IDENTIFIABILITY OF RETARDED FUNCTIONAL DIFFERENTIAL EQUATION

Dong Hwa Kim

1. Introduction

Let H and V be complex Hilbert spaces such that V is a dense subspace of H with continuous imbedding in H. The inner product and norm in H are denoted by (f,g) and |f|, and those in V are by ((u,v)) and ||v||. If X and Y are two Banach spaces, B(X,Y) denotes the set of bounded linear mappings of X into Y, and B(X) = B(X,X).

Let a(u, v) be a bounded sesquilinear form defined on $V \times V$ and satisfying Gårding inequality

$$\operatorname{Re} a(u,u) \ge c_0 ||u||^2 - c_1 |u|^2, \quad c_0 > 0, \quad c_1 \ge 0$$

for any $u, v \in V$. We define the operator A_0 as follows:

Given $u \in V$. If there exists an element f of H so that a(u, v) = (f, v) for all $v \in V$, then $u \in D(A_0)$ and Au = f.

Using an element $f \in V^*$, we can extend the operator A_0 to an operator on V into V^* . This extension of A_0 is also denoted by the same letter A_0 . It is well known that A_0 generates an analytic semigroup in both H and V^* . We may assume that $0 \in \rho(A_0)$ according to the Lax-Milgram theorem where $\rho(A_0)$ denotes the resolvent set of A_0 .

The object of this paper is to construct some results on the identifiability for the following retarded functional differential equation of parabolic type

(1.1)
$$\frac{d}{dt}u(t) = A_0u(t) + A_1u(t-h) + \int_{-h}^0 a(s)A_2u(t+s)ds, \ t \in (0,T],$$

Received September 8, 1992.

This paper was supported by NON DIRECTED RESEARCH FOUND, Korea Research Foundation, 1991.

where the operators A_1 and A_2 are bounded liner operators from V to V^* and the real function a(s) is assumed to be Hölder continuous in [-h,0]. The equation may be considered as an equation in both H and V^* . In [3,6] the fundamental results on the structural operator for the linear retarded functional differential equation was established. Recently, many authors have discussed the structural properties for retarded system (see $[1,\ldots,6]$). In the paper G.Di Blasio, K.Kunisch and E.Sinestrari [1] they have developed an excellent state space theory for retarded system in the product space $F \times L^2(-h,0;D(A)), h > 0$ (where $F = D_A(1/2,2)$ is the Lions real interpolation space between D_A and H). The main theory is based on constructing a solution semigroup in $F \times L^2(-h,0;D(A))$. Thus, in section 2 we define semigroup S(t) in $Z = H \times L^2(-h,0;V)$ and deal with the spectrum of the infinitesimal generator A of S(t). We shall give that

$$\sigma(A) = \sigma_e(A) \cup \sigma_p(A)$$

where each nonzero point of $\sigma_e(A)$ is a cluster point of $\sigma(A)$ and $\sigma_p(A)$ consists only of discrete eigenvalues. In section 3 we study the problem of completeness of generalized eigenspaces of infinitesimal generator A. We obtain that the condition of the completeness of generalized eigenspaces of between the infinitesimal generators A and A_0 is the necessary and sufficient property. In order to obtain the condition for identifiability of the equation (1.1) we use the method which S. Nakagiri and M.Yamamoto [4] developed in the product space $X \times L^2(-h, 0; X)$. We establish the necessary and sufficient condition for identifiability is given as the so-called rank condition in terms of the multiplicity of eigenvalues.

2. Classification of spectrum

Consider the following linear retarded functional differential equation with initial values

(2.1)
$$\frac{d}{dt}u(t) = A_0u(t) + A_1u(t-h) + \int_{-h}^{0} a(s)A_2u(t+s)ds, \quad t \in (0,T],$$
(2.2)
$$u(0) = g^0, \quad u(s) = g^1(s) \quad s \in [-h,0),$$

where each operators is defined in section 1 and $g = (g^0, g^1) \in \mathbb{Z}$. According to [5] the fundamental solution W(t) of (2.1), (2.2) can be constructed. It is easily seen that the space

$$\{f \in V^*: \int_0^\infty ||A_0 \exp(tA_0)f||_*^2 dt < \infty\}$$

considers with H, where $||\cdot||_*$ is the norm of V^* . Hence, in view of [1] the semigroup S(t) in $Z = H \times L^2(-h, 0; V)$ is defined by

$$S(t)g = (u(t;g), u(t+\cdot;g)), \quad g = (g^0, g^1) \in Z$$

where u(t;g) is the mild solution of (2.1),(2.2) satisfying the initial condition $u(0;g)=g^0, u(s;g)=g^1(s)$ for $s\in[-h,0)$. Similarly, the semigroup $S_T(t)$ in the same space Z is defined for the adjoint equation

(2.3)
$$\frac{d}{dt}v(t) = A_0^*v(t) + A_1^*(t-h) + \int_{-h}^0 a(s)A_2^*v(t+s)ds, \quad t \in (0,T],$$
(2.4)
$$v(0) = \phi^0, \quad v(s) = \phi^1(s) \quad s \in [-h,0).$$

Let A_T be the infinitesimal generator of the solution semigroup $S_T(t)$. In view of theorem 4.2 of [1] the infinitesimal generator A is characterized as following

LEMMA 2.1.

$$\begin{split} D(A) &= \{ (f^0, f^1) : f^1 \in W^{1,2}(-h, 0; V), f^0 = f^1(0), \\ A_0 f^0 + A_1 f^1(-h) + \int_{-h}^0 a(s) A_2 f^1(s) ds \in H \} \\ A(f^0, f^1) &= (A_0 f^0 + A_1 f^1(-h) + \int_{-h}^0 a(s) A_2 f^1(s) ds, f^1), \end{split}$$

where $W^{1,2}(-h,0;V)$ is the set of all functions whose derivatives in the distribution sense belong to $L^2(-h,0;V)$.

For $\lambda \in \mathcal{C}$ we define the densely defined closed linear operators by

$$\Delta(\lambda) = \lambda - A_0 - e^{-\lambda h} A_1 - \int_{-h}^0 e^{\lambda s} a(s) A_2 ds$$
$$\Delta_T(\lambda) = \lambda - A_0^* - e^{-\lambda h} A_1^* - \int_{-h}^0 e^{\lambda s} a(s) A_2^* ds$$

LEMMA 2.2. $(\lambda - A)f = \phi$ if and only if

$$\Delta(\lambda)f^{1}(0) = \phi^{0} + \int_{-h}^{0} e^{-\lambda(h+r)} A_{1}\phi^{1}(\gamma)d\gamma$$

$$+ \int_{-h}^{0} a(s) \int_{s}^{0} e^{\lambda(s-r)} A_{2}\phi^{1}(\gamma)d\gamma ds$$

$$f^{1}(s) = e^{\lambda s} f^{0} + \int_{s}^{0} e^{\lambda(s-\gamma)} \phi^{1}(\gamma)d\gamma$$

LEMMA 2.3. For i = 1, 2, ...,

$$\operatorname{Ker}(\lambda - A)^{k} = \left\{ (\phi_{0}^{0}, e^{\lambda s} \sum_{i=0}^{k-1} (-s)^{i} \phi_{i}^{0} / i!) : \sum_{i=j-1}^{k-1} (-1)^{i-j} \right.$$
$$\Delta^{(i-j+1)}(\lambda) \phi_{i}^{0} / (i-j+1)! = 0, \quad j = 1, \dots, k \right\}.$$

In what follows we assume that $A_1 = \gamma A_0$, $A_2 = A_0$ and the imbedding $V \subset H$ is compact. According to the Riesz-Schauder theorem A_0 has discrete spectrum

$$\sigma(A_0)=\{\mu_j;j=1,2,\dots\}$$

which has no point of accumulation except possibly $\lambda = \infty$.

For $\lambda \in \mathcal{C}$ then

$$\Delta(\lambda) = 1 - m(\lambda)A_0,$$

where

$$m(\lambda) = 1 + \gamma e^{-\lambda h} + \int_{-h}^{0} a(s)e^{\lambda s}a(s)ds.$$

It is easily seen that $m(\lambda)$ is an entire function and

$$(2.5) m(\lambda) \to 1 as \text{Re } \lambda \to \infty.$$

We assume that $m(0) \neq 0$ (see Theorem 2.2). The following Lemmas are proved as theorems 6.1 and 7.2 of S. Nakagiri[3].

THEOREM 2.1. Let $\rho(A)$ be the resolvent set of the infinitesimal generator A of S(t). Then

$$\rho(A) = \{\lambda : m(\lambda) \neq 0, \frac{\lambda}{m(\lambda)} \in \rho(A_0)\}$$

$$= \{\lambda : \Delta(\lambda) \text{ is isomorphism from } V \text{ onto } V^*\}.$$

Proof. If $m(\lambda) \neq 0$ and $\lambda/m(\lambda) \in \rho(A_0)$, then for all $\phi \in Z$, there exists $f = (f^0, f^1) \in D(A)$ such that Lemma 2.2 is satisfied. Hence $R(\lambda - A) = Z$ where R(A) denotes the range of the operator A. Let $(\lambda - A)f = 0$. Then from Lemma 2.2 it follows that $\Delta(\lambda)f^1(0) = 0$. Therefore $f^1(0) = 0$ and hence $f^1(s) = 0$. We have proved that $\lambda \in \rho(A)$.

Conversely, if $m(\lambda) = 0$, then since $\Delta(\lambda) = \lambda I | V, \Delta(\lambda)$ is not mapping onto H. If $m(\lambda) \neq 0$ and $\lambda/m(\lambda) \in \sigma(A_0)$. Then the mapping $\Delta(\lambda) = m(\lambda)(\lambda/m(\lambda) - A_0)$ is not onto. Let $\phi = (\phi^0, 0)$ where $\phi^0 \in H \setminus \text{Im } \Delta(\lambda)$. Then there is not $f^1(0)$ such that the relation in Lemma 2.2 is satisfied.

LEMMA 2.4. Let $f: \mathcal{C} \to \mathcal{C}$ be analytic at z_0 and z_0 be a zero of f multiplicity $k \geq 1$. Then there exist a neighborhood V at zero and analytic function $\phi: V \to \text{Dom } f$ such that $f(\phi(w)) = w^k$ where Dom f denotes the domain of f.

Proof. There exists an analytic function g on neighborhood at z_0 such that $f(z) = (z - z_0)^k g(z)$ where $g(z_0) \neq 0$. Since $g(z) \neq 0$ on neighborhood at z_0 there exists an analytic function h such that $g(z) = h(z)^k$. Thus $(z - z_0)h(z)|_{z=z_0} = 0$ and

$$\frac{d}{dz}((z-z_0)h(z))|_{z=z_0} = (h(z)+(z-z_0)\frac{d}{dz}h(z))|_{z=z_0}$$
$$= h(z_0) \neq 0.$$

Hence, from inverse mapping theorem it follows that there exist a neighborhood U at z_0 and a neighborhood V at zero such that the mapping $z \mapsto (z - z_0)h(z)$ is a homeomorphism from U onto V. If we denote by $\phi(w)$ the inverse of such mapping, then the function ϕ is analytic on V and for any $w \in V(\phi(w) - z_0)h\phi(w) = w$ and $\phi(0) = z_0$. Therefore, it holds that

$$f(\phi(w)) = (\phi(w) - z_0)^k g(\phi(w)) = (\phi(w) - z_0)^k (h\phi(w))^k = w^k.$$

THEOREM 2.2. If $\sigma(A)$ is the spectrum of the infinitesimal generator A of solution semigroup S(t), then

$$\sigma(A) = \sigma_e(A) \cup \sigma_p(A),$$

where $\sigma_e(A) = \{\lambda : m(\lambda) = 0\}$ and $\sigma_p(A) = \{\lambda : m(\lambda) \neq 0, \lambda/m(\lambda) \in \sigma(A_0)\}$. Each nonzero point of $\sigma_e(A)$ is not an eigenvalue of A but a cluster point of $\sigma(A)$. $\sigma_p(A)$ consists only of discrete eigenvalues.

Proof. Let $\lambda_0 \neq 0$ be a zero of $m(\lambda)/\lambda$ of multiplicity $k \geq 1$. From the Lemma 2.4 it follows that there exists a analytic function ϕ on a neighborhood V at zero such that for any $\mu \in V$,

$$\frac{m(\phi(\mu))}{\phi(\mu)} = \mu^k \quad and \quad \phi(0) = \lambda_0.$$

Let us denote by λ_j a k-th root of $1/\mu_j$, then λ_j converges to zero as j tends to infinity. In fact, $\sigma(A_0) = \{\mu_j : j = 1, 2, \dots\}$ has no point of cluster point except for infinity point. If j is sufficiently large then $\lambda_j \in V$ and $\phi(\lambda_j)/m(\phi(\lambda_j)) = \mu_j \in \sigma(A_0)$. Hence, it holds that $\phi(\lambda_j) \in \sigma(A)$ and $\phi(\lambda_j)$ tends to $\phi(0) = \lambda_0$ as j tends to infinity.

We have proved nonzero point of $\sigma_e(A)$ is a cluster point of $\sigma(A)$.

Next, suppose that $m(\lambda_0) \neq 0, \lambda_0/m(\lambda_0) \in \sigma(A_0)$. If there exists a sequence $\{\lambda_j\}$ such that $\lambda_j/m(\lambda_j) \in \sigma(A_0)$. Since $\sigma(A_0)$ consists only of isolated points, we have $\lambda_j/m(\lambda_j) = \lambda_0/m(\lambda_0)$ for sufficiently large j. In view of the theorem of identity we have $m(\lambda) = \lambda_0 \lambda/m(\lambda_0)$ which is contradictory to (2.5)

THEOREM 2.3. Suppose m(0) = 0. Then zero is an eigenvalue of A with infinity multiplicity. The zero is an isolated point of $\sigma(A)$ if it is a simple zero of $m(\lambda)$ and a cluster point of $\sigma(A)$ if it is a multiple zero of $m(\lambda)$.

Proof. If m(0) = 0, then for all $v \in Vf = (f^0, f^1)$ where $f^0 = v$ and $f^1(s) \equiv v$, $s \in [-h, 0)$ belongs to the eigenspace corresponding to zero of A. Thus the zero point is an eigenvalue of A with infinity multiplicity. The others of this theorem is obtained by similarly way in Theorem 2.1.

3. Completeness of generalized eigenspaces

Let λ be a pole of the resolvent of A of order k_{λ} and P_{λ} the spectral projection associated with λ

$$P_{\lambda}=rac{1}{2\pi i}\int_{\Gamma_{\lambda}}(\mu-A)^{-1}d\mu$$

where Γ_{λ} is a small circle centered at λ such that it surrounds no point of $\sigma(A)$ except λ . Then the generalized eigenspace corresponding to λ is given by

$$Z_{\lambda} = \operatorname{Im} P_{\lambda} = \operatorname{Ker}(\lambda I - A)^{k\lambda}.$$

Defining the operator p_n by

$$p_n = \frac{1}{2\pi i} \int_{|\mu-\mu_n|=\epsilon_n} (\mu - A_0)^{-1} d\mu,$$

when the circle surrounds no point of $\sigma(A_0)$ except μ_n . Putting

$$H_n = p_n H = \{p_n u : u \in H\},\,$$

we have that from $p_n^2 = p_n$ and $H_n \subset V$ it follows that

$$p_nV = \{p_nu : u \in V\} = H_n.$$

It is well known that dim $H_n < \infty$.

LEMMA 3.1. Let $g = (g^0, g^1)$ belong to $H_n \times L^2(-h, 0; H_n)$. Then for the solution u of (2.1), (2.2) we have $p_n u(t) = u(t)$.

Proof. If we compose p_n on both sides of (2.1), (2.2), then $p_n u(t)$ is also a solution of (2.1), (2.2). From uniqueness of the solution the result follows.

Put $A_{on} = A_0|_{H_n}$. For any $g \in H_n \times L^2(-h, 0; H_n)$ the solution u(t) of (2.1), (2.2) is the solution satisfied the following

(3.1)
$$\frac{d}{dt}u(t) = A_{0n}u(t) + \gamma A_{0n}u(t-h) + \int_{-h}^{0} a(s)A_{0n}u(t+s) ds$$
(3.2)
$$u(0) = g^{0}, \quad u(s) = g^{1}(s), \quad s \in [-h, 0).$$

If we denotes the solution semigroup of the equation (3.1), (3.2) with A_{on} in place of A_0 by $S_n(t) = \exp(tA_n)$, then we have that

$$S_n(t) = S(t)|_{H_n \times L^2(-h,0;H_n)},$$

$$A_n = A|_{D(A_n)},$$

$$D(A_n) = \{(q^0, q^1); q^1 \in W^{1,2}(-h, 0; H_n), q^0 = q^1(0)\}.$$

LEMMA 3.2. The adjoint operator of p_n is represented by

$$p_n^* = \frac{1}{2\pi i} \int_{|\mu - \overline{\mu_n}| = \epsilon_n} (\mu - A_0^*)^{-1} d\mu.$$

Proof. If $\mu \in \rho(A_0)$, then p_n is a bounded linear operator from V^* into V because $(\mu - A_0)^{-1}$ is an isomorphism from V^* into V. For any $\phi^0, \psi \in V^*$, from $(\phi^0, (\overline{\mu} - A_0^*)^{-1}\psi^0) = ((\mu - A_0)^{-1}\phi^0, \psi^0)$, we have

$$\begin{split} (p_n^*\phi^0, \psi^0) &= \frac{1}{2\pi i} \int_{|\mu - \overline{\mu_n}| = \epsilon} ((\mu - A_0^*)^{-1}\phi^0, \psi^0) \, d\mu \\ &= \frac{1}{2\pi i} \int_{|\mu - \overline{\mu_n}| = \epsilon} (\phi^0, (\overline{\mu} - A_0)^{-1}\psi^0 d\mu) \\ &= (\phi^0, \frac{1}{2\pi i} \int_{|\mu - \mu_n| = \epsilon} (\mu - A_0)^{-1}\psi^0 d\mu) \\ &= (\phi^0, p_n \psi^0). \end{split}$$

Let $\lambda_{ni}/m(\lambda_{ni}) = \mu_n, n = 1, 2, \ldots$, then

$$p_{ni} = \frac{1}{2\pi i} \int_{|\lambda-\lambda-i|=\epsilon_{ni}} (\lambda - A)^{-1} d\lambda.$$

Set $Z_{ni} = \operatorname{Im} p_{ni}$.

LEMMA 3.3. $\phi \in Z_{ni}$ if and only if there exists an integer k such that $(\lambda_{ni} - A_n)^k \phi = 0$.

Proof. If $(\lambda_{ni} - A)^k \phi = 0$ where $\phi = (\phi^0, \phi^1)$, then from $\Delta(\lambda_{ni})^k \phi^0 = 0$ and $\Delta(\lambda_{ni})^k \phi^1(s) \equiv 0$ it follows that

$$(\mu_n - A_0)^k \phi^0 = 0, \quad (\mu_n - A_0)^k \phi^1(s) \equiv 0.$$

Hence, since $\phi^0 = p_n \phi^0 \in H_n$ and $\phi^1(s) = p_n \phi^1(s) \in H_n$ we have $(\lambda_{ni} - A_n)^k \phi = 0$. In view of the Lemma 3.1 $(\lambda_{ni} - A_n)^k \phi = 0$ implies $(\lambda_{ni} - A)^k \phi = 0$. Thus Lemma is proved.

THEOREM 3.1. Suppose that $m(0) \neq 0, \gamma \neq 0$ and the generalizes eigenspaces of A_0 are complete in H. Then the generalized eigenspaces of A are complete in Z.

Proof. From the corresponding result of A. Manitius([2]; Theorem 5.1 and 5.4(ii)) in the case a finite dimensional space, the generalized eigenspaces of A_n are complete in $H_n \times L^2(-h, 0; H_n)$. In view of Lemma 3.3 the generalized eigenspace of A_n are $\bigcup_{n=1}^{\infty} Z_{ni}$ (We remark that in the case of a finite dimensional case the complex number λ satisfied with m(0) = 0 belongs to the resolvent set). Suppose that $(f, Z_{ni}) = 0$ for any n and any i where $f = (f^0, f^1) \in H \times L^2(-h, 0; V^*)$. Then in view of Lemma 3.3 we have that for all $\phi = (\phi^0, \phi^1) \in Z_{ni}$

$$((p_n^*f^0, p_n^*f^1), (\phi^0, \phi^1)) = (p_n^*f^0, \phi^0) + \int_{-h}^0 (p_n^*f^1(s), \phi^1(s))ds$$

$$= (f^0, p_n\phi^0) + \int_{-h}^0 (f^1(s), p_n\phi^1(s))ds$$

$$= (f^0, \phi^0) + \int_{-h}^0 (f^1(s), \phi^1(s))ds$$

$$= ((f^0, f^1), (\phi^0, \phi^1)) = 0.$$

Thus $((p_n^*f^0, p_n^*f^1), Z_{ni}) = 0$ for any $i = 1, 2, \ldots$ Hence the element $(p_n^*f^0, p_n^*f^1)$ is orthogonal to $H_n \times L^2(-h, 0; H_n)$, and hence $p_n^*f^0 = 0$ and $p_n^*f^1(s) \equiv 0$. Since n is arbitrary number we have that $f^0 = 0$ and $f^1 \equiv 0$. We have proved that the generalized eigenspaces of A which is the set $\bigcup_{n,i} Z_{ni}$ are complete in $Z = H \times L^2(-h, 0; V)$.

4. Identifiability of linear retarded system

We denote the model system by the equation (2.1), (2.2) with A_0 , γ , a replaced by A_0^m , γ^m , a^m respectively. The mild solution of (2.1), (2.2) is denoted by $u^m(t;g)$, and the solution semigroup for model system by $S^m(t) = \exp(tA^m)$. We assume that A_0^m and a^m satisfy the same type of assumptions as A_0 and a. The conclusions in section 2 holds also for A_0^m . We shall say that A_0 , γ , a are identifiable if

$$A_0 = A_0^m, \quad \gamma = \gamma^m, \quad a(s) \equiv a^m(s)$$

follows from

$$u(t;g_i) \equiv u^m(t;g_i), \quad i=1,\ldots,q,$$

where $g_i = (g_i^0, g_i^1) \in Z, i = 1, \dots, q$, is a finite set of initial values.

Let $\{\mu_n^m: n=1,2,\ldots\}$ be the set of eigenvalues of A_0^m , and by $\{\psi_{n1}^0,\ldots,\psi_{nd_n}^0\}$ a base of $\ker(\overline{\mu_n^m}-(A_0^m)^*)$, whose $d_n=\dim \ker(\mu_n^m-A_0^m)$. Let $\{\lambda_{nj}^m: j=1,2,\ldots\}$ be the totality of the complex numbers λ satisfying $\lambda/m^m(\lambda)=\mu_n^m$. Let A_T^m be the infinitesimal generator of the solution semigroup associated with the model equation with A_0^m replaced by its adjoint $(A_0^m)^*$. If we set $\psi_{nj}^k=((\psi_{nj}^k)^0,\exp(\overline{\lambda_{nj}^m}(\psi_{nj}^k)^0))$, $\{(\psi_{nj}^k)^0: k=1,\ldots,d_n\}$ is a base of $\ker(\overline{\lambda_{nj}^m}-A_T^m)$. We denoted by $\{\phi_{nj}^k: k=1,\ldots,d_n\}$ a base of $\ker(\lambda_{nj}^m-A_T^m)$. The structual operator F is defined by

$$Fg = ([Fg]^0, [Fg]^1),$$
 $[Fg]^0 = g^0,$ $[Fg]^1(s) = \gamma A_0 g^1(-h-s) + \int_{-h}^s a(\gamma) A_0 g^1(\gamma - s) d\gamma.$

for $g=(g^0,g^1)\in Z$. It is easily to see that $F\in B(Z,Z^*)$. As is easily seen in [3; Theorem 8.4] the projection $P^m_{\lambda_{ni}}$ has the following equivalent representation

$$P_{\lambda_{ni}}^m g = \sum_{i=1}^{d_n} \langle Fg, \psi_{ni}^m \rangle z \quad \phi_{ni}^m, \quad g \in Z.$$

Throughout this section we shall assume following:

RANK CONDITION: For the initial values $\{g_1, \ldots, g_q\}$

$$rank((F^m g_i, \psi_{nj}^k)Z: i \to 1, \dots, q, \quad k \downarrow 1, \dots, d_n) = d_n$$

for $n=1,2,\ldots$.

The assumption of rank condition is satisfied if and only if

$$Span\{P_{\lambda_{nj}}^m g_1, \ldots, P_{\lambda_{nd_j}}^m g_q\} = Z_{\lambda_{nj}}^m.$$

LEMMA 4.1.
$$\sigma_e(A^m) \subset \sigma_e(A)$$
, $\sigma_p(A^m) \subset \sigma_p(A)$.

Proof. Let $\lambda_0 \in \sigma_p(A^m)$. Then from Theorem 2.2 it follows that $m^m(\lambda_0) \neq 0$ and $\lambda_0/m^m(\lambda_0) \in \sigma(A_0^m)$. Because $A_0^m : V \to V^*$ is an isomorphism we have $\lambda_0 \neq 0$. Suppose that $\lambda_0 \in \rho(A)$, then there exists a positive number ϵ such that

$$\{\lambda: 0<|\lambda-\lambda_0|\leq \epsilon\}\subset \rho(A^m), \quad \{\lambda: |\lambda-\lambda_0|\leq \epsilon\}\subset \rho(A).$$

Thus since

$$P_{\lambda_0}^m = \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} (\lambda - A^m)^{-1} g_i d\lambda$$
$$= \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} (\lambda - A)^{-1} g_i d\lambda$$
$$= 0$$

it is contradict to the rank condition. Hence $\lambda_0 \in \sigma(A)$. Suppose $\lambda_0 \in \sigma_{\epsilon}(A)$. Then $m(\lambda_0) \neq 0$ and since $\lambda_0 \neq 0$, λ is not eigenvalue. There exists a positive number $\epsilon > 0$ such that

$$\{\lambda: 0<|\lambda-\lambda_0|\leq \epsilon\}\subset \rho(A^m),\quad \{\lambda: |\lambda-\lambda_0|=\epsilon\}\subset \rho(A).$$

Since

$$\begin{split} P_{\lambda}^{m}g_{i} &= \frac{1}{2\pi i} \int_{|\lambda - \lambda_{0}| = \epsilon} (\lambda - A^{m})^{-1}g_{i}d\lambda \\ &= \frac{1}{2\pi i} \int_{|\lambda - \lambda_{0}| = \epsilon} (\lambda - A)^{-1}g_{i}d\lambda \end{split}$$

we have

$$\begin{split} AP_{\lambda_0}^m g_i &= \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} A(\lambda - A)^{-1} g_i d\lambda \\ &= \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} \{\lambda - (\lambda - A)\} (\lambda - A)^{-1} g_i d\lambda \\ &= \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} \lambda (\lambda - A)^{-1} g_i d\lambda - \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} g_i d\lambda \\ &= \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} \lambda (\lambda - A)^{-1} g_i d\lambda \\ &= \frac{1}{2\pi i} \int_{|\lambda - \lambda_0| = \epsilon} \lambda (\lambda - A^m)^{-1} g_i d\lambda \\ &= A^m P_{\lambda_0}^m g_i. \end{split}$$

By the similarly way we conclude that

$$A^k P_{\lambda_0}^m g_i = (A^m)^k P_{\lambda_0}^m g_i, \quad k = 0, 1, \dots,$$

and we have

$$(\lambda_0 - A)^k P_{\lambda_0}^m g_i = (\lambda_0 - A^m)^k P_{\lambda_0}^m g_i = 0.$$

In view of $p_{\lambda_0}^m g_i \neq 0$ for some i it is contradiction that λ_0 is not eigenvalue. Therefore we have proved that $\lambda_0 \in \sigma_p(A)$, that is, $\sigma_p(A^m) \subset \sigma_p(A)$.

Next, let $\lambda_0 \in \sigma_e(A^m)$, then $m^m(\lambda_0) = 0$ and hence $\lambda \neq 0$. Therefore exists a sequence $\{\lambda_j\} \subset \sigma_p(A^m)$ such that λ_j converges to λ_0 . Hence from $\lambda_j \in \sigma_p(A^m) \subset \sigma_p(A)$ it follows that λ_0 is a cluster point of $\sigma(A)$ and hence $\lambda_0 \in \sigma_e(A)$.

THEOREM 4.1. Suppose that the generalized eigenspaces of A_0^m are complete in H and the rank condition is satisfied. Then A_0, γ, a are identifiable.

We can proved this theorem following the proof of proposition 3.1 and theorem 3.1 of [4] by showing Lemma 4.1 instead of $\sigma(A^m) \subset \sigma(A)$ to start with.

References

- G. Di Blasio, K. Kunisch and E. Sinestrari, L²-regularity for parabolic partial integro differential equations with delay in the highest-order derivative, J. Math. Anal. Appl. 102 (1984), 38-57.
- A. Manitius, Completeness and F-completeness of eigenfunctions associated with retarded functional differential equation, J. Differential Equations 35 (1980), 1-29.
- 3. S. Nakagiri, Structural properties of functional differential equations in Banach spaces, Osaka J. Math. 25 (1988), 353-398.
- S.Nakagira and M. Yamamoto, Identifiability of linear retarded systems in Banach spaces, Funkcial. Ekvac. 31 (1988), 315-329.
- 5. H, Tanabe, On fundamental solution equation with time delay in Banach space, Proc. Japan Acad. Ser. A 64 (1988), 131-134.
- 6. H.Tanabe, Structural operators for linear delay-differential equations in Hilbert space, Proc. Japan Acad. Ser. A 64 (1988), 265-266.
- K. Yosida, Functional Analysis (3rd ed.), Springer, Berlin-Göttingen-Heidelberg, (1980).

Department of Mathematics Education Kyungnam University Masan 631 - 701, Korea