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THE PRINCIPAL COMPONENT

OF AN H-STRUCTURE

Kyu BUM HWANG

We consider structures consisting of a space X together with a mul­
tiplication J.t : X x X -+ X that has a simple homotopy property. Such
structures include, as special cases, both topological groups and path
spaces. Then the loop spaces are topological spaces in which a continu­
ous multiplication, the composition of two paths into one, is defined. A
topological group is another example of a space in which a continuous
composition law is defined.

In this paper, the principal component of the H -structure is defined
and the relationships between H -structures and topological groups will
be investigated. A path in X is an element of X I = {f : I -+ X If:
continuous map}. The product of two paths f,g written f *9 is defined
only in case f(1) = g(O) and is the path

{
f(2t)

f*g= g(2t-1)
0:::; t :::; 1/2,

1/2:::; t :::; 1.

The inverse of a path f E Xl is the path f-1 E Xl defined by the
rule f- 1(t) = f(1 - t), 0 :::; t :::; 1. We take Xl with the compact open
topology. Given a, b EX, O(X; a, b) is the subspace of X I consisting of
all paths starting a and ending b. In case a = b, O(X; a, a) is written
simply O(X ; a) and is called the loop space of X bases at a. For any
two paths, we denote f '" 9 if they belong to the same path component
of XI, that is, f is homotopic to g.

LEMMA 1. The map f -+ f- 1 of O(X; a, b) -+ O(X; b, a) is a home­
omorphism. The mapping (f, g) -+ f *9 of O(X; a, b) x O(X; b, c) -+

O(X; a, c) is continuous.
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LEMMA 2. Tbe map / -+ / * /-1 of 11(Xj a, b) -+ 11(Xj a) is null­
bomotopic and so also is tbe map / -+ /-1 * /, wbere /-1 : I -+ X is
defined /-I(t) = /(1- t).

THEOREM 3. For any two subsets of A,B of X, let 11(A,B) = {/ E
Xl 1/(0) E A, /(1) E B}. H A is contractible over X to Xo, tben
11(A, B) and A x 11(Xoj B) are of tbe same bomotopy type.

Proof. Define two maps

K: 11(A,B) -+ A x 11(xojB) by K(w) = (w(O),F*w),

L: A x 11(xojB) -+ S1(A,B) by L(a,w') = Fa *w'

where for a E A, Fa is a path which will be defined next. We show that
K and L are continuous. Since A is contractible over X to Xo, there is
homotopy F: X x I -+ X such that F(x, 0) = x, F(x, 1) = Xo for every
a E A. Then the map F' : y -+ Fx(t) of X -+ Xl is continuous, where
Fx(t) = F(x, t) and also the map 00 : Xl -+ X defined by oo(w) = w(O)
is continuous. First, in order to show that K is continuous, it is sufficient
to show that given projection map p,q, p. K, q. K are continuous,
where p: A x 11(xojB) -+ A and q: A x O(xojB) -+ S1(xojB). Since
p. K maps w E O(A, B) to w(O) E A by the above statement, this
map is continuous. While q . K is a composition map of the continuous
maps, O(Aj B) -+ A x S1(Aj B) -+ Xl x O(Aj B) -+ O(xoj B). Similarly,
L is also a composition of continuous map, that is, A x O(Xoj B) -+

Xl x S1(xojB) -+ O(AjB). Now we shall show that L·K ~ 10(A;B) and
K . L ~ lAXO(zo;B), L . K maps w E 11(Aj B) to Flo/(o) * Flo/(o) -1 *w'.
But Flo/(o) * Fw(o) -1 is nullhomotopic. Hence Fw(o) * Flo/(o) -1 *W' ~ w',
that is L· K ~ 10(A;B). Also K· L maps (a,w') E A x O(xojB) to
(a, Fa -1 *Fa*W'). Simib:t.rly F II -

1 :fiiFII *W' ~ W'. So K·L ~ lAxO(xo;B).

An H -structure is a couple (X, p.) consisting of a space X and contin­
uous map p. : X x X -+ X which has a following property. There exists
a point e E X such that maps x -+ p.(x, e) and x -+ p(e, x) are both
homotopic to the identity.

LEMMA 4. Let P = {elbotboftbemaps x -+ p.(x,e) and x -+

p.(e, x) are homotopic to Ix}. Tben P is a patb component of X and is
called tbe principal component of tbe H -structure (X, p.).
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Define Comp(X) to be the discrete space of path components of X and
denote the path component containing x E X by [x]. Now we assume
throughout that X is a topological group with the multiplication law
p. : X X X -+ X and Y is a locally compact space. Note that X is an
H-structure with the same multiplication law. We denote p(x, y) by x·y
for any x,y E X.

LEMMA 5. The space XY = {I : Y -+ X II is a continuous} with
composition law p.' : X Y X XY -+ X Y defined by p.'(f, g) = p.(f x g) is
a topological group.

Proof. Since Y is a locally compact, 6 : X Y x Y -+ X defined by
6(f, y) = I(y) is a continuous. Hence the map a : XY X XY X Y -+ X
defined as the following composition map X Y x X Y x Y -+ X x X -+ X
is continuous. Then the associated map a' : X Y X X Y -+ X Y defined
by a'(f,g)(y) = a(f,g,y) for any y E Y is continuous. But a' =p' that
is a'(/,g) = p.'(f,g) for any I,g E Xv. Hence p' is continuous. It is
obvious that the identity in XY is a constant map e' : Y -+ X defined
by e'(y) = e, where e is an identity in X. We define 1-1 for a given
IE XY by 1-1(y) = (f(y»-I. Then I· 1-1(y) = l(y)(f(y»-1 = e, so
I· 1-1 = e' and 1-1 = (f)-I. We must prove that the map I - 1-1 of
XY - XY is continuous. Define p: XY xY -+ X by PJ/' y) = (J(y»-I,
then Pis continuous. Hence the associated map P' : X -+ X Y mapping
I to 1-1 is continuous. For any I, g, h E X Y ,

«I· g) . h)(y) = (f. g)(y) . h(y) = (f(y) . g(y» . h(y)

= I(y) . (g(y). h(y» = I(y)«g· h)(y» = (J. (g . h»(y)

So (f. g). h = I· (g. h).

LEMMA 6. Comp(XY ) is also a topological group.

Prool. Define the multiplication law as following [I] . [g] = [p.'(f. g)] =
[/·g]. Since the multiplication p in X Y is continuous, this multiplication
is well defined. Also the identity in Comp(XY ) is an element [e'] where
e' is the identity in X Y • Then define [/]-1 == [1-1], from the fact
that Comp(XY ) is given the discrete topology, the multiplication map
is continuous.
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THEOREM 7. The principal component P of XY is a normal sub­
group.

Proof. Since the multiplication map p.' : XY xXY -+ X is continuous,
p.'(pxp) is path connected. But p.'(e',e') = e' E P and so p.'(pxp) C P.
Similarly P is also closed under the inverse operation. Hence P is a
subgroup. For any f E XY, define continuous mapping rj, If : X Y -+

XYby

T,(g) = p.'(g,f) = g. I,
If(9) = p.'(J, g) = I· 9 for all 9 E X Y

•

Then we must show that g·l·g-1 E P for each I E P, 9 E XY i.e. Tgofog-l
and Ig o/0g-1 are homotopic to the identity ma.pping, there.is a homotopy
F : X Y x I -+ X Y such that F(g, 0) = g, F(g, 1) = Tf(9) = g. I for each
9EXY.

Now we define a new homotopy G : XY x 1-+ XY between rgofog-l
and the identity mapping as the following composition mapping

Tha.t is G(h, t) = h . F(g, t) . g-l. Then

G(h,O)=h.F(g,O).g-1 =h·g·g-1 =h

G(h, 1) = h· (g. f). g-1 = h· (g. I· g-l) = rg%g-l(h).

Similarly we can show that Igo/0g-1 is homotopic to the identity mapping.
Therefore g. I· g-1 E P.

THEOREM 8. Comp(XY) is isomorphic to XY /P.
Proof. Define cp : X Y/ P -+ Comp(XY) by cp(J . p) = [f]. Suppose

that for any I,g E XY, I· p = 9 . p i.e., f- 1 • 9 E P. Then we must
show that [I] = cp(J . p) = cp(g . p) = [g]. Since 1-1 . gE P, rf-l og '"
identity. Let F : XY x I -+ XY be a homotopy between rf-l,g and
the identity such that F(h,O) = h, F(h, 1) = rj-l.g(h) = h· (J-l . g).
Then F(J,O) = I, F(J,I) = I· (J-l . g) = g. Hence F(J,O) : 1-+ X Y

is a path in X Y consisting I and 9 i.e., f ~ g. Therefore [I] = [g],
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tp((f.p).(g.p» = tp(((f·g)·g)·p) = [f.g] = [f]·[g] = (tp(f.p».(tp(g.p)).
So tp is also a group homomorphism. tp is obviously surjective. Suppose
that for any f, 9 E XY, tp(f . p) = [e'l i.e., [f] = [e'l. Then there is a
homotopy F: Y x I -t x such that F(y,O) = fey), F(y, 1) = e'(y) = e.
The associated map F' : I -t X Y defined by (F'(t))(y) = F(y, t) is a
continuous path in X Y from f to e'. Now define G : X Y x I -t X Y by
G(h, t) = p.'(g. F'(t)) = 9 . F'(t). Then

G(h,O) = f· F'(O) = g. f = r/(g),

G(h,1) = 9 . F' (1) = g. e' = g.

Hence r / ~ identity. Similarly we can show that 1/ ~ identity. Therefore
tp is injective.
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