ON THE COMMUTATIVITY OF CERTAIN SEMIPRIME RINGS

Sung Mi Park, Dong Je Kwak and Young Soo Park

1. Introduction

In all that follows R will represent an associative ring (may be without unity 1). For any pair x, y in R, we set as usual $[x, y]=x y-y x$.

In [1] Abdullah H. Moajil proved that, if R is a 2 -torsion free semiprime ring such that $[x y,[x y, y x]]=0$ for all x, y in R, then R is commutative. Giri and Dhoble proved that, if R is a 2 -torsion free semiprime ring such that $[y x y,[x y, y x]]=0$ for all x, y in R, then R is commutative.

Later in [3] Giri and Modi wished to generalize the result as follows: if R is a 2 -torsion free semiprime ring such that $\left[(x y)^{2},[x y, y x]\right]=0$ for all x, y in R, then R is commutative. But there is a mistake in the paper. They proved the lemma that ring is p-torsion free if and only if ($p+1$)-torsion free. However we can easily show that it is false as taking counter examples, Z_{2}, Z_{3} etc. So we modified the hypothesis, replacing 2 -torsion free with 2 and 3 torsion free.

In this thesis, motivated by the above polynomial identities, we intend to prove the following results.
(1) Let R be a 2 and 3 torsion free prime ring such that $\left[(x y)^{3},[x y, y x]\right]$ $=0$ for all x, y in R. Then R is commutative.
(2) Let R be a 2 and 3 torsion free semiprime ring such that $\left[(x y)^{3}\right.$, $[x y, y x]]=0$ for all x, y in R. Then R is commutative.

2. Preliminaries

We mention below three lemmas in which the first is trivial, next two are well known.

[^0]Lemma 2.1. For all elements x, y, z in a ring R,

$$
[x y, z]=[x, z] y+x[y, z] .
$$

Lemma 2.2. ([7]) Let R be a prime ring of characteristic not 2 and d_{1}, d_{2} derivations of R such that the iterate $d_{1} d_{2}$ is also a derivation. Then one at least of d_{1}, d_{2} is zero.

Lemma 2.3. ([5]) Let R be a ring having no non-zero nil ideals in which for every x, y in R there exist integers $m=m(x, y) \geq 1, n=$ $n(x, y) \geq 1$ such that $\left[x^{m}, y^{n}\right]=0$. Then R is commutative.

3. Main Results

We introduce our main theorems.
Theorem 3.1. Let R be a 2 and 3 torsion free prime ring such that $\left[(x y)^{3},[x y, y x]\right]=0$ for all x, y in R. Then R is commutative.

Proof. Substituting $x+y$ for x in the given identity

$$
\begin{equation*}
\left[(x y)^{3},[x y, y x]\right]=0 . \tag{3.1}
\end{equation*}
$$

Using it in subsequent expansion, we get

$$
\begin{align*}
& {\left[(x y)^{3},\left[x y, y^{2}\right]\right]+\left[(x y)^{3},\left[y^{2}, y x\right]\right]+\left[(x y)^{2} y^{2},[x y, y x]\right]} \tag{3.2}\\
& +\left[(x y)^{2} y^{2},\left[x y, y^{2}\right]\right]+\left[(x y)^{2} y^{2},\left[y^{2}, y x\right]\right]+\left[x y^{3} x y,[x y, y x]\right] \\
& +\left[x y^{3} x y,\left[x y, y^{2}\right]\right]+\left[x y^{3} x y,\left[y^{2}, y x\right]\right]+\left[x y^{5},[x y, y x]\right] \\
& +\left[x y^{5},\left[x y, y^{2}\right]\right]+\left[x y^{5},\left[y^{2}, y x\right]\right]+\left[y^{2}(x y)^{2},[x y, y x]\right] \\
& +\left[y^{2}(x y)^{2},\left[x y, y^{2}\right]\right]+\left[y^{2}(x y)^{2},\left[y^{2}, y x\right]\right]+\left[y^{2} x y^{3},[x y, y x]\right] \\
& +\left[y^{2} x y^{3},\left[x y, y^{2}\right]\right]+\left[y^{2} x y^{3},\left[y^{2}, y x\right]\right]+\left[y^{4} x y,[x y, y x]\right] \\
& +\left[y^{4} x y,\left[x y, y^{2}\right]\right]+\left[y^{4} x y,\left[y^{2}, y x\right]\right]+\left[y^{6},[x y, y x]\right] \\
& +\left[y^{6},\left[x y, y^{2}\right]\right]+\left[y^{6},\left[y^{2}, y x\right]\right]=0 .
\end{align*}
$$

By using Lemma 2.1 twice successively, we obtain

$$
\begin{equation*}
\left[(x y)^{3},\left[x, y^{2}\right]\right] y+\left[x, y^{2}\right]\left[(x y)^{3}, y\right]+y\left[(x y)^{3},\left[y^{2}, x\right]\right] \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
& +\left[(x y)^{3}, y\right]\left[y^{2}, x\right]+\left[(x y)^{2} y^{2},[x y, y x]\right]+\left[(x y)^{2} y^{2},\left[x, y^{2}\right]\right] y \\
& +\left[x, y^{2}\right]\left[(x y)^{2} y^{2}, y\right]+\left[(x y)^{2} y^{2}, y\right]\left[y^{2}, x\right]+y\left[(x y)^{2} y^{2},\left[y^{2}, x\right]\right] \\
& +\left[x y^{3} x y,[x y, y x]\right]+\left[x, y^{2}\right]\left[x y^{3} x y, y\right]+\left[x y^{3} x y,\left[x, y^{2}\right]\right] y \\
& +\left[x y^{3} x y, y\right]\left[y^{2}, x\right]+y\left[x y^{3} x y,\left[y^{2}, x\right]\right]+\left[x y^{5},[x y, y x]\right] \\
& +\left[x, y^{2}\right]\left[x y^{5}, y\right]+\left[x y^{5},\left[x, y^{2}\right]\right] y+\left[x y^{5}, y\right]\left[y^{2}, x\right] \\
& +y\left[x y^{5},\left[y^{2}, x\right]\right]+\left[y^{2}(x y)^{2},[x y, y x]\right]+\left[y^{2}(x y)^{2},\left[x, y^{2}\right]\right] y \\
& +\left[x, y^{2}\right]\left[y^{2}(x y)^{2}, y\right]+y\left[y^{2}(x y)^{2},\left[y^{2}, x\right]\right]+\left[y^{2}(x y)^{2}, y\right]\left[y^{2}, x\right] \\
& +\left[y^{2} x y^{3},[x y, y x]\right]+\left[x, y^{2}\right]\left[y^{2} x y^{3}, y\right]+\left[y^{2} x y^{3},\left[x, y^{2}\right]\right] y \\
& +\left[y^{2} x y^{3}, y\right]\left[y^{2}, x\right]+y\left[y^{2} x y^{3},\left[y^{2}, x\right]\right]+\left[y^{4} x y,[x y, y x]\right] \\
& +\left[y^{4} x y,\left[x, y^{2}\right]\right] y+\left[x, y^{2}\right]\left[y^{4} x y, y\right]+\left[y^{4} x y, y\right]\left[y^{2}, x\right] \\
& +y\left[y^{4} x y,\left[y^{2}, x\right]\right]+\left[y^{6},[x y, y x]\right]+\left[y^{6},\left[x, y^{2}\right]\right] y \\
& +y\left[y^{6},\left[y^{2}, x\right]\right]=0 .
\end{aligned}
$$

Substituting $x+y$ for x in (3.3) and using (3.3), we get

$$
\begin{align*}
& {\left[(x y)^{2} y^{2},\left[x, y^{2}\right]\right] y+\left[x y^{3} x y,\left[x, y^{2}\right]\right] y+2\left[x y^{5},\left[x, y^{2}\right]\right] y} \tag{3.4}\\
& +\left[y^{2}(x y)^{2},\left[x, y^{2}\right]\right] y+3\left[y^{2} x y^{3},\left[x, y^{2}\right]\right] y+3\left[y^{4} x y,\left[x, y^{2}\right]\right] y \\
& +7\left[y^{6},\left[x, y^{2}\right]\right] y+\left[x, y^{2}\right]\left[(x y)^{2} y^{2}, y\right]+\left[x, y^{2}\right]\left[x y^{3} x y, y\right] \\
& +3\left[x, y^{2}\right]\left[x y^{5}, y\right]+\left[x, y^{2}\right]\left[y^{2}(x y)^{2}, y\right]+3\left[x, y^{2}\right]\left[y^{2} x y^{3}, y\right] \\
& +3\left[x, y^{2}\right]\left[y^{4} x y, y\right]+y\left[(x y)^{2} y^{2},\left[y^{2}, x\right]\right]+y\left[x y^{3} x y,\left[y^{2}, x\right]\right] \\
& +3 y\left[x y^{5},\left[y^{2}, x\right]\right]+y\left[y^{2}(x y)^{2},\left[y^{2}, x\right]\right]+3 y\left[y^{2} x y^{3},\left[y^{2}, x\right]\right] \\
& +3 y\left[y^{4} x y,\left[y^{2}, x\right]\right]+7 y\left[y^{6},\left[y^{2}, x\right]\right]+\left[(x y)^{2} y^{2}, y\right]\left[y^{2}, x\right] \\
& +\left[x y^{3} x y, y\right]\left[y^{2}, x\right]+3\left[x y^{5}, y\right]\left[y^{2}, x\right]+\left[y^{2}(x y)^{2}, y\right]\left[y^{2}, x\right] \\
& +3\left[y^{2} x y^{3}, y\right]\left[y^{2}, x\right]+3\left[y^{4} x y, y\right]\left[y^{2}, x\right]+\left[(x y)^{2} y^{2},\left[x y, y^{2}\right]\right] \\
& +\left[(x y)^{2} y^{2},\left[y^{2}, y x\right]\right]+2\left[x y^{5},[x y, y x]\right]+3\left[x y^{5},\left[x y, y^{2}\right]\right] \\
& +3\left[x y^{5},\left[y^{2}, y x\right]\right]+2\left[y^{2} x y^{3},[x y, y x]\right]+3\left[y^{2} x y^{3},\left[x y, y^{2}\right]\right] \\
& +3\left[y^{2} x y^{3},\left[y^{2}, y x\right]\right]+6\left[y^{6},[x y, y x]\right]+7\left[y^{6},\left[x y, y^{2}\right]\right] \\
& +7\left[y^{6},\left[y^{2}, y x\right]\right]+\left[x y^{3} x y,\left[x y, y^{2}\right]\right]+\left[x y^{3} x y,\left[y^{2}, y x\right]\right] \\
& +2\left[y^{4} x y,[x y, y x]\right]+3\left[y^{4} x y,\left[x y, y^{2}\right]\right]+3\left[y^{4} x y,\left[y^{2}, y x\right]\right] \\
& +\left[x y^{5},\left[x, y^{2}\right]\right] y+\left[y^{2}(x y)^{2},\left[x y, y^{2}\right]\right]+\left[y^{2}(x y)^{2},\left[y^{2}, y x\right]\right] \\
& =0 .
\end{align*}
$$

By Lemma 2.1 and using the fact that R is a 2 -torsion free, the equation (3.4) becomes

$$
\begin{align*}
& {\left[(x y)^{2},\left[x, y^{2}\right]\right] y+\left[x y^{3} x y,\left[x, y^{2}\right]\right] y+3\left[x y^{5},\left[x, y^{2}\right]\right] y} \tag{3.5}\\
& \quad+\left[y^{2}(x y)^{2},\left[x, y^{2}\right]\right] y+3\left[y^{2} x y^{3},\left[x, y^{2}\right]\right] y+3\left[y^{4} x y,\left[x, y^{2}\right]\right] y \\
& \quad+7\left[y^{6},\left[x, y^{2}\right]\right] y+\left[x, y^{2}\right]\left[(x y)^{2} y^{2}, y\right]+\left[x, y^{2}\right]\left[x y^{3} x y, y\right] \\
& \quad+3\left[x, y^{2}\right]\left[x y^{5}, y\right]+\left[x, y^{2}\right]\left[y^{2}(x y)^{2}, y\right]+3\left[x, y^{2}\right]\left[y^{2} x y^{3}, y\right] \\
& \quad+3\left[x, y^{2}\right]\left[y^{4} x y, y\right]+y\left[(x y)^{2} y^{2},\left[y^{2}, x\right]\right]+y\left[x y^{3} x y,\left[y^{2}, x\right]\right] \\
& \quad+3 y\left[x y^{5},\left[y^{2}, x\right]\right]+y\left[y^{2}(x y)^{2},\left[y^{2}, x\right]\right]+3 y\left[y^{2} x y^{3},\left[y^{2}, x\right]\right] \\
& \quad+3 y\left[y^{4} x y,\left[y^{2}, x\right]\right]+7 y\left[y^{6},\left[y^{2}, x\right]\right]+\left[(x y)^{2} y^{2}, y\right]\left[y^{2}, x\right] \\
& \quad+\left[x y^{3} x y, y\right]\left[y^{2}, x\right]+3\left[x y^{5}, y\right]\left[y^{2}, x\right]+\left[y^{2}(x y)^{2}, y\right]\left[y^{2}, x\right] \\
& \quad+3\left[y^{2} x y^{3}, y\right]\left[y^{2}, x\right]+3\left[y^{4} x y, y\right]\left[y^{2}, x\right]+\left[(x y)^{5},[x y, y x]\right] \\
& \quad+\left[y^{2} x y^{3},[x y, y x]\right]+3\left[y^{6},[x y, y x]\right]+\left[y^{4} x y,[x y, y x]\right] \\
& \quad=0 .
\end{align*}
$$

Replacing x by $x+y$ in (3.5), using (3.5) and Lemma 2.1, we get

$$
\begin{align*}
& 3\left[x y^{5},\left[x, y^{2}\right]\right] y+3\left[y^{2} x y^{3},\left[x, y^{2}\right]\right] y+18\left[y^{6},\left[x, y^{2}\right]\right] y \tag{3.6}\\
& \quad+3\left[y^{4} x y,\left[x, y^{2}\right]\right] y+3\left[x, y^{2}\right]\left[x y^{5}, y\right]+3\left[x, y^{2}\right]\left[y^{2} x y^{3}, y\right] \\
& \quad+3\left[x, y^{2}\right]\left[y^{4} x y, y\right]+3 y\left[x y^{5},\left[y^{2}, x\right]\right]+3 y\left[y^{2} x y^{3},\left[y^{2}, x\right]\right] \\
& \quad+18 y\left[y^{6},\left[y^{2}, x\right]\right]+3 y\left[y^{4} x y,\left[y^{2}, x\right]\right]+3\left[x y^{5}, y\right]\left[y^{2}, x\right] \\
& \quad+3\left[y^{2} x y^{3}, y\right]\left[y^{2}, x\right]+3\left[y^{4} x y, y\right]\left[y^{2}, x\right]+3\left[y^{6},[x y, y x]\right] \\
& \quad=0 .
\end{align*}
$$

Since R is 3-torsion free, so (3.6) yields

$$
\begin{align*}
& {\left[x y^{5},\left[x, y^{2}\right]\right] y+\left[y^{2} x y^{3},\left[x, y^{2}\right]\right] y+6\left[y^{6},\left[x, y^{2}\right]\right] y} \tag{3.7}\\
& \quad+\left[y^{4} x y,\left[x, y^{2}\right]\right] y+\left[x, y^{2}\right]\left[x y^{5}, y\right]+\left[x, y^{2}\right]\left[y^{2} x y^{3}, y\right] \\
& \quad+\left[x, y^{2}\right]\left[y^{4} x y, y\right]+y\left[x y^{5},\left[y^{2}, x\right]\right]+y\left[y^{2} x y^{3},\left[y^{2}, x\right]\right] \\
& +6 y\left[y^{6},\left[y^{2}, x\right]\right]+y\left[y^{4} x y,\left[y^{2}, x\right]\right]+\left[x y^{5}, y\right]\left[y^{2}, x\right] \\
& +\left[y^{2} x y^{3}, y\right]\left[y^{2}, x\right]+\left[y^{4} x y, y\right]\left[y^{2}, x\right]+\left[y^{6},[x y, y x]\right] \\
& =0 .
\end{align*}
$$

Again replacing x by $x+y$ in (3.7) and using (3.7), we obtain

$$
\begin{equation*}
4\left[y^{6},\left[x, y^{2}\right]\right] y+4 y\left[y^{6},\left[y^{2}, x\right]\right]=0 \tag{3.8}
\end{equation*}
$$

Since R is 2 -torsion free, (3.8) becomes

$$
\begin{align*}
& {\left[y^{6},\left[x, y^{2}\right]\right] y+y\left[y^{6},\left[y^{2}, x\right]\right]=0 } \tag{3.9}\\
& \text { or } \quad y\left[y^{6},\left[y^{2}, x\right]\right]-\left[y^{6},\left[y^{2}, x\right]\right] y=0
\end{align*}
$$

Let I_{r} denote the inner derivation with respect to r. i.e., $I_{r}: x \longrightarrow[r, x]$, then we obtain

$$
\begin{equation*}
I_{y} I_{y^{6}} I_{y^{2}}(x)=0 \tag{3.10}
\end{equation*}
$$

Using Lemma 2.2 either $I_{y} I_{y^{6}}=0$ or $I_{y^{2}}=0$, where $I_{y} I_{y^{6}}$ and $I_{y^{2}}$ are inner derivations.

Case 1. $I_{y} I_{y^{6}}=0$ implies $I_{y} I_{y^{6}}(x)=0$ for any $x \in R$. Thus by Lemma 2.2 either $I_{y}=0$ or $I_{y^{6}}=0$. In former case R is commutative. In latter case $\left[y^{6}, x\right]=0$ for all x, y in R, which by Lemma 2.3 yields that R is commutative.

Case 2. $I_{y^{2}}=0$ implies $\left[y^{2}, x\right]=0$ for all x, y in R which by Lemma 2.3 gives that R is commutative.

Theorem 3.2. Let R be a 2 and 3 torsion free semiprime ring such that $\left[(x y)^{3},[x y, y x]\right]=0$ for all x, y in R. Then R is commutative.

Proof. Since R is semiprime ring, it is isomorphic to a subdirect sum of prime rings R_{α} each of which as a homomorphic image of R, satisfies the hypothesis places on R. But by Theorem $3.1 R_{\alpha}$ are commutative. Hence R is commutative.

Example 3.3. The following example shows that condition of semiprime ring is essential.

Let

$$
R=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{5}\right\}
$$

The above ring satisfies the identity $\left[(x y)^{3},[x y, y x]\right]=0$ for all x, y in R and is 2 and 3 torsion free, yet R is not commutative.

References

1. Abdullah H. Al-Moajil, On the commutativity of semiprime rings, J. Austral. Math. Soc. 32 (1982), 48-51.
2. Awtar, R., A remark on the commutativity of certain rings, Proc. Amer. Math. Soc. 41 (1973), 370-372.
3. Giri, R. D. and Modi, A. K., A remark on commutativity of rings, preprint.
4. Gupta, R. N., Nilpotent matrices with invertible transpose, Proc. Amer. Math. Soc. 24 (1970), 572-575.
5. Herstein, I., A commutativity theorem, J. Algebra 38 (1976), 112-118.
6. Lambek, J., Lectures on rings and modules, Waltham-Toronto-London, Blaisdell, Mass. 1966.
7. Posner, E. C., Derivation in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Kyungpook National University
Taegu 702-701, Korea

[^0]: Received March 19, 1993.
 This work was partially supported by the Basic Science Research Institute Programs, Ministry of Education, 1993.

