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COMPLETE DIFFERENTIAL SYSTEMS

FOR CERTAIN ISOMETRIC IMMERSIONS

OF RIEMANNIAN MANIFOLDS

CHUNG-KI CHO, CHONG-KVU HAN AND JAE-NvUN Yoo

o. Introduction

In this paper, we construct complete differential systems for certain
rigid isometric immersions of smooth (COO) Riemannian manifolds. A
complete differential system for a given system of partial differential
equations (PDE) is a Pfaffian system in a jet space of sufficiently high
order such that every smooth solution of the PDE system corresponds
to an integral manifold of the Pfaffian system. Thus by constructing
a complete system one reduces the PDE problem including the exis­
tence and the regularity of solutions to an ODE problem. In §1, we
present several examples of complete systems., In particular, we present
a simplest example of E. Cartan's equivalence problem from which the
authors learned of the idea of complete systems. Example 1.6 shows
that an equivalence between Riemannian manifolds satisfies a complete
differential system of order 2. Now we take up the question whether a
locally rigid isometric immersion (Definition 2.1) of a Riemannian mani­
fold into a higher dimensional Riemannian manifolds satisfies a complete
system. Let (M,g) and (M,g) be Riemannian manifolds of dimension
n an~n, respectively. Let x and x~e local coordinate systems of M
and M, respectively. Let f : M -+ M be a smooth mapping. In terms
of coordinates x and x, write f = (P, ... ,fii

). Then f is an isometric
immersion if P, ... , fn satisfies

(1) for each i,j = 1, ... , n.
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If a solution f of (1) is rigid at P EM then the 1-jet at P determines f.
The problem is whether the 2-jet of f depends on the 1-jet in a smooth
manner if f is locally rigid.

In this paper, we giv~affirm.a.tive answers to the question, firstly, in
the case that n= n +1, M is the Euclidean space and f(M) has at least
three nonzero principal curvatures and secondly, in the case that M is a
locally homogeneous space.

A complete differential system written in the form of PDE is an ellip­
tic system. N. Tanaka, in [Tal, defined an isometric immersion f : Mn -+

R N to be elliptic if for every normal direction to f(M) the second fun­
damental form has two eigenvalues of same sign. Let f : Mn -+ RN be
a smooth isometric immersion. The implications among these notions
are as follows : Let

i) f satisfies a complete system of order 2,

ii) (1) prolongs to a second order system which is elliptic at f,
iii) f is locally rigid,

iv) f is elliptic in Tanaka's sense.

Then iii) :::> i) is our conjecture of which Theorem 2.2 and Theorem 3.1
are proofs for special cases, i):::> iii) is shown in [CHY) in the case of
codimension 1, i) :::> ii) is trivial, iv) => ii) is shown in [CH1] and iv) =>
iii) is true under an additional condition that f is infinitesimally rigid
[Ta]. All manifolds in this paper are assumed to be smooth(CCX».

1. Compatibility equations and Complete Systems

Let f be a smooth (CCX» mapping from an open subset X of R n to
an open subset U of Rm. Let x = (xl, ... ,xn ) and u = (ul, ... ,um )

be the standard coordinates of R n and R m, respectively. Let f( x) =
(jl(x), ... , fm(x». Let Uk be the space of all the different k-th order
partial derivatives of the component of f at' a point x. Set U(q) =
U x Ul X ••• x Uq be the Cartesian product space whose coordinates
represent all the derivatives of a mapping u = f(x) of all orders from 0
to q. A point in U(q) will be denoted by u(q). The space Jf(X, U) =
X x U(q) is called the q-th order jet space of the space X x U. If
f: X -+ U is smooth, jf f: X -+ XXU(f) defines a smooth section. This
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smooth section i qf induced by f is called by the q-graph of f. Consider
a system of partial differential equations of order q (q 2:: 1) for unknown
functions u = (u l , ... , um) of independent variables x = (xl, ... ,xn ),

(1.1) ,\ = 1, ... , 1,

where ~~(x,u(q» are smooth functions in their arguments. Then ~ =
(~I, ... ,~,) can be viewed as a smooth map from X x U(q) into R',
so that the given system of partial differential equations describes the
subset Sf!. of zero set of ~~ in X x U(q), called the solution subvariety
of (1.1). From this point of view, a smooth solution of (1.1) is a smooth
map f: X -+ U whose q-graph is contained in Sf!..

A differential function P(x, u(q» of order q defined on X x U(q) is a
smooth function of x, u, and derivatives of u up to order q. The total
derivatives of P(x, u(q» with respect to xi is the unique smooth function
DiP(x, u(q+!» defined by

(q+I» _ lJP ~m~ a lJPDiP(X,U =~ + uJi-;;-,vx l , vu4

a=1 J J

where J = (iI, ,jn) is a multi-index such that IJI ~ q and J, i =
(iI, ... ,ii+1, ,in). For each nonnegative integer r, the rth-prolonga-
tion ~(r) of the system (1.1) is the system consisting of all the total
derivatives of (1.1) of order up to r. Let (~(r» be the ideal generated
by ~(r) ofthe ring of differential functions on X X u(q+r). IT ii E (~(r»

for some r, the equation

(1.2)

is called a compatibility equation for (1.1) in the sense that any smooth
solution of (1.1) must satisfy (1.2). IT k is the order of the highest
derivative involved in ii, we call (1.2) a compatibility equation of order
k.

We now define the complete system.
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DEFINITION 1.1. We say that a C k (k ~ q) solution f of (1.1) satis­
fies a complete system of order k if there exist compatibility equations
of order k of (1.1),

(1.3) - (k)6,,(x, u ) = 0, II = 1, ... , N

which can be solved for all the k-th order partial derivatives as smooth
functions of lower order terms at f, namely, for each a = 1, ... , m and
for each multi-index J with IJ\ = k,

(1.4) fj = Hj(x,f(p) : p < k)

for some function Hj which is smooth in its arguments.

Any system of partial differential equations can be expressed as an ex­
terior differential system with an independence condition (see [BeGGGD.
Solving the given system of partial differential equations (1.1) is equiva­
lent to finding an integral manifold of the corresponding exterior differ­
ential system

n

duj - L uj,idxi =°
i=l

for all multi-index I with 11\ < q and a = 1, ... ,m, with an independence
condition dXl A ••• A dXn =F 0 on Sa. If a solution of (1.1) satisfies a
complete system of order k and Sk, a solution variety of (1.3), is a
submanifold of k-th order jet space Jq(X, U) then we have a special
form of Pfaffian system on Sk.

n

dua
- L ujdxi =0,

i=1

(1.5) n

duj - L uj,;dxi = 0,
;=1

n

duj - L Hj,idxi = 0,
i=1

III = k - 2,

III = k-1.



Complete Differential Systems 319

with an independence condition dx1 A· .. Adxn ::f: 0, where H2,i are as in
(1.4). Thus a solution u = I(x) of (1.1) of class Ck satisfies a complete
system of order k if and only if

(x) ...... (x,/(x),Ehl(x): IJI < k -1)

is an integral manifold of the Pfaffian system (1.5). In particular, we
have

PROPOSITION 1.2. Let I be a solution 01(1.1) of class C k • Suppose
that I satisfies a complete system (1.4), then I is Coo. Furthermore, if
(1.1) is real analytic and each H' is real analytic then I is real analytic.

We now give some examples of complete systems.

EXAMPLE 1.3. Any ordinary differential equation

F(x,y,y', ... ,y(S» =0

with 8F/fJy(s) ::f: 0, is a complete systems of order s.

EXAMPLE 1.4. Let M be a manifold with an affine connection \I. A
vector field X is said to be parallel if

(1.6) \Ix =0.

Then (1.6) is a complete system of order 1.

EXAMPLE 1.5. Let M be a Riemannian manifold of dimension n with
metric g. A vector field X is called an infinitesimal isometry if

(1.7) Lxg = o.

In [Han], it is shown that the first prolongation of (1.7) forms a complete
system of order 2.

EXAMPLE 1.6. Let (M, g) and (M, g) be Riemannian manifolds of
dimension two. The so-called equivalence problem in this case is deter­
mining whether an isometry exists between M and M. To solve this,
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let {wI, w2} and {wI, w2} be orthonormal coframe on M and M, respec­
tively. There exist an isometry I :M -. M if"and only if

(1.8)

!*w1 =cospw1 + sinpw2
,

!*w2 = - sin P wI + cos P w2,

for some angle p. In terms of local coordinates x and !i of M and M,
t · I I t i ~2 i dx j - i ~2 -i d- j £ • 1 2respec Ive y, e w = L..Jj=l aj ,w = L..Jj=l aj x , lor z = , .

Then (1.8) becomes
(1.9)

( alo l a~o/) (~ ~) = (cos p sin p ) (al<x) a~(x»)
a~ 0 I a~ 0 I 8/: 8/; - sinp cosp aHx) a~(x)

8x 8x

which is a system of four equations for three unknowns jl, P and p.
Finding such (I, p) is the so-called equivalence problem of Riemannian
structures. Here we present E.Cartan's method to this problem. Con­
sider differential forms OJ, j = 1, 2, 3 on M X 8 1 :

0 1 = cos8w1 + sin8w3
,

0 2 = -sin8w1 +cos8w2
,

and
0 3 == d8 + awl + bw2

,

where 8 is the coordinate for 81 and a and b are smooth functions on
M defined by dw l = awl 1\ w2 and dw2 = bw1 1\ w2 • Then we have
dOl = 0 3 1\ 0 2 , 0 2 = -03 1\ 0 1 and 0 3 = K01 1\ 0 2 where K is
independent of 8. We put tilde on the corresponds notions of M. H
(I,p) is a solution of (1.8), then F : M X 8 1 -. M X 81 defined by
F(p, 8) = (f(p), 8 - p(p» satisfies

(1.10) j = 1,2,3.

Conversely, if a mapping F: M X 81 -. M X 81 satisfies (1.10) then F is
of the form (/(p), 8 - p(p», where I :M -. M satisfies (1.8) (d. [JAC]).
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To find a complete system for I we substitute 03 = d6 + awl + liz,2 in
F*fl3 = 0 3 to get

dB - dp.+(a 0 f) j*w l + (b 0 f) j*w2

=dB +a(x)w l +b(x)w2.

Thus,

(1.11)

dp. = [(a 0 f) cos p. - (b 0 f)sinp. - a(x )]w1

+ [(a 0 f)sinp. - (bo f)cosp. - b(x)]w2.

Express (1.9) as
- oji

[A 0 IHox;] = T(p. )A(x ).

Apply d to (1.9) to get

- ali - aji
(1.12) d[A 0 I][~] + [A 0 fld[-a.] = T'(p)dpA(x) +T(p.)dA(x).

(iX' x'
In (1.12) substitute (1.11) for dp. and [A 0 IH~HA(x)]-1 for T(p.) and

solve for d[ ~C] to get a complete system of order 2 for f.

2. Complete Systems for Certain Rigid Isometric Immer­
sions.

In this section we give a partial answer to the question on the re­
lationship between rigidity of isometric immersions and existence of a
complete system.

DEFINITION 2.1. Let M be a Riemannian manifold of dimension n
and M be a Riemannian manifold of dimension n, n ~ n. Let P be a
point of M. An isometric immersion I :M --+ M is said to be rigid at
P if for any open neighborhood N of P in M there exists an open set
N' with PEN' c N having the following property : HI: N' --+ M
is any isometric immersion of N' into M, there exists an isometry T of
M such that 1= T 0 I. I is said to be locally rigid if I is rigid at each
point of M.
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In the case that M=R n+l , we show that if an isometric immersion f
has at least three nonzero principal curvatures then f satisfies a complete
system of order 2. It is well known that if f has three nonzero principal
curvatures then f is rigid (d. [Sp]). In this case, the Gauss equations
and the first prolongation of local isometric immersion equations form a
complete system.

Let (M, g) be a Riemannian manifold ofdimension n with a coordinate
system (xl, ... , x n). An isometric immersion I = (jl, ... ,In+!) :
M -+ Rn+l is an immersion given locally by the functions r'(x),a =
1, ... , n + 1 satisfying
(2.1)

d: i,j = 1, ... ,n.

The Gauss' equations are known as compatibility equations of order
2, which are obtained from the equations of the second prolongation of
(2.1) and eliminating the third order terms (see [CHI]). We write these
equations as follows :

n+l
(2.2) (i,j, k, 1) =L {/ik(x)· Ij,(X) - lii(x)· Ijk(X)} - Gijkl(X) = 0,

a=l

where

G ()
- 1{82gi1 fPgik fPgjk fP 9j1 }

i °kl X - - . + - - .
1 - 2 8Xi8xk 8xj8xl 8xi8xl 8xj8xk

We observe that the number of non-trivial Gauss' equations is n2(~;-1).
Our result is the following

THEOREM 2.2. Let (M,g) be a Riemannian manifold of dimension
n (n ~ 3). If there is an isometric immersion I : M -+ Rn+l of class
C2 such that I(M) has at least three nonzero principal curvatures at
each point, then the system oflocal isometric embedding equations (2.1)
satisfies a complete system of order 2. Furthermore, I E C(X).

Proof. The problem is local, so we may assume that M is an open
set of R n containing the origin. Let I be an isometric immersion of
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class C2 such that I(M) has at least three nonzero principal curvatures.
Without loss of generality, we may assume that three nonzero principal
curvatures, AI, A2' and A3' correspond to principal directions I. ee ,

:1:1

I. 00 ,and I. eO • We consider the set of equations which consists of the
:1:2 :1:3

first prolongation ~(1) of (2.1) and the Gauss' ~quations (2.2). Note that
the number of second derivatives of I is (n+ 1)n(n +1)/2 and the number
of equations of the first prolongation of (2.1) is nn(n + 1)/2. We add
n(n + 1)/2 equations from the Gauss equations to ~(1), as compatibility
equations, denote the totality by ~, and view ~ as (n + l)n(n + 1)/2
set of smooth functions on the 2-jet space pen, Rn+l), namely,

~ : U(I) X U
2

-+ R(n+l)n(n+l)!2

where U(1) and U2 are as in §l. Now we will express all the second
derivatives of I by applying the implicit function theorem to~. It
is sufficient to show that the Jacobian matrix J(~) of ~ with respect
to the second order derivatives is nonsingular at (0,/(0), /;(0), f;j(O».
Since the principal directions are I. -00 , I. -eo , and I. -oe , we choose

:1:1 %2 :1:3

n(n + 1)/2 equations from Gauss' equations (2.2) as a row vector as
follows:

(2,3,2,3), and (1, k, 1, k) for k = 2, ,n,
(3,1,3,2), and (2,1,2, k) for k = 3, , n,

(l,j, 1, k) for j = 2, , n - 1 and k = j +1, ... , n.

Then at (0,/(0), fiCO), lij{O» we have

- (A 0)J(~) = 0 B '

where the block A corresponds to ~(1), the block B does to the Gauss
equations chosen above, and the size of A is n n(n

2
+l) x n n(n

2
+l) and that

of B is n(n
2
+1) x n(n

2
+l). The block B is of the form

B1

B=
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where all other elements are zero. The n x n matrix B I is obtained by
the differentiation with respect to uri' second jet coordinates, of the :first
n equations of the equations chosen above, (n - 1) x (n - 1) matrix B2
is obtained by the same method from the next n - 1 equations, and for
each k = 3, ... , n, (n - (k - 1» x (n - (k - I)} matrix B" is obtained
by the same scheme from the next n - k + 1 equations. Each block has
following form, with all other elements are zero except *,

o A3 A2
A2 Al 0
A3 0 Al

BI = * Al

*

J.
J.

It is easy to see that the block A is of rank n n(n
2
+!) since we can assume

that 1;(0) = 6: for a = 1, ... ,n and B is nonsingular since there is at
least three nonzero AI, A2, and A3 at the reference point. Therefore, for
all a = 1, ... ,n + 1, i,j = 1, ... ,n we have

lij = Hij(x, I: :k = 1, ... , n, b = 1, ... , n +1),

where each Hij is a smooth function in its arguments, which is a complete
system of order 2. The last assertion comes from the Proposition 1.2.
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3. Complete Systems for Rigid Immersions of Locally Ho­
mogeneous Spaces into Riemannian Manifolds

In this section we show that if a Riemannian manifold has a set of in­
finitesimal isometries which span the whole tangent space at each point,
then a locally rigid isometric immersion satisfies a complete system of
order 1.

THEOREM 3.1. Suppose that (M,g) is a Riemannian manifold of di­
mension n and f : M ---+ M is a C1 isometric immersion of M into a
Riemannian manifold (M,y) of dimension ii, ii;::: n. Let g be the set of
infinitesimal isometries of M and let P EM. Suppose that g span T M
and that f is rigid at P. Then there exists an open neighborhood 0 of
P in M such that the C1 isometric immersions of 0 into M satisfies a
complete system of order 1.

To prove the Theorem 3.1 we need the following

LEMMA 3.2. Suppose that (M,g) is a Riemannian manifold of di­
mension n and f : M ---+ M is a C 1 isometric immersion of M into a
Riemannian manifold (M,y) of dimension ii, ii ;::: n. Suppose that f is
rigid at P E M and X is an infinitesimal isometry of M. Then there is
an open neighborhood N of P in M and an infinitesimal isometry X of
M such that X(f(m» = f.(X(m» at each mEN.

Proof of Lemma 3.£. Let X t denote the flow of X in M. There exist
an neighborhood N of P in M and a positive real number to such that
the flow X t is well defined for all t E (-to, to) at each mEN. For each
t E (-to, to) the map

it := f 0 X t : N ---+ M

is an isometric immersion of N into M. By the hypothesis that f is
rigid at P, there exists an isometry Tt in M such that it = Tt 0 f on a
neighborhood N of P with N eN. Define a vector field X on M by

- dlX(m) := - Tt(m),
dt t=O

mEM.
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Then X is an infinitesimal isometry of if and

- did I -X(f(m» = -d Tt(f(m» = -d ft(m)
t t=o t t=o

= dd I (f 0 Xt)(m) = f*(X(m»
t t=o

at each mEN.

Proof of Theorem 9.1. Choose infinitesimal isometries Xj, j = 1, ... ,
n on M such that Xj(P)'s are linearly independent. There exists a
neighborhood N of Pin M such that X/s are linearly independent at
each mEN. By the Lemma 3.2 there exist infinitesimal isometries X/s
on if such that

(3.1)

Choose coordinate systems (Xl, ... , x n ) on a neighborhood 0 of P con­
tained in N and (xl, ... ,xn) on a neighborhood 6 of f( P) in if. In
these local coordinates, we set f, Xj, and Xj as f = (P, ... , fn),

n . lJ - n -A - lJ
Xj = 2:i=l {i(x)azr, and Xj = 2:A=l ej(x)lJiX ' From (3.1) we have

t {t;(f(x»} a=A = Xj(f(x» = f.(Xj(x»
A=l

(

n. a )
=f. ~ej(X)axi

n {n i alA } a
= ~ ttej(X) axi (x) axA

on f(O). Thus

n afA
l;(f(x» = I:e;(X) axi (x), A=1, ... ,n, j=1, ... ,n.

i=l
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on o. So we obtain a system of partial differential equations
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.A = 1, ... , n, j = 1, ... , n.

Since X;'s are linearly independent on 0, the matrix [ej(x)] is invertible
at each x EO. Therefore f satisfies a complete system of order 1.

A locally homogeneous space M is a Riemannian manifold which sat­
isfies the following property: for all x E M, there exists a neighborhood
of x in M such that for each point x in that neighborhood, there exists
an isometry of M sending x to x. For example, symmetric spaces are
locally homogeneous (see [Dub]). It is easy to see that the set of infin­
itesimal isometries of a locally homogeneous space M span TM. Thus
we have the following

COROLLARY 3.3. Suppose that (M, g) is a locally homogeneous space
of dimension n and f : M --+ AI is a Cl isometric immersion of Minto
a Riemannian manifold (.AI,y) of dimension n, n ~ n. Suppose that f
is rigid at P EM. Then f is indeed smooth in a open neighborhood of
PinM.
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