MINIMAL FREE RESOLUTIONS OF PERFECT AND ALMOST COMPLETE INTERSECTION GRADED IDEALS

Young Hyun Cho

1. Introduction

Let $R=\oplus_{i=0}^{\infty} R_{i}$ be a polynomial ring in n indeterminates over a field $k: R=k\left[X_{1}, \ldots, X_{n}\right]$. We consider the usual grading on R determined by the total degree of polynomials. Then each graded piece R_{i} of R is a k-vector space of dimension $\binom{i+n-1}{n-1}$ for all $i \geq 0$ and R_{1} generates R as a k-algebra. The ideal $\underline{m}=\oplus_{i>0} R_{i}$ is the unique maximal homogeneous ideal of R, and R can be treated as if it were an ordinary local ring (See [3]).

By analogy with the local case, if

$$
\begin{equation*}
\cdots \rightarrow F_{i} \xrightarrow{d_{i}} F_{i-1} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{\varepsilon} M \rightarrow 0 \tag{1}
\end{equation*}
$$

is a free resolution of an R-module M, and we denote

$$
N_{i}=\operatorname{Im} d_{i}= \begin{cases}\operatorname{Ker} d_{i-1} & \text { for } \quad i \geq 2 \\ \operatorname{Ker} \varepsilon & \text { for } \quad i=1\end{cases}
$$

then we call (1) a minimal free resolution if $N_{i} \subseteq \underline{m} F_{i-1}$ for all $i \geq 1$ (See Ch. 7 of [5]).

By graded R-module we mean an R-module M with a decomposition by k-vector spaces, $M=\oplus_{i \in \mathbb{Z}} M_{i}$ (with $M_{i}=0$ for all $i<\alpha$ and some $\alpha \in \mathbb{Z}$), compatible with the R-module structure, which means $R_{i} M_{j} \subseteq M_{i+j}$ for all i and j. A graded homomorphism is a homogeneous homomorphism of graded R-modules of degree 0 . A graded (minimal) free resolution of a graded R-module M is a resolution like (1), with

[^0]all F_{i} 's graded R-modules and all d_{i} 's (and ε) graded homomorphisms. If M is finitely generated, then every F_{i} has to be of the form $F_{i}=$ $\oplus_{j=1}^{r}\left(R\left(-\nu_{i, j}\right)\right)^{\alpha_{i, j}}$, where the $\nu_{i, j}$'s and the $\alpha_{i, j}$'s are, respectively, the degrees of the generators of $N_{i}=\operatorname{Im} d_{i}$ and the number of generators in each degree. We call the numbers $\nu_{i, j}$ the twisting numbers of M and each $\alpha_{i, j}$ the multiplicity of $\nu_{i, j}$ (at F_{i}). The numbers,
$$
b_{i}=\sum_{j} \alpha_{i, j}=\operatorname{rank} F_{i}=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{R}(M, k)
$$
(=minimal number of generators of N_{i}) are called the Betti numbers of M.

In [1], Eisenbud and Goto calculated Betti numbers of R / I, when I is a graded ideal of R and R / I has p-linear resolution. Lorenzini [4] had partial results about twisting numbers and multiplicities and Betti numbers of a Cohen-Macaulay ring R / I.

Based on the work of Lorenzini, in this paper we get some results about Betti numbers when I is a perfect and almost complete intersection ideal.

Finally, for the following sections we define the Hilbert function of M. Let $M=\oplus_{i \in \mathbb{Z}} M_{i}$ be a finitely generated graded R-module. The Hilbert function of M is the function $H(M, \cdot): \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $H(M, i)=$ $\operatorname{dim}_{k} M_{i}(\forall i \in \mathbb{Z})$. We also define the first difference of the Hilbert function of M as

$$
\Delta H(M, i)=H(M, i)-H(M, i-1), \quad \forall i \in \mathbb{Z} .
$$

Inductively, for every $r>1$, define the r-th difference of the Hilbert function of M as

$$
\Delta^{r} H(M, i)=\Delta^{r-1} H(M, i)-\Delta^{r-1} H(M, i-1), \quad \forall i \in \mathbb{Z}
$$

2. Basic Theorems

The result of this section is mostly due to [4], and we deal with a perfect graded ideal I of $R=k\left[X_{1}, \ldots, X_{n}\right]$. When the length of a maximal regular sequence in I is equal to the homological dimension of
$R / I, I$ is defined as a perfect ideal. Note that I is perfect in R if and only if R / I is a Cohen-Macaulay ring. Suppose I has height s. Then the homological dimension of I is $s-1$. Hence I has graded minimal free R-resolution:

$$
\begin{equation*}
0 \rightarrow F_{s-1} \rightarrow \cdots \rightarrow F_{i} \xrightarrow{d_{i}} F_{i-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow I \rightarrow 0 \tag{2}
\end{equation*}
$$

Since $F_{i} \otimes_{R} R / \underline{m}=\operatorname{Tor}_{i}^{R}(I, k)(\forall i \geq 1)$, the information on $\operatorname{Tor}_{i}^{R}(I, k)$ gives the twisting numbers of I.

Define

$$
\alpha(I)=\min \left\{t \mid I_{t} \neq(0)\right\}
$$

Assume k is infinite, and we may assume that X_{s+1}, \ldots, X_{n} is a regular sequence modulo I. Put $A=R / I$ and

$$
B=\frac{A}{\left(X_{s+1}, \ldots, X_{n}\right) A} \cong \frac{R}{\left(I, X_{s+1}, \ldots, X_{n}\right)}
$$

Define

$$
\begin{aligned}
\sigma(I) & =\min \left\{t \mid \Delta^{n-s} H(A, t)=0\right\} \\
& =\min \left\{t \mid B_{t}=(0)\right\}
\end{aligned}
$$

It is clear that if G_{1}, \ldots, G_{h} is a minimal set of generators of I, then

$$
\min \left\{\operatorname{deg} G_{i} \mid i=1, \ldots, h\right\}=\alpha(I)
$$

and it can easily be proved that $\max \left\{\operatorname{deg} G_{i} \mid i=1, \ldots, h\right\} \leq \sigma(I)$.
THEOREM 2.1. Let I be a height s, perfect graded ideal of $R=$ $k\left[X_{1}, \ldots, X_{n}\right]$ and suppose $\alpha(I)=d, \sigma(I)=d+r$. Then $\operatorname{Tor}_{i}^{R}(I, k)$ vanishes in every degree different from $d+i, d+i+1, \ldots, d+i+r$.

Proof. See Theorem 2.2 of [4].
From Theorem 2.1, we can deduce that in the minimal free resolution of I, (2) over R,

$$
\begin{align*}
F_{i}=R(-(d & +i))^{\alpha_{i, 0}} \oplus R(-(d+i+1))^{\alpha_{i, 1}} \oplus \cdots \tag{3}\\
& \cdots \oplus R(-(d+i+r-1))^{\alpha_{i, r-1}} \oplus R(-(d+i+r))^{\alpha_{i, r}}
\end{align*}
$$

for each $i=0, \ldots, s-1$, with the $\alpha_{i, j}$'s not necessarily all different from 0 . If we put $N_{i}=\operatorname{Im} d_{i}$, for every $i \geq 1$, and $N_{0}=I$, then we have that $\alpha_{i, 0}=H\left(N_{i}, d+i\right)$ and that N_{i} is generated at most in degrees $d+i, \ldots, d+i+r=\sigma(I)+i$, for all $i=0, \ldots, s-1$.

Now, dualize resolution (2), by applying the functor $(\cdot)^{*}=\operatorname{Hom}(\cdot, R)$, and we obtain
(2) ${ }^{*}$

$$
0 \rightarrow R \xrightarrow{\partial_{0}} F_{0}^{*} \rightarrow \cdots F_{i-1}^{*} \xrightarrow{\partial_{i}} F_{i}^{*} \rightarrow \cdots \rightarrow F_{s-1}^{*} \rightarrow \operatorname{Ext}_{R}^{s}(A, R) \rightarrow 0
$$

which is a graded minimal free resolution of $\operatorname{Ext}_{R}^{s}(A, R)$ and

$$
F_{i}^{*}=\oplus_{j=1}^{r} R\left(\nu_{i, j}\right)^{\alpha_{i, j}}, \quad \forall i=0, \ldots, s-1
$$

By (3),

$$
\begin{aligned}
F_{i}^{*}=R(d+i+r)^{\alpha_{i, r}} \oplus R(d+ & i+r-1)^{\alpha_{i, r-1}} \oplus \cdots \\
& \cdots \oplus R(d+i+1)^{\alpha_{i, 1}} \oplus R(d+i)^{\alpha_{i, 0}}
\end{aligned}
$$

Put $L_{i}=\operatorname{Im} \partial_{i}$, for each $i=1, \ldots, s-1$, and $L_{s}=\operatorname{Ext}_{R}^{s}(A, R)$. Now, for any $i=0, \ldots, s-1$, and every $t=1, \ldots, r$, let $W_{t}\left(N_{i}\right)$ denote the vector subspace of $\left(N_{i}\right)_{d+i+t}$ generated by $\left(N_{i}\right)_{d+i+t-1}$ under multiplication by X_{1}, \ldots, X_{n}, i.e.,

$$
W_{t}\left(N_{i}\right)=X_{1}\left(N_{i}\right)_{d+i+t-1}+\cdots+X_{n}\left(N_{i}\right)_{d+i+t-1} \subseteq\left(N_{i}\right)_{d+i+t}
$$

It is clear that for each $i \geq 0$, and $t=1, \ldots, r$,

$$
\operatorname{dim}_{k} W_{t}\left(N_{i}\right)=H\left(N_{i}, d+i+t\right)-\alpha_{i, t}
$$

Similarly, consider the dual resolution and for any $i=1, \ldots, s$ and every $t=1, \ldots, r$, define $W_{t}\left(L_{i}\right)$ as the k-vector subspace of $\left(L_{i}\right)_{-(d+i-1+r-t)}$ generated by $\left(L_{i}\right)_{-(d+i+r-t)}$ under multiplication by X_{1}, \ldots, X_{n}, i.e.,

$$
\begin{aligned}
W_{t}\left(L_{i}\right) & =X_{1}\left(L_{i}\right)_{-(d+i+r-t)}+\cdots+X_{n}\left(L_{i}\right)_{-(d+i+r-t)} \\
& \subseteq\left(L_{i}\right)_{-(d+i-1+r-t)}
\end{aligned}
$$

Again, it is clear that

$$
\operatorname{dim}_{k} W_{t}\left(L_{i}\right)=H\left(L_{i},-(d+i-1+r-t)\right)-\alpha_{i-1, r-t}
$$

Theorem 2.2. Let I be a perfect homogeneous ideal of R of height s, with $\alpha(I)=d, \sigma(I)=d+r$; and let $\alpha_{i, j}$ be the multiplicity of $d+i+j$ at $F_{i}(j=0, \ldots, r ; i=0, \ldots, s-1)$. Then;
(a) for any $i=1, \ldots, s-1$ and any $t=0, \ldots, r-1, \alpha_{k, 0}=\alpha_{k, 1}=$ $\cdots=\alpha_{k, t}=0, \forall k=i, \ldots, s-1$, if and only if

$$
\operatorname{dim}_{k} W_{t+1}\left(N_{i-1}\right)=\sum_{j=0}^{t}\binom{t+1-j+n-1}{n-1} \alpha_{i-1, j}
$$

(b) for any $i=1, \ldots, s-1$, and any $t=0, \ldots, r-1, \alpha_{k, r}=\alpha_{k, r-1}=$ $\cdots=\alpha_{k, r-t}=0, \forall k=0, \ldots, i-1$, if and only if

$$
\operatorname{dim}_{k} W_{t+1}\left(L_{i+1}\right)=\sum_{j=0}^{t}\binom{t+1-j+n-1}{n-1} \alpha_{i, r-j}
$$

Proof. See Theorem 3.2 of [4].

3. Applications

In this section, let I be a perfect graded ideal of $R=k\left[X_{1}, \ldots, X_{n}\right]$ with $h t(I)=s$, and an almost complete intersection. I is defined as an almost complete intersection ideal when the number of minimal generators of I is $h t(I)+1$. Then it is known that $I=\left(G_{1}, \ldots, G_{s}, K\right)$, where homogeneous elements G_{1}, \ldots, G_{s} is a regular sequence and a homogeneous element $K \notin\left(G_{1}, \ldots, G_{s}\right)$.
(*) Assume $\operatorname{deg} G_{i}=d$, for any $i=1, \ldots, s$ and $d<\operatorname{deg} K=d+r \leq$ $2 d-1$, with $d>1, r>1$.
THEOREM 3.1. Let I be a perfect, almost complete intersection with the condition (*). Then multiplicities $\alpha_{i, j}$'s of I in (3) are following;

$$
\alpha_{i, 0}=\alpha_{i, 1}=\cdots=\alpha_{i, r-1}=0, \quad \forall i=1, \ldots, s-1
$$

Proof. Let $J=\left(G_{1}, \ldots, G_{s}\right)$. Since $\alpha_{0,1}=\alpha_{0,2}=\cdots=\alpha_{0, r-1}=0$, we get $W_{t}\left(N_{0}\right)=J_{d+t}$ for any $t=1, \ldots, r$. From the fact that G_{1}, \ldots, G_{s} is a regular sequence, and $r \leq d-1$

$$
\operatorname{dim}_{k} W_{t}\left(N_{0}\right)=s\binom{t+n-1}{n-1}, \quad \forall t=1, \ldots, r
$$

Now $\operatorname{dim}_{k} W_{t}\left(N_{0}\right)=\sum_{j=0}^{t-1}\binom{t-j+n-1}{n-1} \alpha_{i-1, j}$, since $\alpha_{0,1}=\cdots=\alpha_{0, r-1}=$ 0 , and $\alpha_{0,0}=s$. Hence, by Theorem 2.2(a), $\alpha_{i, 0}=\alpha_{i, 1}=\cdots=\alpha_{i, r-1}=$ $0, \forall i=1, \ldots, s-1$.

Corollary 3.2. With the same I as in Theorem 3.1, $F_{0}=R(-d)^{s} \oplus$ $R(-d-r), F_{i}=R(-d-i-r)^{\alpha_{i, r}}, i=1, \ldots, s-1$. Hence the Betti numbers $b_{0}=s+1$, and $b_{i}=\alpha_{i, r}$, and the minimal resolution (2) is linear except at F_{0}. (For the linearity of the minimal resolution, refer [1]).

Next, consider a duality of Theorem 3.1 in the minimal free resolution $(2)^{*}$ of $\operatorname{Ext}_{R}^{s}(A, R)=L_{s}$. By (Proposition 5, Ch.IV of [6]),

$$
L_{s} \cong \frac{\left(G_{1}, \ldots, G_{s}\right): I}{\left(G_{1}, \ldots, G_{s}\right)}
$$

and L_{s} is generated at most in degrees $-(d+s-1+r), \ldots,-(d+s-1)$.
Since G_{1}, \ldots, G_{s} is a regular sequence, $S=R /\left(G_{1}, \ldots, G_{s}\right)$ is Gorenstein. Now $I /\left(G_{1}, \ldots, G_{s}\right)=\left(G_{1}, \ldots, G_{s}, K\right) /\left(G_{1}, \ldots, G_{s}\right)=(\bar{K}) \neq 0$ in S and $\operatorname{dim} S=\operatorname{dim} S /(\bar{K})$, hence by Proposition 3.1 of [2], we get $\operatorname{Ann}_{S}\left(\operatorname{Ann}_{S}(\bar{K})\right)=(\bar{K})$. Therefore $\operatorname{Ann}_{R}\left(L_{s}\right)=I$.

Theorem 3.3. Let I be same as in Theorem 3.1. Further Assume $L_{s}=(\alpha) \oplus M$, where $\operatorname{deg} \alpha=-(d+s-1+r)$ with $A n n_{R}(\alpha)=I$ and $M \subset \oplus_{i \geq-(d+s-1)}\left(L_{s}\right)_{i}$. Then

$$
\alpha_{i, r}=\alpha_{i, r-1}=\cdots=\alpha_{i, 1}=0, \quad \text { for any } \quad i=0, \ldots, s-2
$$

Proof. $W_{t+1}\left(L_{s}\right)=R_{t+1} \alpha$, for any $t=0, \ldots, r-1$, and multiplication by α gives an injection since $\operatorname{Ann}_{R}(\alpha)=I$, and $r \leq d-1$. Hence $W_{t+1}\left(L_{s}\right) \cong R_{t+1}$, and

$$
\begin{aligned}
\operatorname{dim}_{k} W_{t+1}\left(L_{s}\right) & =\binom{t+1+n-1}{n-1} \\
& =\sum_{j=0}^{t}\binom{t+1-j+n-1}{n-1} \alpha_{s-1}, r-j, \forall t=0, \ldots, r-1
\end{aligned}
$$

since $\alpha_{s-1, r}=1, \alpha_{s-1, r-1}=\cdots=\alpha_{s-1,1}=0$. Therefore by Theorem $2.2(\mathrm{~b}), \alpha_{i, r}=\alpha_{i, r-1}=\cdots=\alpha_{i, 1}=0, i=0, \ldots, s-2$.

Corollary 3.4. With the same I as in Theorem 3.3, $F_{i}=R(i+$ $d)^{\alpha_{i, 0}}, i=0, \ldots, s-2$, and $F_{s-1}=R(s-1+d+r) \oplus R(s-1+d)^{\alpha_{s-1,0}}$. Therefore the minimal resolution (2) is linear except at F_{s-1}.

References

1. D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity; J. Algebra 88 (1984), 89-133.
2. E. Kunz, Almost Complete Intersections Are Not Gorenstein Rings; J. Algebra 28 (1974), 111-115.
3. A. Lorenzini, Graded rings, Queen's Papers in Pure and Appl. Math. vol. 61, 1982.
4. \qquad , Betti numbers of perfect homogeneous Ideals; J. Pure and Appl. Algebra 60 (1989), 273-288.
5. H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge 1986.
6. J. Serre, Algèbre local-Mutiplicités, Lecture Notes in Math:, vol. 11, SpringerVerlag, Berlin 1965.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea

[^0]: Received April 2, 1993.
 This was partially supported by Basic Science Research Institute Programs, Ministry of Education. BSRIP 92-104

