Comm. Korean Math. Soc. 8 (1993), No. 2, pp. 329-333

THE PRINCIPAL COMPONENT OF AN *H*-STRUCTURE

KYU BUM HWANG

We consider structures consisting of a space X together with a multiplication $\mu: X \times X \to X$ that has a simple homotopy property. Such structures include, as special cases, both topological groups and path spaces. Then the loop spaces are topological spaces in which a continuous multiplication, the composition of two paths into one, is defined. A topological group is another example of a space in which a continuous composition law is defined.

In this paper, the principal component of the *H*-structure is defined and the relationships between *H*-structures and topological groups will be investigated. A path in X is an element of $X^{I} = \{f : I \to X | f :$ continuous map}. The product of two paths f, g written f * g is defined only in case f(1) = g(0) and is the path

$$f * g = \begin{cases} f(2t) & 0 \le t \le 1/2, \\ g(2t-1) & 1/2 \le t \le 1. \end{cases}$$

The inverse of a path $f \in X^{I}$ is the path $f^{-1} \in X^{I}$ defined by the rule $f^{-1}(t) = f(1-t), 0 \le t \le 1$. We take X^{I} with the compact open topology. Given $a, b \in X$, $\Omega(X; a, b)$ is the subspace of X^{I} consisting of all paths starting a and ending b. In case a = b, $\Omega(X; a, a)$ is written simply $\Omega(X; a)$ and is called the loop space of X bases at a. For any two paths, we denote $f \sim g$ if they belong to the same path component of X^{I} , that is, f is homotopic to g.

LEMMA 1. The map $f \to f^{-1}$ of $\Omega(X; a, b) \to \Omega(X; b, a)$ is a homeomorphism. The mapping $(f,g) \to f * g$ of $\Omega(X; a, b) \times \Omega(X; b, c) \to \Omega(X; a, c)$ is continuous.

Received February 11, 1992.

LEMMA 2. The map $f \to f * f^{-1}$ of $\Omega(X; a, b) \to \Omega(X; a)$ is null-homotopic and so also is the map $f \to f^{-1} * f$, where $f^{-1} : I \to X$ is defined $f^{-1}(t) = f(1-t)$.

THEOREM 3. For any two subsets of A, B of X, let $\Omega(A, B) = \{f \in X^I | f(0) \in A, f(1) \in B\}$. If A is contractible over X to x_0 , then $\Omega(A, B)$ and $A \times \Omega(x_0; B)$ are of the same homotopy type.

Proof. Define two maps

$$\begin{split} &K: \Omega(A,B) \to A \times \Omega(x_0;B) \quad \text{by} \quad K(\omega) = (\omega(0), F * \omega), \\ &L: A \times \Omega(x_0;B) \to \Omega(A,B) \quad \text{by} \quad L(a,\omega') = F_a * \omega' \end{split}$$

where for $a \in A$, F_a is a path which will be defined next. We show that K and L are continuous. Since A is contractible over X to x_0 , there is homotopy $F: X \times I \to X$ such that F(x, 0) = x, $F(x, 1) = x_0$ for every $a \in A$. Then the map $F': y \to F_X(t)$ of $X \to X^I$ is continuous, where $F_X(t) = F(x,t)$ and also the map $\delta_0: X^I \to X$ defined by $\delta_0(\omega) = \omega(0)$ is continuous. First, in order to show that K is continuous, it is sufficient to show that given projection map $p, q, p \cdot K, q \cdot K$ are continuous, where $p: A \times \Omega(x_0; B) \to A$ and $q: A \times \Omega(x_0; B) \to \Omega(x_0; B)$. Since $p \cdot K$ maps $\omega \in \Omega(A, B)$ to $\omega(0) \in A$ by the above statement, this map is continuous. While $q \cdot K$ is a composition map of the continuous maps, $\Omega(A; B) \to A \times \Omega(A; B) \to X^I \times \Omega(A; B) \to \Omega(x_0; B)$. Similarly, L is also a composition of continuous map, that is, $A \times \Omega(x_0; B) \rightarrow \Omega(x_0; B)$ $X^{I} \times \Omega(x_{0}; B) \to \Omega(A; B)$. Now we shall show that $L \cdot K \simeq 1_{\Omega(A;B)}$ and $K \cdot L \simeq 1_{A \times \Omega(x_0;B)}, L \cdot K \text{ maps } \omega \in \Omega(A;B) \text{ to } F_{\omega(0)} * F_{\omega(0)}^{-1} * \omega'.$ But $F_{\omega(0)} * F_{\omega(0)}^{-1}$ is nullhomotopic. Hence $F_{\omega(0)} * F_{\omega(0)}^{-1} * \omega' \simeq \omega'$, that is $L \cdot K \simeq 1_{\Omega(A;B)}$. Also $K \cdot L$ maps $(a, \omega') \in A \times \Omega(x_0; B)$ to $(a, F_a^{-1} * F_a * \omega')$. Similarly $F_a^{-1} * F_a * \omega' \simeq \omega'$. So $K \cdot L \simeq 1_{A \times \Omega(x_0;B)}$.

An *H*-structure is a couple (X, μ) consisting of a space X and continuous map $\mu: X \times X \to X$ which has a following property. There exists a point $e \in X$ such that maps $x \to \mu(x, e)$ and $x \to \mu(e, x)$ are both homotopic to the identity.

LEMMA 4. Let $P = \{e \mid both of the maps x \to \mu(x, e) and x \to \mu(e, x)$ are homotopic to 1_X . Then P is a path component of X and is called the principal component of the H-structure (X, μ) .

330

Define $\operatorname{Comp}(X)$ to be the discrete space of path components of X and denote the path component containing $x \in X$ by [x]. Now we assume throughout that X is a topological group with the multiplication law $\mu: X \times X \to X$ and Y is a locally compact space. Note that X is an H-structure with the same multiplication law. We denote $\mu(x, y)$ by $x \cdot y$ for any $x, y \in X$.

LEMMA 5. The space $X^Y = \{f : Y \to X | f \text{ is a continuous}\}$ with composition law $\mu' : X^Y \times X^Y \to X^Y$ defined by $\mu'(f,g) = \mu(f \times g)$ is a topological group.

Proof. Since Y is a locally compact, $\delta: X^Y \times Y \to X$ defined by $\delta(f, y) = f(y)$ is a continuous. Hence the map $\alpha: X^Y \times X^Y \times Y \to X$ defined as the following composition map $X^Y \times X^Y \times Y \to X \times X \to X$ is continuous. Then the associated map $\alpha': X^Y \times X^Y \to X \times X \to X$ is continuous. Then the associated map $\alpha': X^Y \times X^Y \to X \times X \to X$ is continuous. Then the associated map $\alpha': X^Y \times X^Y \to X \times X \to X$ defined by $\alpha'(f,g)(y) = \alpha(f,g,y)$ for any $y \in Y$ is continuous. But $\alpha' \equiv \mu'$ that is $\alpha'(f,g) = \mu'(f,g)$ for any $f,g \in X^Y$. Hence μ' is continuous. It is obvious that the identity in X^Y is a constant map $e': Y \to X$ defined by e'(y) = e, where e is an identity in X. We define f^{-1} for a given $f \in X^Y$ by $f^{-1}(y) = (f(y))^{-1}$. Then $f \cdot f^{-1}(y) = f(y)(f(y))^{-1} = e$, so $f \cdot f^{-1} = e'$ and $f^{-1} = (f)^{-1}$. We must prove that the map $f \to f^{-1}$ of $X^Y \to X^Y$ is continuous. Define $\beta: X^Y \times Y \to X$ by $\beta(f, y) = (f(y))^{-1}$, then β is continuous. Hence the associated map $\beta': X^Y \to X^Y$ mapping f to f^{-1} is continuous. For any $f, g, h \in X^Y$,

$$((f \cdot g) \cdot h)(y) = (f \cdot g)(y) \cdot h(y) = (f(y) \cdot g(y)) \cdot h(y)$$
$$= f(y) \cdot (g(y) \cdot h(y)) = f(y)((g \cdot h)(y)) = (f \cdot (g \cdot h))(y)$$

So $(f \cdot g) \cdot h = f \cdot (g \cdot h)$.

LEMMA 6. $\operatorname{Comp}(X^Y)$ is also a topological group.

Proof. Define the multiplication law as following $[f] \cdot [g] = [\mu'(f \cdot g)] = [f \cdot g]$. Since the multiplication μ in X^Y is continuous, this multiplication is well defined. Also the identity in $\operatorname{Comp}(X^Y)$ is an element [e'] where e' is the identity in X^Y . Then define $[f]^{-1} \equiv [f^{-1}]$, from the fact that $\operatorname{Comp}(X^Y)$ is given the discrete topology, the multiplication map is continuous.

Kyu Bum Hwang

THEOREM 7. The principal component P of X^{Y} is a normal subgroup.

Proof. Since the multiplication map $\mu': X^Y \times X^Y \to X$ is continuous, $\mu'(pxp)$ is path connected. But $\mu'(e', e') = e' \in P$ and so $\mu'(pxp) \subset P$. Similarly P is also closed under the inverse operation. Hence P is a subgroup. For any $f \in X^Y$, define continuous mapping $r_f, 1_f : X^Y \to X^Y$ by

$$egin{aligned} r_f(g) &= \mu'(g,f) = g \cdot f, \ 1_f(g) &= \mu'(f,g) = f \cdot g & ext{for all} \quad g \in X^Y. \end{aligned}$$

Then we must show that $g \cdot f \cdot g^{-1} \in P$ for each $f \in P$, $g \in X^Y$ i.e. $r_{g \cdot f \cdot g^{-1}}$ and $1_{g \cdot f \cdot g^{-1}}$ are homotopic to the identity mapping, there is a homotopy $F : X^Y \times I \to X^Y$ such that F(g, 0) = g, $F(g, 1) = r_f(g) = g \cdot f$ for each $g \in X^Y$.

Now we define a new homotopy $G: X^Y \times I \to X^Y$ between $r_{g \cdot f \cdot g^{-1}}$ and the identity mapping as the following composition mapping

$$X^Y \times I \to X^Y \times \{g\} \times I \to X^Y \times X^Y \to X^Y \to X^Y \times \{g^{-1}\} \to X^Y.$$

That is $G(h,t) = h \cdot F(g,t) \cdot g^{-1}$. Then

$$G(h,0) = h \cdot F(g,0) \cdot g^{-1} = h \cdot g \cdot g^{-1} = h$$

$$G(h,1) = h \cdot (g \cdot f) \cdot g^{-1} = h \cdot (g \cdot f \cdot g^{-1}) = r_{g \cdot f \cdot g^{-1}}(h).$$

Similarly we can show that $1_{g \cdot f \cdot g^{-1}}$ is homotopic to the identity mapping. Therefore $g \cdot f \cdot g^{-1} \in P$.

THEOREM 8. Comp (X^Y) is isomorphic to X^Y/P .

Proof. Define $\varphi: X^Y/P \to \operatorname{Comp}(X^Y)$ by $\varphi(f \cdot p) = [f]$. Suppose that for any $f, g \in X^Y$, $f \cdot p = g \cdot p$ i.e., $f^{-1} \cdot g \in P$. Then we must show that $[f] = \varphi(f \cdot p) = \varphi(g \cdot p) = [g]$. Since $f^{-1} \cdot g \in P$, $r_{f^{-1} \cdot g} \sim$ identity. Let $F: X^Y \times I \to X^Y$ be a homotopy between $r_{f^{-1},g}$ and the identity such that F(h,0) = h, $F(h,1) = r_{f^{-1},g}(h) = h \cdot (f^{-1} \cdot g)$. Then F(f,0) = f, $F(f,1) = f \cdot (f^{-1} \cdot g) = g$. Hence $F(f,0): I \to X^Y$ is a path in X^Y consisting f and g i.e., $f \simeq g$. Therefore [f] = [g],

332

$$\begin{split} \varphi((f \cdot p) \cdot (g \cdot p)) &= \varphi(((f \cdot g) \cdot g) \cdot p) = [f \cdot g] = [f] \cdot [g] = (\varphi(f \cdot p)) \cdot (\varphi(g \cdot p)). \\ \text{So } \varphi \text{ is also a group homomorphism. } \varphi \text{ is obviously surjective. Suppose that for any } f, g \in X^Y, \ \varphi(f \cdot p) = [e'] \text{ i.e., } [f] = [e']. \\ \text{Then there is a homotopy } F: Y \times I \to x \text{ such that } F(y,0) = f(y), \ F(y,1) = e'(y) = e. \\ \text{The associated map } F': I \to X^Y \text{ defined by } (F'(t))(y) = F(y,t) \text{ is a continuous path in } X^Y \text{ from } f \text{ to } e'. \\ \text{Now define } G: X^Y \times I \to X^Y \text{ by } G(h,t) = \mu'(g \cdot F'(t)) = g \cdot F'(t). \\ \text{Then} \end{split}$$

$$G(h,0) = f \cdot F'(0) = g \cdot f = r_f(g),$$

$$G(h,1) = g \cdot F'(1) = g \cdot e' = g.$$

Hence $r_f \simeq$ identity. Similarly we can show that $1_f \simeq$ identity. Therefore φ is injective.

References

- 1. B. Gray, Homotopy Theory, Academic Press, New York, 1975.
- 2. J. Dugundji, Topology, Allyn and Bacon. Boston, 1970.
- 3. G. E. Bredon, Introduction to compact transformation group, Academic Press, New York, 1972.
- 4. E. Spanier, Algebraic Topology, MacGraw-Hill, New York, 1966.
- 5. J. Siegel, G-spaces, H-spaces and W-spaces, Pacific J. Math. 31 (1969), 209-214.

Department of Mathematics Korea Military Academy Seoul 139–799, Korea