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IDENTIFIABILITY OF RETARDED
FUNCTIONAL DIFFERENTIAL EQUATION

DonG Hwa KiMm

1. Introduction

Let H and V be complex Hilbert spaces such that V is a dense sub-
space of H with continuous imbedding in H. The inner product and
norm in H are denoted by (f,g) and |f|, and those in V are by ((u,v))
and ||v]|. If X and Y are two Banach spaces, B(X,Y) denotes the set
of bounded linear mappings of X into Y, and B(X) = B(X, X).

Let a(u,v) be a bounded sesquilinear form defined on V x V and
satisfying Garding inequality

Rea(u,u) > collull® —e1Juf’, ¢ >0, >0

for any u,v € V. We define the operator Ay as follows:

Given u € V. H there exists an element f of H so that a(u,v) = (f, v)
for all v € V, then u € D(Ap) and Au = f.

Using an element f € V*, we can extend the operator Ay to an
operator on V into V*. This extension of Ay is also denoted by the same
letter Ag. It is well known that A, generates an analytic semigroup
in both H and V*. We may assume that 0 € p(Ap) according to the
Lax-Milgram theorem where p(A,) denotes the resolvent set of A,.

The object of this paper is to construct some results on the iden-
tifiability for the following retarded functional differential equation of
parabolic type

(1.1)
0
G40 = Aou) + Auut =)+ [ als)Au(t + 5)ds, t€ (0,T),
—h
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where the operators A; and A; are bounded liner operators from V
to V* and the real function a(s) is assumed to be Holder continuous in
[-h,0]. The equation may be considered as an equation in both H and V*.
In [3,6] the fundamental results on the structural operator for the linear
retarded functional differential equation was established. Recently, many
authors have discussed the structural properties for retarded system (see
(1,...,6]). In the paper G.Di Blasio, K.Kunisch and E.Sinestrari [1] they
have developed an excellent state space theory for retarded system in the
product space F x L?(—h,0; D(A)),h > 0 (where F = D4(1/2,2) is the
Lions real interpolation space between D4 and H). The main theory
is based on constructing a solution semigroup in F x L%(—h,0; D(4)).
Thus, in section 2 we define semigroup S(¢) in Z = H x L%(—h,0;V)
and deal with the spectrum of the infinitesimal generator A of S(t). We
shall give that

o(A) = 0.(A)Uo,y(A)

where each nonzero point of o.(A4) is a cluster point of o(A) and o,(4)
consists only of discrete eigenvalues. In section 3 we study the problem of
completeness of generalized eigenspaces of infinitesimal generator A. We
obtain that the condition of the completeness of generalized eigenspaces
of between the infinitesimal generators A and Ay is the necessary and suf-
ficient property. In order to obtain the condition for identifiability of the
equation (1.1) we use the method which S. Nakagiri and M. Yamamoto [4]
developed in the product space X x L%(—h,0; X). We establish the nec-
essary and sufficient condition for identifiability is given as the so-called
rank condition in terms of the multiplicity of eigenvalues.

2. Classification of spectrum
Consider the following linear retarded functional differential equation

with initial values
(2.1) %u(t) =Aou(t) + Aju(t — k)

0
+ [ a(s)Azu(t +5)ds, te (0T,
(2.2) u(0) =¢®, u(s)=g'(s) s€[-h0),
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where each operators is defined in section 1 and g = (¢°%,¢) € Z. Ac-
cording to [5] the fundamental solution W(t) of (2.1), (2.2) can be con-
structed. It is easily seen that the space

{feve: /o ll4o exp(tAo)fi2dt < oo}

considers with H, where || - ||, is the norm of V*. Hence, in view of [1]
the semigroup $(t) in Z = H x L?(—h,0; V) is defined by

S(t)g = (u(t; 9),u(t +-9)), g9=(¢"9")€Z

where u(t; g) is the mild solution of (2.1),(2.2) satisfying the initial condi-
tion u(0; g) = ¢°,u(s; g) = g*(s) for s € [—h,0). Similarly, the semigroup
St(t) in the same space Z is defined for the adjoint equation

(2.3) %v(t) —A3u(t) + Al(t — B)

0
+/ a(s)Azv(t +s)ds, te€ (0,T],

(24) v(0) =¢°, v(s)=4'(s) s€[-h,0).

Let A7 be the infinitesimal generator of the solution semigroup Sr(t). In
view of theorem 4.2 of [1] the infinitesimal generator A is characterized
as following

LEMMA 2.1.
D(A) = {(f°, ') : f e WA (=h,0;V), f* = £1(0),

0
Aof' + A fH(-h) + / \ a(s)Azf(s)ds € H}

0

AU, £1) = (Aof® + Aufi(=h) + / )42 (5)ds, 1),

where W12(—h,0; V) is the set of all functions whose derivatives in the
distribution sense belong to L*(—h,0; V).
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For A € C we define the densely defined closed linear operators by
0
AX) =X —Ag—e P4, ——/ e*a(s)Azds

0
AT(A) =X — A —e AT - / eMa(s)Alds
LEMMA 2.2. (A — A)f = ¢ if and only if

0
AN =6+ [ e 4 )y

0
+ /0 a(s) / M=) Ay 6 () dvyds
-k s

1 . As 0 0 A(e—+) 41
fie) =0+ [ gy

LEMMA 2.3. For:=1,2,...,

k-1 k—1
Ker(A — A)* ={(45,€™ X _(~9)'80/it): D (-1)"
=0 f=j—1
AT —j+ 1) =0, j=1,...,k}.

In what follows we assume that 4; = yA4y, A2 = Ay and the imbed-
ding V C H is compact. According to the Riesz-Schauder theorem A,
has discrete spectrum

o(Ao) = {p;;7 =1,2,...}
which has no point of accumulation except possibly A = oo.
For A € C then
A(X) =1 —m(N)A,,

where 0
m(\) =1+ ye ?* +/ a(s)e*a(s)ds.
k

It is easily séen that m()) is an entire function and
(2.5) m(A) -1 as Rel — .

We assume that m(0) # 0 (see Theorem 2.2). The following Lemmas
are proved as theorems 6.1 and 7.2 of S. Nakagiri[3}.
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THEOREM 2.1. Let p(A) be the resolvent set of the infinitesimal gen-
erator A of S(t). Then

p(4) = {A:m(}) #£0, ::?x; € H(A0)}
= {A : A()) is isomorphism from V onto V*}.

Proof. If m()) # 0 and A/m()\) € p(Ag), then for all ¢ € Z, there
exists f = (f° f1) € D(A) such that Lemma 2.2 is satisfied. Hence
R(\A — A) = Z where R(A) denotes the range of the operator A. Let
(A — A)f = 0. Then from Lemma 2.2 it follows that A()\)f1(0) = 0.
Therefore f1(0) = 0 and hence f1(s) = 0. We have proved that A € p(A).

Conversely, if m(A) = 0, then since A(A) = AI|V, A(]) is not mapping
onto H. i m()) # 0 and A\/m()) € 0(Ay). Then the mapping A(X) =
m(A)(A/m(A)— Ap) is not onto. Let ¢ = (¢°, 0) where ¢° € H\Im A(N).
Then there is not f1(0) such that the relation in Lemma 2.2 is satisfied.

LEMMA 2.4. Let f : C — C be analytic at zo and z9 be a zero of
f multiplicity k > 1. Then there exist a neighborhood V at zero and
analytic function ¢ : V — Dom f such that f(¢(w)) = w* where Dom f
denotes the domain of f.

Proof. There exists an analytic function g on neighborhood at 2z such
that f(z) = (z — 20)*g(2) where g(zy) # 0. Since g(z) # 0 on neighbor-
hood at zo there exists an analytic function k such that g(z) = h(2)*.
Thus (2 — 2¢)h(2)|:=z, = 0 and

2 (2 = 20)h(Yhemse = () + (2 = 20) S hemse
= h(Zo) # 0.

Hence, from inverse mapping theorem it follows that there exist a neigh-
borhoad U at z; and a neighborhood V' at zero such that the mapping
z — (2 — z9)h(z) is a homeomorphism from U onto V. If we denote by
é(w) the inverse of such mapping, then the function ¢ is analytic on V
and for any w € V (¢(w) — 2)hé(w) = w and ¢(0) = zy. Therefore, it
holds that

F($(w)) = ($(w) — 20)*9($(w)) = ($(w) — 20)*(h(w))* = w*.
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THEOREM 2.2. If 0(A) is the spectrum of the infinitesimal generator
A of solution semigroup S(t), then

9(A) = oe(4) U op(4),

where 0.(A) = {A : m()) = 0} and 0,(4) = {X : m()) #0,A\/m()) €
0(Ao)}. Each nonzero point of o.(A) is not an eigenvalue of A but a
cluster point of 6(A). o,(A) consists only of discrete eigenvalues.

Proof. Let Ay # 0 be a zero of m(A)/A of multiplicity ¥ > 1. From
the Lemma 2.4 it follows that there exists a analytic function ¢ on a
neighborhood V' at zero such that for any p € V,

T%’;)_) =p* and 4(0) = .

Let us denote by A; a k-th root of 1/u;, then A; converges to zero as j
tends to infinity. In fact, 6(4o) = {p; : § = 1,2,...} has no point of
cluster point except for infinity point. I j is sufficiently large then A\; € V
and ¢(;)/m(d();)) = p;j € 0(Ag). Hence, it holds that ¢(};) € o(A)
and ¢(A;) tends to ¢(0) = Ag as j tends to infinity.
We have proved nonzero point of o.(A) is a cluster point of o(A).
Next, suppose that m(Ag) # 0, o/m(Ao) € 0(Ag). I there exists a
sequence {A;} such that A\;/m(};) € o(Aq). Since 0(Ag) consists only
of isolated points, we have A;/m(};) = Ag/m(Ao) for sufficiently large j.
In view of the theorem of identity we have m(A) = AgA/m(A¢) which is
contradictory to (2.5)

THEOREM 2.3. Suppose m(0) = 0. Then zero is an eigenvalue of A
with infinity multiplicity. The zero is an isolated point of o(A) if it is a
simple zero of m(\) and a ¢luster point of 0(A) if it is a multiple zero of
m(A).

Proof. If m(0) = 0, then for all v € Vf = (f°, f*) where f® = v and
FY(s) = v, s € [—h,0) belongs to the eigenspace corresponding to zero of
A. Thus the zero point is an eigenvalue of A with infinity multiplicity.
The others of this theorem is obtained by similarly way in Theorem 2.1.
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3. Completeness of generalized eigenspaces

Let A be a pole of the resolvent of A of order k) and P, the spectral
projection associated with A

Py=— | (p—A)'du

where Iy is a small circle centered at A such that it surrounds no point
of o(A) except A\. Then the generalized eigenspace corresponding to A
is given by
Zy = Im Py = Ker(AI — A)¥*,
Defining the operator p, by
1

Prn=5— (1 — Ao) dp,
271 lu—pnl=€aq

when the circle surrounds no point of ¢(Ag) except p,. Putting
H, = pH = {pau:u € H},

we have that from p2 = p, and H,, C V it follows that
PV ={pau:ueV}=H,.

It is well known that dim H,, < oo.

LEMMA 3.1. Let g = (¢°,¢") belong to H,, x L*(—h,0;H,). Then
for the solution u of (2.1), (2.2) we have p,u(t) = u(t).

Proof. If we compose p, on both sides of (2.1), (2.2), then p,u(t) is
also a solution of (2.1), (2.2). From uniqueness of the solution the result
follows.

Put A,n = Aoly,. For any g € H,, x L?>(—h,0; H,) the solution u(t)
of (2.1), (2.2) is the solution satisfied the following

3.1 -gt-u(t) = Agnu(t) + vYAonu(t — h)

0
+ / . a(s)Aonu(t + s8)ds

(3:2) u(0) = goa u(s) = gl(s)s s € [-h,0).
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H we denotes the solution semigroup of the equation (3.1), (3.2) with
A,, in place of Ay by S,(t) = exp(tA,,), then we have that

Sn(t) = S()H, xL2(~1,0:1,)>
An = AID(A..))
D(A.) = {(¢°, 9" ); 9" € W'3(—h,0; H,), ¢° = g"(0)}.

LEMMA 3.2. The adjoint operator of p, is represented by
* _ __]_-__ — A*\—1
P = i I#—iﬂ-‘l=e(..p A)dp.
Proof. If p € p(Ag), then p, is a bounded linear operator from V*
into V because (z — Ag)~! is an isomorphism from V* into V. For any
¢°, % € V*, from (¢0,(7‘-_ A(‘)‘)—-l'/’o) =((p- AO)—1¢0’ ¢0), we have

1
(P d°¥°) = 5= (1 — Ag)~*¢% ¢°) dp
27t lp=Fnl=e
_ 1 0 (= _ A \—1,0
- Ot /l;.ﬁ_n_l=€(¢ 7(" AO) ¢ dl“)
(g L Ay 10
=(4" 5 ln—nul=€(” Ao) ™ ¢ dp)
= (¢°vp"¢o)°
Ilet Ani/m(An.) = ”n,n = 1,2’- ey then
1
ni = =— A= A)7lda,
Poi = 2w |A-A,.‘|=e...-( )
Set Zpi = Im py;.

LEMMA 3.3. ¢ € Z,,; if and only if there exists an integer k such that
(Ani — An)fé =0.

Proof.  (Ay; — A)*¢ = 0 where ¢ = (¢°, ¢'), then from A(\,;)*¢° =
0 and A(A;)*¢'(s) = 0 it follows that

(Bo — 40)*¢° =0, (pa— 40)*¢'(s)=0.

Hence, since ¢° = p,¢® € H, and ¢'(s) = pné'(s) € H, we have
(Ani — Ap)¥¢ = 0. In view of the Lemma 3.1 (Ani — A,)¥¢ = 0 implies
(Ani — A)*¢ = 0. Thus Lemma is proved.
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THEOREM 3.1. Suppose that m(0) # 0,7 # 0 and the generalizes
eigenspaces of Ay are complete in H. Then the generalized eigenspaces
of A are complete in Z.

Proof. From the corresponding result of A. Manitius([2]; Theorem
5.1 and 5.4(ii)) in the case a finite dimensional space, the generalized
eigenspaces of A, are complete in H, x L*(—h,0; H,). In view of Lemma
3.3 the generalized eigenspace of A, are | J,—; Zn;(We remark that in the
case of a finite dimensional case the complex number ) satisfied with
m(0) = 0 belongs to the resolvent set). Suppose that (f,Z,;) = 0 for
any n and any i where f = (f°, f!) € H x L*(=h,0;V*). Then in view
of Lemma 3.3 we have that for all ¢ = (¢°, ¢') € Z,;

@8 = s+ [ a0, ¢ (o)
= (Pt + [ (FEpad s

= (f% 6" + /_ (£ 4 (s
= ((f° ), (¢%¢")) =0.

Thus ((p,f°% p5f),Z4;) = 0 for any ¢ = 1,2,.... Hence the element
(p% %, pLf) is orthogonal to H, x L?(—h,0; H,), and hence p% f° = 0
and p%, f1(s) = 0. Since n is arbitrary number we have that f° = 0 and.
f! = 0. We have proved that the generalized eigenspaces of A which is
the set |, ; Zn; are complete in Z = H x L*(—h,0;V).

4. Identifiability of linear retarded system

We denote the model system by the equation (2.1), (2.2) with Ay, 1,
a replaced by AJ',v™, a™ respectively. The mild solution of (2.1), (2.2)
is denoted by u™(¢; g), and the solution semigroup for model system by
S™(t) = exp(tA™). We assume that A7* and a™ satisfy the same type
of assumptions as Ag and a. The conclusions in section 2 holds also for
AJ. We shall say that Ag,~,a are identifiable if

A= A7, 1=1", a(s)=a"(s)
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follows from
u(t; o) =uw™(9:), i=1,...,q
where g; = (¢?,9}) € Z,i =1,...,q, is a finite set of initial values.

Let {ul* : n = 1,2,...} be the set of eigenvalues of AT, and by
{¥81,---,9%04_ } a base of Ker(p™ — (AT')*), whose d,, = dim Ker(u™ —
AT'). Let {A7; : j = 1,2,...} be the totality of the complex numbers
A satisfying A/m™()) = pl*. Let AF be the infinitesimal generator
of the solution semigroup associated with the model equation with AJ*
replaced by its adjoint (Al*)*. If we set t/) = ((¢ J)°,exp(,\ (¢M)°)),
{# J)° : k = 1,...,d,} is a base of Ker( ni — AF). We denoted by

{¢" k= d } a base of Ker(A7 — A™). The structual operator
F is deﬁned by
Fg = ([Fgl°,[Fg]"),
[Fel’ =4°,

[Fg]'(s) = vAog'(—h — 8) + /_ ‘;. a(7)Aog* (v ~ s)dy.

for g = (g% ¢') € Z. W is easily to see that F' € B(Z,2Z*). As is easily
seen in [3; Theorem 8.4] the projection Py*. has the following equivalent
representation

dn
Prg=)Y <Fgyn>z ¢, g€z

f=1
Throughout this section we shall assume following;:
RANK CONDITION: For the initial values {g;,...,g.}

rank((F™g;,¥5;)Z :i > 1,...,q, kl1,...,dy)=d,

forn=1,2,....
The assumption of rank condition is satisfied if and only if

Span{P;. ¢1,... ,Pf,‘“,_ 9} =23, .
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LEMMA 4.1. 0.(A™) C 0.(A), op(A™) C op(A).

Proof. Let Ao € 0p(A™). Then from Theorem 2.2 it follows that
m™(Xo) # 0 and Ag/m™(Ao) € o(AF'). Because AT : V — V* is an
isomorphism we have A\g # 0. Suppose that Ay € p(A), then there exists
a positive number € such that

{A:0< A=Kl <} Cp(A™), {A:|]A=Ao| <€} Cp(A)

Thus since

1
" A= A™)"1g,dA
Ao 274 IX—A0|=G( ) gi
1
= A — A)"1g;d)
27!’1 |,\—,\°|=e( ) '

=0

it is contradict to the rank condition. Hence Ay € o(A). Suppose )¢ €
0c(A). Then m(Ag) # 0 and since Ay # 0, A is not eigenvalue. There

exists a positive number € > 0 such that
{A:0< A=l <€} Cp(A™), {X:]X—=Xo| =€} C p(A4).
Since

Prg; = — / (A= A™)1g:dA
|A—Agl=e

2w

1
= — A—A)"? dA
2m IA—AD|=6( )"
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we have
mo 1 —A) g
APy gi = el NN A(X— A) " gidA
|
= — A—=(A—A)}A - A4)1gidr
2wt f DO N0 - )
=1 / A — A) 1 gidd — d)
27y [A—Xof=e ! 271 IA=2o|=e g
1
= — AA—A)gid)
27 JA=Aoj=¢ ( ) g
1
= AA = A™)1gidr
377 Jrrojee ( )"'g
= A™ Py, gi.

By the similarly way we conclude that

A*PRg; = (A™)*PRgi, k=0,1,...,
and we have

(Ao — A)FPlgi = (Ao — A™)*Plg: = 0.

In view of X9 # 0 for some i it is contradiction that Ag is not eigen-
value. Therefore we have proved that Ay € 0,(A), that is, 0,(A™) C
ap(A).

Next, let Ag € 0.(A™), then m™(Ag) = 0 and hence A # 0. Therefore
exists a sequence {\;} C o,(A™) such that \; converges to Ao. Hence
from Aj € op(A™) C 0p(A) it follows that Ag is a cluster point of o(A)
and hence )\ € o.(4).

THEOREM 4.1. Suppose that the generalized eigenspaces of A are
complete in H and the rank condition is satisfied. Then Aq,¥,a are
identifiable.

We can proved this theorem following the proof of proposition 3.1 and
theorem 3.1 of [4] by showing Lemma 4.1 instead of o(A™) C o(4) to
start with.
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