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ON THE COMMUTATIVITY OF

CERTAIN SEMIPRIME RINGS

SUNG MI PARK, DONG JE KWAK AND YOUNG Sao PARK

1. Introduction

In all that follows R will represent an associative ring (may be without
unity 1). For any pair x,y in R, we set as usual [x,y] = xy -yx.

In [1] Abdullah H. Moajil proved that, if R is a 2-torsion free semi
prime ring such that [xy, [xy, yx]] = 0 for all x, yin R, then R is commu
tative. Giri and Dhoble proved that, if R is a 2-torsion free semiprime
ring such that [yxy, [xy, yx]] = 0 for all x, yin R, then R is commutative.

Later in [3] Giri and Modi wished to generalize the result as follows:
if R is a 2-torsion free semiprime ring such that [(xy?,[xy,yx]] = 0
for all x, y in R, then R is commutative. But there is a mistake in the
paper. They proved the lemma that ring is p-torsion free if and only if
(p +1)-torsion free. However we can easily show that it is false as taking
counter examples, Z2, Z3 etc. So we modified the hypothesis, replacing
2-torsion free with 2 and 3 torsion free.

In this thesis, motivated by the above polynomial identities, we intend
to prove the following results.

(1) Let R be a 2 and 3 torsion free prime ring such that [(xy)3 , [xy, yx]]
= 0 for all x, y in R. Then R is commutative.

(2) Let R be a 2 and 3 torsion free semiprime ring such that [(xy)3,
[xy, yx]] = 0 for all x, yin R. Then R is commutative.

2. Preliminaries

We mention below three lemmas in which the first is trivial, next two
are well known.
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LEMMA 2.1. For all elements x, y, z in a ring R,

[xv, z] = [x, z]y + x[y, z].

LEMMA 2.2. ([7]) Let R be a prime ring of characteristic not 2 and
d1 , d2 derivations of R such that the iterate d1d2 is also a derivation.
Then one at least of d1 ,d2 is zero.

LEMMA 2.3. ([5]) Let R be a ring having no non-zero nil ideals in
which for every x, y in R there exist integers m = m(x, y) 2: 1, n =
n(x, y) 2: 1 such that [x m , yn] = O. Then R is commutative.

3. Main Results

We introduce our main theorems.

THEOREM 3.1. Let R be a 2 and 3 torsion free prime ring such that
[(xy)3, [xy,yx]] = 0 for all x,y in R. Then R is commutative.

Proof. Substituting x + y for x in the given identity

(3.1) [(xy)3, [XV, yx]] = o.

Using it in subsequent expansion, we get

(3.2) [( xy)3, [XV, y2]] + [(xy)3 , [y2, yx]] + [(xy)2 y2, [XV, yx]]

+ [(xy)2y2, [xV, y2]] + [(xy)2y2, [y2, yx]] + [xy3XV, [xV, yx]]

+ [xy3xy, [XV, y2]] + [xy3xy, [y2, yx]] + [xy5, [XV, yx]]

+ [xy5, [xV, y2]] + [xy5, [y2, yx]] + [y2(xy?, [XV, yX]]

+ [y2(xy?, [XV, y2]] + [y2(Xy)2, [y2, yx]] + [y2 Xy3, [XV, yX]]

+ [y2 xy3, [XV, y2]] + [y2 xy3, [y2, yX]] + [y4xy , [xV, yX]]

+ [y4 xy, [XV, y2]] + [y4 xy, [y2, yx]] + [y6, [XV, yx]]

+ [y6, [XV, y2]] + [y6, [y2, yx]] = O.

By using Lemma 2.1 twice successively, we obtain
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+ [(xy)3, y][y2, x] + [(xy)2y2, [xy, yx]] + [(xy )2y2, [x, y2]]y

+ [x, y2][( xy )2y2, y] + [(xy)2y2, y][y2, x] + y[( xy )2y2, [y2, x]]

+ [xy3xy, [xy, yx]] + [x, y2][xy3xy, y] + [xy3xy, [x, y2]]y

+ [xy3xy, y][y2, x] + y[xy3xy, [y2, xl] + [xy5, [xy, yx]]

+ [x, y2][xy5, y] + [xy5, [x, y2]]y + [xy5, y][y2, x]

+ y[xy5, [y2, xl] + [y2( xy)2, [xy, yx]] + [y2 (xy)2, [x, y2]]y

+ [x, y2][y2(xy)2, y] + y[y2(xy)2, [y2, x]] + [y2(xy)2, y][y2, x]

+ [y2 xy3, [xy, yx]] + [x, y2][y2 xy3, y] + [y2 xy3, [x, y2]]y

+ [y2 xy3,y][y2,X] +y[y2xy3, [y2, x]] + [y4 xy,[xy,yxl]

+ [y4 xy , [x, y2]]y + [x, y2][y4xy, y] + [y4 xy , y][y2, x]

+ y[y4xy, [y2, x]] + [y6, [xy, yx]] + [y6, [x, y2]]y

+ Y[y6 , [y2, x]] = o.
Substituting x + y for x in (3.3) and using (3.3), we get

(3.4) [(xy?y2, [x, y2]]y + [xy3xy , [x, y2]]y + 2[xy5, [x, y2l]y

+ [y2(xy?, [x, y2]]y + 3[y2xy3, [x, y2]]y + 3[y4xy, [x, y2]]y

+ 7[y6, [x, y2]]y + [x, y2][( xy )2y2, y] + [x, y2][xy3xy, y]

+ 3[x, y2][xy5, y] + [x, y2][y2(xy)2, y] + 3[x, y2][y2xy3, y]

+ 3[x, y2][y4 xy, y] + y[( xy )2y2, [y2, x]] + y[xy3xy, [y2, x]]

+ 3y[xy5, [y2, x]] + y[y2(xy)2, [y2, x]] + 3y[y2 xy3, [y2, x]]

+ 3y[y4xy, [y2, x]] + 7y[y6, [y2, xl] + [(xy)2y2, y][y2, x]

+ [xy3xy, y][y2, x] + 3[xy5, y][y2, x] + [y2(xy)2, y][y2, x]

+ 3[y2 xy3, y][y2, x] + 3[y4xy , y][y2, x] + [(xy)2 y2, [xy, y2]]

+ [(xy)2 y2, [y2, yx]] + 2[xy5, [xy, yx]] + 3[xy5, [xy, y2]]

+ 3[xy5, [y2, yx]] + 2[y2xy3, [xy, yx]] + 3[y2 xy3, [xy, y2]]

+ 3[y2xy3, [y2, yx]] + 6[y6, [xy, yx]] + 7[y6, [xy, y2]]

+ 7[y6, [y2, yx]] + [xy3xy, [xy, y2]] + [xy3xy , [y2, yx]]

+ 2[y4 xy, [xy, yx]] + 3[y4xy , [xy, y2]] + 3[y4 xy, [y2, yx]]

+ [xy5, [x, y2]]y + [y2( xy)2, [xy, y2]] + [y2(xy?, [y2, yx]]

=0.
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By Lemma 2.1 and using the fact that R is a 2-torsion free, the equation
(3.4) becomes

(3.5) [(xy)2, [x, y2]]y + [xy3xy, [x, y2]]y + 3[xy5, [x, y2]]y

+ [y2(xy?, [x, y2]]y + 3[y2xy3, [x, y2]]y + 3[y4xy, [x, y2]]y

+ 7[y6, [x, y2]]y + [x, y2][(xy?y2, y] + [x, y2][xy3xy, y]

+ 3[x, y2][xy5, y] + [x, y2][y2(xy?, y] + 3[x, y2][y2 xy3, y]

+ 3[x, y2][y4 xy , y] + y[(xy?y2, [y2, x]] + y[xy3xy , [y2, x]]

+ 3y[xy5, [y2, x]] + y[y2(xy)2 , [y2, x]] + 3y[y2xy3, [y2, x]J
+ 3y[y4xy, [y2, x]] + 7y[y6, [y2, x]] + [(xy)2 y2, y][y2, x]

+ [xy3xy,y][y2, x] + 3[xy5, y][y2, x] + [y2(xy)2,y][y2, x]

+ 3[y2 xy3, y][y2, x] + 3[y4xy, y][y2, x] + [(xy)5, [XV, yx]]

+ [y2 xy3, [XV, yx]] + 3[y6, [XV, yx]] + [y4 xy, [XV, yx]]

=0.

Replacing x by x + y in (3.5), using (3.5) and Lemma 2.1, we get

(3.6) 3[xy5, [x, y2]]y + 3[y2xy3, [x, y2]]y + 18[y6, [x, y2]]y

+ 3[y4xy, [x, y2]]y + 3[x, y2][xy5, y] + 3[x, y2][y2 xy3, y]

+ 3[x, y2][y4 xy, y] +3y[xy5, [y2, x]] +3y[y2xy3, [y2, x]]

+ 18y[y6, [y2, x]] + 3y[y4xy, [y2, x]] + 3[xy5, y][y2, x]

+ 3[y2xy3, y][y2, xJ + 3[y4xy, y][y2, x] + 3[y6, [XV, yx))

=0.

Since R is 3-torsion free, so (3.6) yields

(3.7) [xy5, [x, y2]]y + [y2 xy3, [x, y2]]y + 6[y6, [x, y2))y

+ [y4 xy, [x, y2]]y + [x, y2][xy5, yJ + [x, y2J[y2xy3, y]

+ [x, y2][y4xy, y] + y[xy5, [y2, x]] + y[y2xy3, [y2, x))

+ 6y[y6, [y2, x)) + y[y4xy , [y2, x)) + [xy5, y][y2, xl
+ [y2 xy3, y][y2, xJ + [y4 xy , y][y2, x] + [y6, [xv, yx]]

= o.
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Again replacing x by x + y in (3.7) and using (3.7), we obtain
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(3.8)

Since R is 2-torsion free, (3.8) becomes

(3.9) [y6, [x, y2]]y + y[y6, [y2, x]] = 0

or y[y6, [y2, x]] _ [y6, [y2, x]]y = O.

Let I r denote the inner derivation with respect to r. i.e., I r : x ----* [r, x],
then we obtain

(3.10)

Using Lemma 2.2 either I y I y 6 = 0 or I y 2 = 0, where I y I y 6 and I y 2 are
inner derivations.

Case 1. I y I y 6 = 0 implies I y Iy 6(X) = 0 for any x E R. Thus by Lemma
2.2 either I y = 0 or I y 6 = O. In former case R is commutative. In latter
case [y6, x] = 0 for all x, y in R, which by Lemma 2.3 yields that R is
commutative.

Case 2. Iy2 = 0 implies [y2, x] = 0 for all x, y in R which by Lemma
2.3 gives that R is commutative.

THEOREM 3.2. Let R be a 2 and 3 torsion free semiprime ring sucb
tbat [(xy )3, [xy, yx]] = 0 for all x, y in R. Tben R is commutative.

Proof. Since R is semiprime ring, it is isomorphic to a subdirect sum
of prime rings R a each of which as a homomorphic image of R, satisfies
the hypothesis places on R. But by Theorem 3.1 R a are commutative.
Hence R is commutative.

EXAMPLE 3.3. The following example shows that condition of semi
prime ring is essential.

Let

The above ring satisfies the identity [(xy )3, [xy, yx]] = 0 for all x, y in R
and is 2 and 3 torsion free, yet R is not commutative.
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