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FIBREWISE CONVERGENCE

KYUNG CHAN MIN*, JIN WON PARK AND SEOK JONG LEE

1. Preliminaries

Recently fibrewise topology has been emerged as a subject in its own
right. I. M. James has been promoting the fibrewise viewpoint sys­
tematically in topology [12-17]. As a matter of fact in many directions
interests in research on fibrewise theory are growing now. In fibrewise ho­
motopy theory, fibrewise exponential laws play central roles. Thus many
attempts have been made to introduce a suitable category allowing fi­
brewise exponential laws [2-4,7,8,18,21,23,25]. Recently as a convenient
category the authors [19] introduced the topological universe Cony of
convergence spaces containing the category Top of topological spaces
as a bireflective subcategory. It was shown that the category Cony al­
lows various fibrewise exponential laws in a natural way (ef.[20]). In
this paper, as a continuation of [19], we develop a general fibrewise the­
ory in the category Cony of convergence spaces. The fibrewise notions
of Hausdorffness, compactness and locally compactness are introduced
as 'fibrewise properties'. A Tychonoff theorem is obtained using ultra
b-filters and a fibrewise version of the one-point compactification is con­
structed as generalizations of those both for a convergence space and
for a fibrewise topological space. For general categorical background we
refer to H. Herrlich and G. E. Strecker [10], for the fibrewise theory to I.
M. James [14] and for the convergence space to E. Binz [1]. Given a set
X, a convergence &tructure is a map c: X ~ P(F(X», the power set of
the set of all filters on X, that assigns to every point of X a collection
of filters on X, subject to the following axioms;

(1) for any x E X, x E c(x), where x = the ultrafilter on X gener­
ated by {x},
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(2) if F E c(x), F ~ g, then g E c(x),
(3) if F,g E c(x), then Fn g E c(x).

The pair (X,c) is called a convergence 3pace. The filters FE c(x) are
said to be convergent to z and x is called a limit point of F. We usually
write F - x instead of F E c(x). A map f : (X,c) - (Y,c') be­
tween convergence spaces is said to be continuous if for every F E c(x),
f(F) E c'(f(x» for each x E X. The category of convergence spaces
and continuous maps is denoted by Cony. We say that a filter F has a
clwter point z if there exists g E c(x) with g 2 F. For a subset A of X,
a point x in X is said to be adherent to A if there exists a filter F on X
with A e F convergent to x. Denote A the set of all points adherent
to A. A subset A of X is said to be cl03ed if A = A. Given B eCony,
let COnYB be the comma category of Cony over B. An object (X,p) in
ConyB is called a convergence &pace X over B with a projection p. For a
topological space B, the category ConyB contains TopB as a bireflective
subcategory. Given a convergence space B, the category ConyB has an
initial structure over SetB. In fact, the initial structure in Cony serves
for the initial structure in COnYB. Moreover since the category Cony
is a topological universe, for each B e Cony, the category ConyB is
cartesian closed (cf.[9]). Let e:B' - B be a continuous map. A functor
e* :COnYB-COnYB' is defined by e*X = B' XB X with the first pro­
jection and e*f = 1B' XB f. We note that e* has a left adjoint e*, given
by e*(X,p') = (X,e 0 p') and e*f = f· Hence e*(IIBXi) = IIB,e*Xi.
Moreover it is easy to see that for continuous maps e:B - B' and
e' :B' - B", (e' 0 e)* is naturally isomorphic to e'* 0 e*.

2. Fibrewise properties
We introduce notions of Hausdorffness, compactness and locally com­

pactness as a 6brewise well":beha.ved properties. For a convergence space
B, a property PB of convergence spaces over B satisfying the following
three conditions is called a jibreVJise property:

CONDITION 1. H X, Y are isomorphic convergence spaces over B and
if X has the property PB then so does Y.

CONDITION 2. A convergence space X has the property P if and only
if the convergence space X over the point * has the property P*.
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CONDITION 3. H a convergence space X over B has the property PB
then the convergence space ~.X over B' has the property PBI for each
convergence space B' and a continuous map ~ : B' -. B.

DEFINITION 2.1. A convergence space X over B is said to be Haus­
dorff over B if whenever a filter r on X converges to x and y with
x, y E X", x = y, where X" = p-l(b).

PROPOSITION 2.2. The property "Hausdorff over B" is a fibrewise
property.

Proof. Condition 1 and 2 follow obviously. For condition 3, suppose
X is a Hausdorff convergence space over B. Let B' be a convergence
space and ~ : B' -. B a continuous map. Note that for any b' E B',
(~.X)", = (B' x B X)", = b' x X~(b'). Let a filter r on eX converge
to (b',x) and (b',x') in (~·X)",. Then pr2(r) -. pr2(b',x) = x and
pr2(r) -. pr2(b',x') = x'. Since x,x' belong to the same fibre X~(b')

and X is Hausdorff over B, x = x'. Hence (b', x) = (b', x'). Thus eX is
Hausdorff over B'.

By definitions it is easy to see that every subspace of a Hausdorff
convergence space over B is Hausdorff over B and every product space
over B of Hausdorff convergence spaces over B is Hausdorff over B. We
remark that even though X is not Hausdorff over B, the space X x B {b},
which is empty or a singleton, is Hausdorff over B trivially.

PROPOSITION 2.3. A convergence space X over B is Hausdorff over
B if and only if the diagonal I:i. in X X B X is closed.

Proof. Suppose X is Hausdorff over B and (x, y) E I:i.. Then there
exists a filter {} on X XB X such that {} -. (x, y) and I:i. E {}. Since
prl({})=pr2(g), x = y. Conversely, let x = y in X" and r -. x,g -. y.
We may assume that rnx = rand {}ny = {}. Since rXB{} -. (x,y) rI:
I:i. = I:i., there exist FEr and G E {} such that (FxBG) nl:i. = 0 and
hence F n G = 0. Therefore r = {J.

Using this proposition, we have the following by routine work: Let
X be a convergence space over B and Y a Hausdorff convergence space
over B. For any pair of continuous maps f,g : X -. Yover B, the
set {x E X I f( x) = g(x)} is closed in X and for any continuous map
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f : X -+ Y over B the graph G(f) = {(x, f(x» I x E X} is closed in
X xBY.

Let (X,p) be a convergence space over B. A filter:F on X is called a
b-tied filter if the filter p(:F) has a cluster point bin B. A filter :F on X
is called a b-filter if the filter p(:F) has a limit point bin B. A filter U on
X is called a b-ultrafilter if it is a maximal element in the set of b-tied
filters with respect to the natural order. We remark that a filter U on X
is a b-ultrafilter if and only if it is an ultrafilter in the ordinary sense and
P(U) -+ bin B. We say that a b-tied filter :F on X has a cluster point
z if x E X b and it is a cluster point of:F in X. Similarly, we say that
a b-tied filter :F on X has a limit point z, (or converges to z), if x E X b

and :F -+ x in X.

PROPOSITION 2.4. Let:F be a b-tied filter on a convergence space X
over B and let x E Xb. Then x is a cluster point of:F if and only if x is
a limit point of a b-tied filter g with g ;2 :F.

Hence every cluster point of a b-ultrafUter is a limit point. Since every
b-tied filter is contained in a b-ultrafUter, every b-ultrafilter converges if
and only if every b-tied filter has a cluster point.

DEFINITION 2.5. A convergence space X over B is said to be compact
over B if the projection p : X -+ B is compact, i.e., every b-ultrafilter
converges.

We remark that this notion is a generalization of that of a proper map
in [5] (cf.[ll] also.). By a routine work it is shown that the property
"compact over B" is a fibrewise property.

PROPOSITION 2.6. Let {(Xi,Pi)heI be a family ofconvergence spaces

which are compact over B. Then IIBX'i is compact over B.

Proof· H IIBXi = 0, it is obvious. Suppose IIBXi = 0. Let p :

IIBXi -+ B be the projection and qi : IIBXi -+ Xi be the coordinate

projections. Let U be a b-ultrafilter on IIBXi . Since p = Pi 0 qi for
all i E I, Pi(qi(U» -+ b. Since Xi is compact over B and qi(U) is a
b-ultrafilter on Xi, there exists Xi E (Xi)b such that qi(U) -+ Xi. By the
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initial property of {qihEI' U -+ (Xi) E p-l(b). Thus IIBXi is compact
over B.

PROPOSITION 2.7. Let f: X -+ Y be a continuous map over B.
(1) H Y is compact over B and f is a closed embedding, then X is

compact over B.
(2) H X is compact over B and f is surjective then Y is compact over

B.

Proof. The proofs are routine.

By straightforward adaptations of the definitions, we have the follow­
ing: H ~ : B' -+ B is a compact map, then pr2 : ~*X -+ X is a compact
map. For a compact convergence space X over B, if B is compact, then
so is X. We note that every compact surjection over B is a closed map.
Hence using Proposition 2.3. we can show that for a compact surjection
f : X -+ Y over B if X is Hausdorff over B, then so is Y.

PROPOSITION 2.8. Let a convergence space X be compact over B
and a convergence space Y be Hausdorff over B. Then every continuous
map f: X -+ Y over B is compact.

Proof. The proof is routine by definitions.

PROPOSITION 2.9. Let f : X -+ Y be compact and bijective. H X is
pseudo-topological, then f is a homeomorphism.

Proof. Suppose :F -+ y in Y and take any ultrafilter Uon X with
g(:F) ~ U. Then feU) contains:F and hence feU) -+ y in Y. Since f is
compact, U -+ X in X and f(x) = y for some x in X. Since f is 1-1 and
X is pseudo-topological, g(F) -+ x in X. Note that x = g(y). Therefore
9 is continuous.

By combining Propositions 2.8. and 2.9., we have the following result
which is a fibrewise and improved version of Theorem 10 in [6].

COROLLARY 2.10. Let a pseudo-topological space X be compact over
B and a convergence space Y be Hausdorff over B. Then every bijective
continuous map f : X --+ Y over B is a homeomorphism.
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DEFINITION 2.11. A convergence space X over B is locally compact
over B if the projection p : X -+ B is locally compact, i.e., for any
convergent filter F on X, there exists KEF such that the restriction
map p : K -+ B is compact.

REMARK. In this definition, if X is Hausdorff over B, then we can
show that K is a closed subset of X. Hence for a Hausdorff convergence
space over B, our notion 'locally compact over B' is a generalization of
that of James in [13]. He defined that a topological space (X,p) over B
is locally compact over B if for each x E X there exists a neighborhood
U of x such that the restriction map p : U -+ B is compact.

PROPOSITION 2.12. The property "locally compact over B" is a fi­
brewise property.

Proof. Condition 1 and 2 are obvious. For condition 3, suppose that
a convergence space X is locally compact over B. Let B' be any conver­
gence space and e:B' -+ B any continuous map. Let a filter g x B 'H. =
{GxBH IG E g,H E 'H.} converges to (b',x) E B' XB X. Then'H. con­
verges to x. But X is locally compact over B, thus there exists A E 'H.
such that piA: A -+ B is compact. Then B' XB A E g XB 'H.. By
Proposition 2.6. prllB1xsA : B' XB A -+ B' is compact. Hence e*X is
locally compact over B'.

REMARK. H a convergence space X is compact over B, then X is
locally compact over B. Moreover for a locally compact map e:B' -+ B,
pr2 : e*X -+ X is a locally compact map. By Proposition 2.6., we can
show that if {(Xi,Pi)heI is a family of convergence spaces which are
locally compact over B and all but finitely many Xi are compact over
B, then (IIBXi,p) is locally compact over B.

3. One-point compaetification
We construct a fibrewise version of one-point compactification for a

convergence space over B, simultaneously generalizing those notions for
a topological space over B and a convergence space.

Let X be locally compact Hausdorff over B, but not compact over
B. Let X~ = X + B, disjoint union with the natural projection r. We
define a'map c : X~ -+ 1'(F(X~)) as follows; For x E X, FE c(x) if
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r(.r) --+ rex) in B and X E .r and .r n X --+ x in X and for b E B,
.r E c(b) if .r 2 g n il, for some b-filter g on X~ such that g n X has no
cluster point. We remark that if Q1 nQ2 has a cluster point, then gl or g2
has a cluster point. Hence it is easy to see that (X~, c) is a convergence
space over B and the inclusion map L : X --+ X~ is an embedding over
B.

PROPOSITION 3.1. (1) (X~,c) is compact Hausdorff over B.
(2) X is a dense subspace ofX~ over B.

Proof. (1) Let U be a b-ultrafilter in X~. Then r(U) --t bin B. We
show that U has a limit point. Suppose U n X has a cluster point x in
X, where x E Xb' Then the b-ultrafilter U n X --+ x in X and hence
L(U n X) = U --+ x in X~. Suppose U n X has no cluster point. Then
U 2 U n band hence U --+ b in X~. Therefore X~ is compact over B.

Take x E X and b E B. Suppose.r --+ x, b in X~ with p(x) = b. Then
.rnX --+ x in X and there exists a b-filter g in X~ such that .r 2 g nb
and gnx has no cluster point. Since .rnx 2 gnx, gnX has a cluster
point x, which is a contradiction. Therefore X~ is Hausdorff over B.

(2) Note that for each b E B, (X~)b is the one-point compactification
of the locally compact Hausdorff convergence space Xb. Hence Xb is
dense in (X~)b'

For B = *, it is easy to see that X: is the smallest Hausdorff com­
pactification for a 'locally compact' Hausdorff non-compact convergence
space in [22].

In [12], James constructed a fibrewise one-point compactification XiJ
for a locally compact Hausdorff topological space X over B as follows: He
takes X B= X +B as we constructed and gives the following topology on
it. The generating open sets, before supplementation, are of two kinds.
The first kind is the open sets of X, regarded as subsets of XB. The
second kind is the complements in X Bof the subsets of X which are
compact over B. As a matter of fact, this construction coincides with
ours in the case of topological spaces.

PROPOSITION 3.2. Let B be a topological space and X a locally
compact Hausdorff topological space over B. Then XB = X~ as a
topological spaces.
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Proof. Let x E X and Nx the neighborhood filter of X in XiJ. Note
that Nxis the filter on XiJ generated by the family {Unr-1(W) IU is an
open neighborhood of x in X and W is an open neighborhood of r(x) in
B}. Hence Nx n X -+ x in X and so Nx -+ x in xjj. Let bE B and let
Nb be the neighborhood filter of bin xjj. Then Nb is the filter on XB
generated by the family {(XB\K)nr-1(W) I K is a subset of X which
is compact over B and W is a open neighborhood of b in B}. Clearly
Nb is a b-filter. Moreover Nb n X has no cluster point since X is locally
compact over B. Hence Nil -+ b in X~. Therefore id : X B -+ X~ is
continuous. For the continuity of id: xjj -+ X B, let x E X and :F -+ x
in X~. Since X E :F and :F n X -+ x in X, :F :2 Nx • Let b E B and
:F.-+ b in X~. Then there exists a b-filter 9 in X~ such that :F :2 9 n b
and 9 n X has no cluster point. We note that for any neighborhood W
of b there exists G E 9 with G ~ r- 1(W) since r(9) -+ bin B. To prove
:F :2 Nb, we show that for any K ~ X which is compact over B there
exists G E 9 with Xjj\K 2 G. Suppose not. Then there exists such K
with GnK = 0 for all G E g. Thus we have a b-filter 9 nK on K. Since
K is compact over B, 9 n K has a cluster point x in K. In fact, this
point x is a cluster point of the b-filter 9 n X. This is a contradiction.

REMARK. This proposition gives a direct proof of Theorem 1.4. in
[22]. We note that a Hausdorff topological space is locally compact iff it
is open in each Hausdorff compactification. (cf.· [24])

Let X and Y be locally compact Hausdorff convergence spaces over B.
A function f : X -+ Y over B determines a section preserving function
f+ : xjj -+ Yi over B, and vice versa. Note that ty 0 f = f+ 0 tX.

PROPOSITION 3.3. A map f : X -+ Y is compact (consider Y as B
in Definition 2.5.) if and only if J+ : X~ -+ Yi is continuous.

Proof. let p, q, r, s be projections for X, Y; X~,Yi, respectively. Sup­
pose f is compact. H:F -+ x in X~, then J+ (F) -+ F+(x) in Y.t, obvi­
ously. Let:F -+ bin xjj. Then there exists a b-filter A on X~ such that
:F :2 Ani> and AnX has no cluster point. Moreover, J+(:F) :2 f+(A)ni>.
Hence f+(:F) -+ b in Yi. Therefore f+ is continuous. Conversely, let
U be an ultrafilter such that feU) -+ y in Y and b = q(y). Then
r 0 tx(U) = p(U) = q 0 feU) -+ b and hence tx(U) is a b-ultrafilter in
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xi;. Suppose tX(U) -+ X in xi;. Then U -+ x in X and f(x) = y, since
f is continuous and Y is Hausdorff over B. Suppose t X (U) -+ b in Xi;.
Then f+ 0 tx(U) = ty 0 feU) -+ b, y in Y:, which is a contradiction.
Hence f is compact.

REMARK. In [17] James introduced a weaker notion of fibrewise lo­
cally compactness than the corresponding notion in [12]: A topological
space (X, p) over B is fibrewise locally compact if for each x E X b there
exists a neighborhood W of band a neighborhood U ~ X w of x such that
the restriction map p: Xw nu -+ W is compact, where Xw = p-l(W).
In fact, by some modification, we can also obtain corresponding results
on the weaker notion including the fibrewise Alexandroff compactifica­
tion in [17].

References

1. E. Binz, Continuous Convergence on C(X), Lecture Notes in Mathematics, vol.
469, Springer-Verlag, Berlin, 1975.

2. P. I. Booth, The exponential law of maps I, Proc. London Math. Soc. (3) 20
(1970), 172-192.

3. , On the application of fibred mapping spaces to exponential laws for
bundles, ex-spaces and other categories ofmaps, Gen. Top. and its Appl. 8 (1978),
165-179.

4. P. I. Booth and R. Brown, Spaces of Partial maps, fibred mapping spaces and
compact-open topology, Gen. Top. and its Appl. 8 (1978), 181-195.

5. N. Bourbaki, General Topology, Part 1 (transl.), Addison-Wesley, Reading, 1966.
6. H. R. Fischer, Limesraume, Math. Ann. 137 (1959), 269-303.
7. D. B. Fuks, On duality in homotopy theory, Soviet Math. DoH. 2 (1961), 1575­

1578.
8. , Eckmann-Hilton duality and the theory of functors in a category of

topological spaces, Uspehi Mat. Nauk 21 (1966), 3-40.
9. H. Herrlich, Topological improvements of categories of structured sets, Topology

Appl. 27 (1987), 145-155.
10. H. Herrlich and G. E. Strecker, Category Theory Heldermann, Berlin, 1979.
11. R. A. Herrmann, Perfect maps on convergence spaces, Bull. Austral. Math. Soc.

20 (1979),447-466.
12. I. M. James, General Topology and Homotopy Theory, Springer-Verlag, New

York,1984.
13. , General topology over a base, Aspect of Topology, London Math. Soc.

Lecture Notes, vol. 93, 1984.
14. , Uniform spaces over a base, J. London Math. Soc. (2) 32 (1985), 328-336.
15. , Spaces, Bull. London Math. Soc. 18 (1986), 529-559.



344 Kyung Chan Min, Jin Won Park and Seok Jong Lee

16. , Topological and Uniform Spaces, Springer-Verlag, New York, 1987.
17. , Fibrewise Topology, Cambridge University Press, London, 1989.
18. L. G. Lewis Jr., Open maps, colimits and a convenient category of fibre spaces,

Topology Appl. 19 (1985), 75-89.
19. K. C. Min and S. J. Lee, Fibrewise convergence and exponential laws, Tsukuba

J. Math. 16 (1992), 53-62.
20. K. C. Min and Y. S. Kim, Fibrewise exponential laws in topological universes

(1992), preprint.
21. S. B. Niefield, Cartesianness: Topological spaces, uniform spaces, and affine

schemes, J. Pure Applied Alg. 23 (1982), 147-168.
22. C. J. M. Rao, On smallest compactification for convergence spaces, Proc. Amer.

Math. Soc. 44 (1974), 225-230.
23. N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J.

14 (1967), 133-152.
24. Vinod-Kwnar, Compactification of a convergence space, Proc. Amer. Math. Soc.

13 (1979), 256-262.
25. R. M. Vogt, Convenient categories of topological spaces for homotopy theory,

Arch. Math. XXII (1971),545-555.

.'Department of Mathematics,
Yonsei University,
Seoul 120-749, Korea

Department of Mathematics,
Chungbuk National University,
Cheongju 360-763, Korea




