MINIMUM PERMANENT ON CERTAIN FACE OF Ω_{n}

Suk-Geun Hwang and Sun-Jeong Shin

I. Introduction

Let $X=\left[x_{i j}\right]$ be a nonnegative matrix of order $n . X$ is called doubly stochastic if all of its row sums and column sums are equal to 1 . The set of all $n \times n$ doubly stochastic matrices is denoted by Ω_{n}. It is well known that Ω_{n} is a convex polytope of dimension $n^{2}-2 n+1$ in the n^{2} dimensional Euclidean space, of which the extreme points are the $n \times n$ permutation matrices [Birkhoff, 9].

The permanent per X of an $n \times n$ matrix $X=\left[x_{i j}\right]$ is defined by

$$
\operatorname{per} X=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

where S_{n} stands for the symmetric group on $\{1,2, \ldots, n\}$.
For an n-square $(0,1)$-matrix $A=\left[a_{i j}\right]$, let $\mathcal{F}(A)=\left\{X=\left[x_{i j}\right] \in\right.$ $\left.\Omega_{n} \mid X \leq A\right\}$, where $X \leq A$ means that every entry of X is less than or equal to the corresponding entry of A. In order for $\mathcal{F}(A)$ to be nonempty it is necessary and sufficient that per $A>0$. For A with positive permanent, $\mathcal{F}(A)$ is a face of the polytope Ω_{n}, and every face of Ω_{n} is given in this fashion. As is a compact subset of a finite dimensional Euclidean space, $\mathcal{F}(A)$ contains a matrix \bar{A} such that per $\bar{A} \leq \operatorname{per} X$ for all $X \in \mathcal{F}(A)$. Such a matrix \bar{A} is called a minimizing matrix on $\mathcal{F}(A)$.

One of the most famous problems in the theory of permanent was the van der Waerden conjecture appeared in 1926, which was proved in 1981 by Egoryĉev [3] and Falikman [4] independently.

Theorem (van der Waerden-Egoryĉev-Falikman). For any $A \in \Omega_{n}$,

$$
\operatorname{per} A \geq \operatorname{per} J_{n}=\frac{n!}{n^{n}}
$$

with equality if and only if $A=J_{n}$, where J_{n} is the $n \times n$ matrix all of whose entries equal $\frac{1}{n}$.

Since the affirmative resolution of the van der Waerden conjecture, there has been a lot of interest in determining the minimum permanent over various faces of $\Omega_{n}[1,5,6,7,8,10]$.

Determination of the minimum permanent and permanent-minimizing matrices over an arbitrary face $\mathcal{F}(A)$ is an extremely hard problem. However solutions to this problem have been achieved for several $(0,1)$ matrices A.

For example, let

$$
B_{n}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

Knopp and Sinkhorn [7] showed that

$$
\min \left\{\operatorname{per} X \mid X \in \mathcal{F}\left(B_{n}\right)\right\}=(n-2)!\frac{(n-2)^{n-2}}{(n-1)^{2 n-4}}
$$

And Brualdi [1] proved that

$$
\min \left\{\operatorname{per} X \mid X \in \mathcal{F}\left(H_{n}\right)\right\}=\left(\frac{1}{2}\right)^{n-1}
$$

where H_{n} is the lower Hessenberg matrix of order n given by

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
1 & 1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 1 & 0 \\
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 1 & 1 & \cdots & 1 & 1
\end{array}\right] .
$$

A square matrix X is called partly decomposable if there exist permutation matrices P and Q such that

$$
P X Q=\left[\begin{array}{cc}
X_{1} & 0 \\
X_{2} & X_{3}
\end{array}\right]
$$

where X_{1} and X_{3} are square matrices of order ≥ 1. If X is not partly decomposable, it is called fully indecomposable. Since a partly decomposable doubly stochastic matrix can always be written as a direct sum of two doubly stochastic matrices(after interchanging rows and columns, if necessary) of strictly smaller orders, it is sufficient to look at only those matrices A which are fully indecomposable when considering problems concerning the permanent on $\mathcal{F}(A)$.

The face $\mathcal{F}(A)$ is barycentric provided the minimum permanent on $\mathcal{F}(A)$ is achieved at its barycenter, that is, at the matrix

$$
\frac{1}{\operatorname{per} A} \sum_{P \leq A} P
$$

where the summation extends over all permutation matrices P with $P \leq$ A.

Let A be a $(0,1)$-matrix of order n and let k be an integer with $1 \leq k \leq$ n. Let B be the (0,1)-matrix of order $n+1$ obtained from A by appending on the right a new column equal to the k-th column of A and then appending on the bottom a new row whose only 1 's are in positions k and $n+1$. We say that the matrix B is obtained from A by copying the k-th column. The matrix obtained from A by copying the k-th row is defined in a similar way. If there is a sequence of matrices $A=A_{1}, A_{2}, \ldots, A_{p}=$ C such that A_{i} can be obtained by copying a column or a row of A_{i-1} $(i=2, \ldots, p)$, then we say that C is obtained from A by copying rows and columns. The Hessenberg matrix H_{n} can be obtained from $I_{1}=[1]$ by successively copying the last row. A matrix which can be obtained from I_{1} by copying rows and columns is called a generalized Hessenberg matrix [2]. It is easy to verify that each generalized Hessenberg matrix is fully indecomposable.

The generalized Hessenberg faces of Ω_{n} are the faces $\mathcal{F}(P A Q)$ where P and Q are permutation matrices and A is a generalized Hessenberg
matrix of order n. In [2], Brualdi and Shader investigated the generalized Hessenberg matrices. And, for each generalized Hessenberg face $\mathcal{F}(A)$ of Ω_{n}, they showed that the minimum permanent equals $\left(\frac{1}{2}\right)^{n-1}$.

In this paper, we determine the minimum permanent on the face $\mathcal{F}(A)$ of Ω_{n} for A, an $n \times n$ matrix which can be obtained from I_{1} by multicopying rows and columns.

Let A be a $(0,1)$-matrix of order n and let l be an integer with $1 \leq$ $l \leq n$. Let B be the (0,1)-matrix of order $n+k$ obtained from A by appending on the right k new columns equal to the l-th column of A and then appending on the bottom k new rows whose only 1's are in positions $\{(n+j, n+r), 1 \leq j, r \leq k\}$ and $\{(n+j, l), 1 \leq j \leq k\}$.

The matrix B will be called the matrix obtained from A by k-copying the l-th column. The matrix obtained from A by k-copying the l-th row is defined in a similar way. If there is a sequence of matrices $A=$ $A_{1}, A_{2}, \ldots, A_{p}=C$ such that A_{i} can be obtained by k_{i-1}-copying a column or a row of $A_{i-1}(i=2, \ldots, p)$, then we will say that C can be obtained from A by multicopying rows and columns. It can be easily proved that this matrix C is fully indecomposable. Notice that C is a generalized Hessenberg matrix if $k_{j}=1$, for all j.

Example.

$$
K_{7}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

K_{7} is a 7×7 matrix obtained from I_{1} by alternately 2-copying the last column, 1 -copying the last row and 3 -copying the last column.

2. Some Preliminary Lemmas and Results

For a matrix $A, A\left(i_{1}, \ldots, i_{s} \mid j_{1}, \ldots, j_{t}\right)$ will denote the matrix obtained from A by striking out the rows numbered i_{1}, \ldots, i_{s} and the columns numbered j_{1}, \ldots, j_{t} and $A\left[i_{1}, \ldots, i_{s} \mid j_{1}, \ldots, j_{t}\right]$ is the $s \times t$ matrix whose (p, q)-entry is the same as the $\left(i_{p}, j_{q}\right)$-entry of A. If A is a (0,1)-matrix
of order n, let $\mathcal{P}(A)$ denote the minimum permanent of the matrices in $\mathcal{F}(A)$, that is, $\mathcal{P}(A)=\min \{$ per $X: X \in \mathcal{F}(A)\}$, and let $\mathcal{F}^{\min }(A)$ denote the set of matrices in $\mathcal{F}(A)$ with minimum permanent.

Lemma 2.1 [Foregger, 5]. Let $A=\left[a_{i j}\right]$ be an n-square fully indecomposable $(0,1)$-matrix and let $X=\left[x_{i j}\right]$ be a minimizing matrix on $\mathcal{F}(A)$. Then X is fully indecomposable, and moreover, for (i, j) such that $a_{i j}=1$,

$$
\begin{array}{lll}
\operatorname{per} X(i \mid j)=\operatorname{per} X & \text { if } & x_{i j}>0, \\
\operatorname{per} X(i \mid j) \geq \operatorname{per} X & \text { if } & x_{i j}=0 .
\end{array}
$$

Lemma 2.2 [Minc, 8]. Let $X=\left[x_{i j}\right]$ be a minimizing matrix on $\mathcal{F}(A)$, where $A=\left[a_{1}, \ldots, a_{n}\right]$ is an n-square (0,1)-matrix. If, for some $k \leq n, a_{j_{1}}=\cdots=a_{j_{k}}$, and if, for some $i, x_{i j_{1}}+\cdots+x_{i j_{k}} \neq 0$, then

$$
\operatorname{per} X\left(i \mid j_{t}\right)=\operatorname{per} X, \quad \text { for } t=1, \ldots, k .
$$

Lemma 2.3 [Minc, 8]. Let $X=\left[x_{i j}\right]$ be a minimizing matrix on $\mathcal{F}(A)$, where $A=\left[a_{1}, \ldots, a_{n}\right]$ is an n-square (0,1)-matrix. If, for some $k \leq n, a_{1}=\cdots=a_{k}$, then for any $p \leq k, X\left(J_{p} \oplus I_{n-p}\right) \in \mathcal{F}(A)$ and per $X\left(J_{p} \oplus I_{n-p}\right)=$ per X, where $J_{p}=\left[\frac{1}{p}\right]_{p \times p}$ and I_{n-p} is the identity matrix of order $n-p$, i.e., the matrix obtained from X by replacing each of its first p columns by their average remains a minimizing matrix on $\mathcal{F}(A)$. A similar statement holds for rows.

For a nonnegative matrix $X=\left[x_{1}, \ldots, x_{n}\right]$, let \tilde{X} denote the n-square matrix obtained from X by replacing each of its last k columns by their average, and let X^{*} denote the ($n-1$)-square matrix obtained from $\tilde{X}(n \mid n)$ by multiplying each of the last $k-1$ columns by $\frac{k}{k-1}$, i.e., $\tilde{X}=$ $\left[x_{1}, \ldots, x_{n-k}, s, \ldots, s\right]_{n \times n}$, where

$$
s=\frac{1}{k}\left(x_{n-k+1}+\cdots+x_{n}\right) .
$$

and $X^{*}=\left[x_{1}, \ldots, x_{n-k}, \frac{k}{k-1}(s, \ldots, s)\right](n \mid n)$.

The matrix X^{*} will be called the (n, n)-contraction (or just a contraction, if no ambiguity arises) of X. And we define, inductively,

$$
X^{[r]}=\left(X^{[r-1]}\right)^{*}, \quad X^{[1]}=X^{*}, \quad r=2, \ldots, n-1
$$

For an n-square matrix X, X^{\prime} will denote the matrix $X(n \mid n)$, and inductively, we define

$$
X^{(r)}=\left(X^{(r-1)}\right)^{\prime}, \quad X^{(1)}=X^{\prime}, \quad r=2, \ldots, n-1
$$

Lemma 2.4. Let $A=\left[a_{i j}\right]$ be a fully indecomposable $(0,1)$-matrix of order n, let $B=\left[b_{i j}\right]$ be the matrix obtained by k-copying the last column of A and let $Y \in \mathcal{F}(B)$. If the last $k+1$ columns of Y are identical, then for each $j=n, \ldots, n+k$,

$$
\operatorname{per} Y(n+k \mid j)=\operatorname{per} Y
$$

and hence

$$
\operatorname{per} Y^{*}=\left(\frac{k+1}{k}\right)^{k} \operatorname{per} Y
$$

Proof.

$$
\begin{aligned}
\operatorname{per} Y & =\sum_{j=n}^{n+k} y_{n+k, j} \operatorname{per} Y(n+k \mid j) \\
& =\operatorname{per} Y(n+k \mid j), \quad j=n, \ldots, n+k
\end{aligned}
$$

And

$$
\begin{aligned}
\operatorname{per} Y^{*} & =\left(\frac{k+1}{k}\right)^{k} \operatorname{per} Y(n+k \mid n+k) \\
& =\left(\frac{k+1}{k}\right)^{k} \operatorname{per} Y .
\end{aligned}
$$

LEMMA 2.5. Let $A=\left[a_{i j}\right]$ be a fully indecomposable (0,1)-matrix of order n and let $B=\left[b_{i j}\right]$ be the matrix obtained by k-copying the last column of A. Then

$$
\begin{aligned}
\mathcal{P}(B) & =\left(\frac{k}{k+1}\right)^{k}\left(\frac{k-1}{k}\right)^{k-1} \cdots\left(\frac{2}{3}\right)^{2}\left(\frac{1}{2}\right) \mathcal{P}(A) \\
& =\prod_{i=1}^{k}\left(\frac{i}{i+1}\right)^{i} \mathcal{P}(A)
\end{aligned}
$$

Proof. Let Z be a matrix in $\mathcal{F}^{\min }(B)$. Then Z^{*} is in $\mathcal{F}\left(B^{\prime}\right)$ and by Lemma 2.3 we may assume, without loss of generality, that the last $k+1$ columns of Z are identical. Thus by Lemma 2.4,

$$
\operatorname{per} Z^{*}=\left(\frac{k+1}{k}\right)^{k} \operatorname{per} Z
$$

In particular,

$$
\mathcal{P}(B) \geq\left(\frac{k}{k+1}\right)^{k} \mathcal{P}\left(B^{\prime}\right)
$$

And inductively,

$$
\mathcal{P}\left(B^{(r)}\right) \geq\left(\frac{k-r}{k-r+1}\right)^{k-r} \mathcal{P}\left(B^{(r+1)}\right), \quad r=1, \ldots, k-1
$$

Hence

$$
\mathcal{P}(B) \geq\left(\frac{k}{k+1}\right)^{k}\left(\frac{k-1}{k}\right)^{k-1} \cdots\left(\frac{1}{2}\right) \mathcal{P}(A) .
$$

Now, let U be a matrix in $\mathcal{F}^{\text {min }}(A)$. Let the n-th column of U be the vector u and let $u=u^{1}+u^{2}$, where u^{1} and u^{2} are nonnegative vectors. Let \hat{U} be a matrix obtained from U by replacing the n-th column by u^{1}, appending on the right a new column equal to u^{2}, and appending on the bottom a new row whose only nonzero entries are $\frac{1}{2}$'s in the n-th column and $(n+1)$-th column. Then \hat{U} belongs to $\mathcal{F}\left(B^{(k-1)}\right)$ and

$$
\operatorname{per} \hat{U}=\left(\frac{1}{2}\right) \operatorname{per} U
$$

Thus

$$
\mathcal{P}\left(B^{(k-1)}\right) \leq\left(\frac{1}{2}\right) \mathcal{P}(A)
$$

Next, let U_{1} be a matrix in $\mathcal{F}^{\text {min }}\left(B^{(k-1)}\right)$. And let the n-th column vector u of U be also represented by $u=v^{1}+v^{2}+v^{3}$, where v^{1}, v^{2} and v^{3} are nonnegative vectors. Let \hat{U}_{1} be a matrix of order $n+2$ obtained from U by replacing the n-th column by v^{1}, appending two new columns $n+1$ and $n+2$ equal to v^{2} and v^{3} respectively, and appending on the
bottom two new rows whose only nonzero entries are $\frac{1}{3}$'s in the n-th, $(n+1)$-th and $(n+2)$-th columns. Then \hat{U}_{1} belongs to $\mathcal{F}\left(B^{(k-2)}\right)$ and

$$
\operatorname{per} \hat{U}_{1}=\left(\frac{2}{3}\right)^{2} \operatorname{per} U_{1} .
$$

Hence

$$
\mathcal{P}\left(B^{(k-2)}\right) \leq\left(\frac{2}{3}\right)^{2} \mathcal{P}\left(B^{(k-1)}\right)
$$

Continue this process until \hat{U}_{k-1} belongs to $\mathcal{F}(B)$ and

$$
\operatorname{per} \hat{U}_{k-1}=\left(\frac{k}{k+1}\right)^{k} \operatorname{per} U_{k-1}
$$

Then

$$
\mathcal{P}(B) \leq\left(\frac{k}{k+1}\right)^{k} \mathcal{P}\left(B^{(1)}\right)
$$

Therefore

$$
\mathcal{P}(B) \leq\left(\frac{k}{k+1}\right)^{k}\left(\frac{k-1}{k}\right)^{k-1} \cdots\left(\frac{2}{3}\right)^{2}\left(\frac{1}{2}\right) \mathcal{P}(A)
$$

and hence the Lemma is proved.
Theorem 2.6. Let B be an n-square matrix obtained from I_{1} by k_{j}-copying rows and columns successively, where $j=1, \ldots, m$, and $\sum_{j=1}^{m} k_{j}+1=n$. Then

$$
\mathcal{P}(B)=\prod_{j=1}^{m} \frac{k_{j}!}{\left(k_{j}+1\right)^{k_{j}}}
$$

Proof. It follows from Lemma 2.5 by induction that

$$
\begin{aligned}
\mathcal{P}(B) & =\prod_{j=1}^{m} \prod_{i=1}^{k_{j}}\left(\frac{i}{i+1}\right)^{i} \\
& =\prod_{j=1}^{m} \frac{\prod_{i=1}^{k_{j}} i}{\left(k_{j}+1\right)^{k_{j}}} \\
& =\prod_{j=1}^{m} \frac{k_{j}!}{\left(k_{j}+1\right)^{k_{j}}}
\end{aligned}
$$

Letting $k_{j}=1$ for all $j=1, \ldots, m$, in the equality in Theorem 2.6, we obtain the following result.

Corollary [Brualdi and Shader, 4]. For H_{n} a generalized Hessenberg matrix of order $n \geq 2$,

$$
\mathcal{P}\left(H_{n}\right)=\left(\frac{1}{2}\right)^{n-1} .
$$

Theorem 2.7. Let $A=\left[a_{i j}\right]$ be a fully indecomposable (0,1)-matrix of order n and let $B=\left[b_{i j}\right]$ be the matrix obtained by k-copying the last column of A. Then
(1) "(a)" $Z=\left[z_{i j}\right]$ is a minimizing matrix on $\mathcal{F}(B)$ if and only if $Z^{[k]}$ is a minimizing matrix on $\mathcal{F}(A)$.
(2) "(b)" $\mathcal{F}(B)$ is barycentric if and only if $\mathcal{F}(A)$ is barycentric.

Proof. (a): $Z=\left[z_{i j}\right]$ is a minimizing matrix on $\mathcal{F}(B)$ if and only if Z^{*} is a minimizing matrix on $\mathcal{F}\left(B^{\prime}\right)$, more generally, $Z^{[r]}$ is a minimizing matrix on $\mathcal{F}\left(B^{(r)}\right)(r=1, \ldots, k)$. In fact, let $Z \in \mathcal{F}^{\min }(B)$. Then

$$
\begin{aligned}
& Z^{*}=\left[z_{1}, \ldots, z_{n-k-1}, \frac{k+1}{k} s, \ldots, \frac{k+1}{k} s\right](n \mid n), \\
& \quad \text { where } s=\frac{1}{k+1}\left(z_{n-k}+\cdots+z_{n}\right),
\end{aligned}
$$

and

$$
\operatorname{per} Z^{*}=\left(\frac{k+1}{k}\right)^{k} \operatorname{per} Z .
$$

Thus $Z^{*} \in \mathcal{F}^{\text {min }}\left(B^{\prime}\right)$ because

$$
\mathcal{P}\left(B^{\prime}\right)=\left(\frac{k+1}{k}\right)^{k} \mathcal{P}(B)
$$

as was seen in the proof of Lemma 2.5. Conversely, let $Z^{*} \in \mathcal{F}^{\min }\left(B^{\prime}\right)$. Since

$$
\operatorname{per} Z^{*}=\left(\frac{k+1}{k}\right)^{k} \operatorname{per} Z
$$

and

$$
\mathcal{P}\left(B^{\prime}\right)=\left(\frac{k+1}{k}\right)^{k} \mathcal{P}(B),
$$

it follows that $Z \in \mathcal{F}^{\min }(B)$. Repeating this process, we get that the second statement follows.
(b): The barycenter of $\mathcal{F}(B)$ is obtained from the barycenter X of $\mathcal{F}(A)$ by appending on the right k new columns equal to the n-th column of X, by appending on the bottom k rows whose only nonzero entries are 1's in the n-th, $(n+1)$-th, \ldots, and ($n+k)$-th columns and then multiplying the n-th, $(n+1)$-th, \ldots, and $(n+k)$-th columns by $\frac{1}{k+1}$. Hence the result follows from (a).

Corollary. Let B be an n-square matrix obtained from I_{1} by $k_{j^{-}}$ copying rows and columns successively, $j=1, \ldots, m$, and $\sum_{j=1}^{m} k_{j}+1=$ n. Then $\mathcal{F}(B)$ is barycentric.

References

1. R. A. Brualdi, An interesting face of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 17 (1985), 5-18.
2. R. A. Brualdi and B. L. Shader, Minimum permanents on special faces of the polytope of Doubly Stochastic Matrices, Linear Algebra Appl. to appear.
3. G. P. Egoryĉev, The solution of the van der Waerden problem for permanents, Dokl. Akad. Nauk SSSR. 258 (1981), 1041-1044.
4. D. I. Falikman, A proof of van der Waerden's conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki 29 (1981), 931-938.
5. T. H. Foregger, On the minimum value of the permanent of a nearly decomposable doubly stochastic matrix, Linear Algebra Appl. 32 (1980), 75-85.
6. S.-G. Hwang, Minimum permanent on faces of staircase type of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 18 (1985), 271-306.
7. P. Knopp and R. Sinkhorn, Minimum permanents of doubly stochastic matrices with at least one zero entry, Linear and Multilinear Algebra 11 (1982), 351-355.
8. H. Minc, Minimum permanents of doubly stochastic matrices with prescribed zero entries, Linear and Multilinear Algebra 15 (1984), 225-243.
9. ——, Permanents, Encyclopedia Math. Appl., Addison-Wesley, Reading, Mass., 1978.
10. S.-Z. Song, Minimum permanents on certain faces of matrices containing an identity submatrix, Linear Algebra Appl. 108 (1988), 263-280.

Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea

