathcal{F}(A)$.
- (2) "(b)" $\mathcal{F}(B)$ is barycentric if and only if $\mathcal{F}(A)$ is barycentric.

Proof. (a): $Z = [z_{ij}]$ is a minimizing matrix on $\mathcal{F}(B)$ if and only if Z^* is a minimizing matrix on $\mathcal{F}(B')$, more generally, $Z^{[r]}$ is a minimizing matrix on $\mathcal{F}(B^{(r)})(r = 1, ..., k)$. In fact, let $Z \in \mathcal{F}^{\min}(B)$. Then

$$Z^* = [z_1, \dots, z_{n-k-1}, \frac{k+1}{k}s, \dots, \frac{k+1}{k}s](n|n),$$

where $s = \frac{1}{k+1}(z_{n-k} + \dots + z_n),$

and

$$\operatorname{per} Z^* = (\frac{k+1}{k})^k \operatorname{per} Z.$$

Thus $Z^* \in \mathcal{F}^{\min}(B')$ because

$$\mathcal{P}(B') = (\frac{k+1}{k})^k \mathcal{P}(B)$$

as was seen in the proof of Lemma 2.5. Conversely, let $Z^* \in \mathcal{F}^{\min}(B')$. Since

$$\operatorname{per} Z^* = \left(\frac{k+1}{k}\right)^k \operatorname{per} Z$$

and

$$\mathcal{P}(B') = (rac{k+1}{k})^k \mathcal{P}(B),$$

it follows that $Z \in \mathcal{F}^{\min}(B)$. Repeating this process, we get that the second statement follows.

(b): The barycenter of $\mathcal{F}(B)$ is obtained from the barycenter X of $\mathcal{F}(A)$ by appending on the right k new columns equal to the n-th column of X, by appending on the bottom k rows whose only nonzero entries are 1's in the n-th,(n + 1)-th,..., and (n + k)-th columns and then multiplying the n-th, (n + 1)-th, ..., and (n + k)-th columns by $\frac{1}{k+1}$. Hence the result follows from (a).

COROLLARY. Let B be an n-square matrix obtained from I_1 by k_j copying rows and columns successively, j = 1, ..., m, and $\sum_{j=1}^{m} k_j + 1 = n$. Then $\mathcal{F}(B)$ is barycentric.

References

- 1. R. A. Brualdi, An interesting face of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 17 (1985), 5-18.
- 2. R. A. Brualdi and B. L. Shader, Minimum permanents on special faces of the polytope of Doubly Stochastic Matrices, Linear Algebra Appl. to appear.
- 3. G. P. Egoryĉev, The solution of the van der Waerden problem for permanents, Dokl. Akad. Nauk SSSR. 258 (1981), 1041-1044.
- 4. D. I. Falikman, A proof of van der Waerden's conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki 29 (1981), 931-938.
- 5. T. H. Foregger, On the minimum value of the permanent of a nearly decomposable doubly stochastic matrix, Linear Algebra Appl. 32 (1980), 75-85.
- 6. S.-G. Hwang, Minimum permanent on faces of staircase type of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 18 (1985), 271-306.
- 7. P. Knopp and R. Sinkhorn, Minimum permanents of doubly stochastic matrices with at least one zero entry, Linear and Multilinear Algebra 11 (1982), 351-355.
- 8. H. Minc, Minimum permanents of doubly stochastic matrices with prescribed zero entries, Linear and Multilinear Algebra 15 (1984), 225-243.
- 9. ____, Permanents, Encyclopedia Math. Appl., Addison-Wesley, Reading, Mass., 1978.
- 10. S.-Z. Song, Minimum permanents on certain faces of matrices containing an identity submatrix, Linear Algebra Appl. 108 (1988), 263–280.

Department of Mathematics Kyungpook National University Taegu 702-701, Korea