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IDENTIFIABILITY OF RETARDED

FUNCTIONAL DIFFERENTIAL EQUATION

DONG HWA KIM

1. Introduction

Let H and V be complex Hilbert spaces such that V is a dense sub­
space of H with continuous imbedding in H. The inner product and
norm in H are denoted by (/,g) and III, and those in V are by «u,v»
and IIvll. H X and Y are two Banach spaces, B(X,Y) denotes the set
of bounded linear mappings of X into Y, and B(X) = B(X, X).

Let a( 'U, v) be a bounded sesquilinear form defined on V x V and
satisfying Gi.rding inequality

Rea(u,u) ~ eollull2 -CtluI2, Co> 0, Cl ~ 0

for any u, v E V. We define the operator Ao as follows:
Given 'U E V. H there exists an element I of H so that a(u, v) = (J, v)

for all v E V, then u E D(Ao) and Au = I.
Using an element lEV·, we can extend the operator Ao to an

operator on V into V·. This extension of Ao is also denoted by the same
letter Ao• It is well known that Ao generates an analytic semigroup
in both H and V·. We may assume that °E p(Ao) according to the
Lax-Milgram theorem where p(Ao ) denotes the resolvent set of Ao.

The object of this paper is to construct some results on the iden­
tifiability for the following retarded functional differential equation of
parabolic type

(1.1)

d 10

-du(t) = Aou(t) + Atu(t - h) + a(s)A2u(t + s)ds, t E (0, T),
t -h
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where the operators Al and A2 are bounded liner operators from V
to V· and the real function a(s) is assumed to be HOlder continuous in
[-h,O]. The equation may be considered as an equation in both H and V·.
In [3,6] the fundamental results on the strnctural operator for the linear
retarded functional differential equation was established. Recently, many
authors have discussed the strnetural properties for retarded system (see
[1, ... ,6]). In the paper G.Di Blasio, K.Kunisch and E.sinestrari [1) they
have developed an excellent state space theory for retarded system in the
product space F x L2(-h,0;D(A»,h > °(where F = DA(I/2,2) is the
Lions real interpolation space between DA and H). The main theory
is based on constrncting a solution semigroup in F x L2(-h,0;D(A».
Thus, in section 2 we define semigroup S(t) in Z = H X L2 ( -h,O; V)
and deal with the spectrum of the infinitesimal generator A of S(t). We
shall give that

u(A) = ue(A) U up(A)

where each nonzero point of ue(A) is a cluster point of u(A) and up(A)
consists only ofdiscrete eigenvalues. In section 3 we study the problem of
completeness of generalized eigenspaces of infinitesimal generator A. We
obtain that the condition of the completeness of generalized eigenspaces
of between the infinitesimal generators A and Ao is the necessary and suf­
ficient property. In order to obtain the condition for identifiability of the
equation (1.1) we use the method which S. Nakagiri and M.Yamamoto [4]
developed in the product space X x L2(-h,0; X). We establish the nec­
essary and sufficient condition for identifiability is given as the so-called
rank condition in terms of the multiplicity of eigenvalues.

2. Classification of spectrum

Consider the following linear retarded functional differential equation
with initial values

(2.1)

(2.2)

d
dt u(t) =Aou(t) +Alu(t - h)

+ [Ok a(s)A2u(t +s)ds, t E (0, T),

u(O) =l, u(s) =gl(8) S E [-h,O),
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where each operators is defined in section 1 and 9 = (gO, gl) E Z. Ac­
cording to [5] the fundamental solution Wet) of (2.1), (2.2) can be con­
structed. It is easily seen that the space

{f E V· :100

IIAo exp(tAo)fIl~dt < co}

considers with H, where II . II. is the norm of V·. Hence, in view of [1]
the semigroup Set) in Z = H x L2(-h, 0; V) is defined by

S(t)g = (u(tjg),u(t+·jg», 9 = (gO,l) E Z

where u(tj g) is the mild solution of (2.1),(2.2) satisfying the initial condi­
tion u(Ojg) = gO, U(8jg) = gl(s) for s E [-h,O). Similarly, the semigroup
STet) in the same space Z is defined for the adjoint equation

(2.3)

(2.4)

d
dt vet) =Aov(t) + Ai(t - h)

+ LOk a(s)A;v(t + s)ds, t E (0, T],

v(O) =q,0, v(s) = q,1(s) S E [-h,O).

Let AT be the infinitesimal generator of the solution semigroup STet). In
view of theorem 4.2 of [1] the infinitesimal generator A is characterized
88 following

LEMMA 2.1.

D(A) = {(j°,P): fl E W I,2(-h,OjV),fO = fl(O),

Aofo + Alfl ( -h) + LOk a(s)A2 f 1(s)ds E H}

A(j°,fl ) = (AofO + AIP(-h) + LOk a(s)A2 f l (s)ds,fl ),

where W I,2(-h, OJ V) is the set ofall functions whose derivatives in the
distribution sense belong to L2(-h, OJ V).
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For ,\ E C we define the densely defined closed linear operators by

~(,\) = A- Ao - e-UAI -1° e~8a(s)A2ds
-h

~T('\)=,\ - ~ - e-UA~ -1° e~"a(s)A;ds
-1&

LEMMA 2.2. (,\ - A)J = </> if and only if

~('\)P(O) =</>o +1° e-.\(h+r)Al </>1 (-y)d"Y
-A

+ t a(s) 1° e.\(8-r)A2</>I("Y)d"Yds
i-A 8

JI(S) =e.\8JO +10

e.\(8-'Y) </>1 (')')d"Y

LEMMA 2.3. For i = 1,2, ... ,
k-I k-I

Ker{'\ - A)k ={(</>~,e.\8L(-s)i</>Ui!): L (_I)i-j

i=O i=j-I

~(i-j+I)('\)</>U(i- j + I)! = 0, j = 1, ... ,k}.
In what follows we assume that Al = "YAu, A2 = Au and the imbed­

ding V CHis compact. According to the Riesz-Schauder theorem Ao
has discrete spectrum

u(Ao) = {Pj;j = 1,2, ... }

which has no point of accumulation except possibly ,\ =00.

For ,\ E C then
~(,\) = 1-m('\)Ao,

where

m('\) = 1+ "Ye- u +1° a(s)e.\8a(s)ds.
-A

It is easily seen that m(A) is an entire function and

(2.5) m(A) -+ 1 as Re A-+ 00.

We assume that m(O) =I 0 (see Theorem 2.2). The following Lemmas
are proved as theorems 6.1 and 7.2 of S. Nakagiri[3).
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THEOREM 2.1. Let P(A) be tbe resolvent set of tbe infinitesimal gen­
erator A of S(t). Tben

.\
p(A) = {.\ : m(.\) 1= 0, m('\) E P(Ao)}

= {,\ : 6(.\) is isomorphism from V onto V*}.

ProoJ. H m(.\) 1= 0 and ,\/m(,\) E p(Ao), then for all 4> E Z, there
exists f = (fO,P) E D(A) such that Lemma 2.2 is satisfied. Hence
R('\ - A) = Z where R(A) denotes the range of the operator A. Let
(.\ - A)J = o. Then from Lemma 2.2 it follows that 6(.\)jl(O) = o.
Therefore jl(O) = 0 and hence jl(s) = O. We have proved that.\ E p(A).

Conversely, ifm('\) = 0, then since 6(.\) = .\II~ 6(.\) is not mapping
onto H. H m('\) :/= 0 and '\/m(.\) E q(Ao). Then the mapping 6(.\) =
m(,\)(,\/m{,\)-Ao) is not onto. Let 4> = (4)0,0) where 4>0 E H\Im6(,\).
Then there is not jl(O) such that the relation in Lemma 2.2 is satisfied.

LEMMA 2.4. Let J : C -+ C be analytic at Zo and Zo be a zero of
J multiplicity k > 1. Tben there exist a neighborbood V at zero and
analytic function 4>: V -+ DomJ such tbat J(4)(w)) = wk wbere Dom J
denotes the domain ofJ.

ProoJ. There exists an analytic function 9 on neighborhood at Zo such
that J(z) = (z - zo)kg(z) where g(zo) 1= o. Since g(z) 1= 0 on neighbor­
hood at Zo there exists an analytic function h such that g(z) = h(z)k.
Thus (z - zo)h(z)lz=zo = 0 and

d d
dz «z - zo)h(z»lz=zo = (h(z) + (z - zo) dz h(z»lz=zo

=h(zo) 1= o.
Hence, from inverse mapping theorem it follows that there exist a neigh­
borhood U at Zo and a neighborhood V at zero such that the mapping
z 1-+ (z - Zo )h(z) is a homeomorphism from U onto V. H we denote by
4>(w) the inverse of such mapping, then the function 4> is analytic on V
and for any w E V (4)(w) - zo)h4>(w) = w and <P(O) = zoo Therefore, it
holds that

J(4)(w)) = (4)(w) - zo)kg(4)(w)) = (4)(w) - zo)k(h4>(w»k = wk.



294 Dong Hwa Kim

THEOREM 2.2. IfO'(A) is the spectrum of the infinitesimal generator
A of solution semigroup Set), then

O'(A) = O'e(A) U O'p(A),

where O'e(A) = {A: m(A) = o} and O'p(A) = {A : m(..\) 1= O,A/m(A) E
O'(Ao)}. Each nonzero point of O'e(A) is not an eigenvalue of A but a
duster point of0'(A). 0'p(A) consists only of discrete eigenvalues.

Proof. Let Ao 1= °be a zero of m(A)/A of multiplicity k ~ 1. From
the Lemma 2.4 it follows that there exists a analytic function t/J on a
neighborhood V at zero such that for any I' E V,

Let us denote by Aj a k-th root of l/pj, then Aj converges to zero as j
tends to infinity. In fact, 0'(Ao) = {Pi : j = 1,2, ... } has no point of .
cluster point except for infinity point. Hj is sufficiently large then Ai E V
and 4>(A;)/m(4>(Aj» = 1'; E O'(Ao). Hence, it holds that t/J(A;) E O'(A)
and 4>(Aj) tends to 4>(0) = Ao as j tends to infinity.
We have proved nonzero point of O'e(A) is a cluster point of O'(A).

Next, suppose that m(Ao) 1= O,Ao/m(Ao) E O'(Ao). H there exists a
sequence {Aj} such that Aj/m(A;) E O'(Ao). Since O'(Ao) consists only
of isolated points, we have A;/m(Aj) = Ao/m(Ao) for sufficiently large j.
In view of the theorem of identity we have meA) = AoA/m(Ao) which is
contradictory to (2.5)

THEOREM 2.3. Suppose m(O) = o. Then zero is an eigenvalue of A
with infinity multiplicity. The zero is an isolated point ofO'(A) if it is a
simple zero ofm(..\) aDd a cluster point of0'(A) ifit· is a mUltiple zero of

meA).

Proof. H m(O) = 0, then for all v E V f = (r, p) where r = v and
fl(s) == v, s E [-h,O) belongs to the eigenspace corresponding to zero of
A. Thus the zero point is an eigenvalue of A with infinity multiplicity.
The others of this theorem is obtained by similarly way in Theorem 2.1.
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3. Completeness of generalized eigenspaces

Let A be a pole of the resolvent of A of order k" and P" the spectral
projection associated with A

1 £ _P" = -2. (p - A) 1dp
1("& r"

where r >. is a small circle centered at A such that it surrounds no point
of 0'(A) except A. Then the generalized eigenspace corresponding to A
is given by

Z" = ImP" = Ker(AI - A)k>..

Defining the operator pn by

Pn = 2
1

. f (p - Ao)-ldp,
1("& JIIJ-lJral=Era

when the circle surrounds no point of O'(Ao) except Pn. Putting

Hn =PnH = {Pnu : u e H},

we have that from P; =Pn and Hn C V it follows that

PnV = {Pnu : u E V} = Hn·

It is well known that dim Hn < 00.

LEMMA 3.1. Let 9 = (gO,gl) belong to Hn x L2(-h,O;Hn). Then
for the solution U of(2.1), (2.2) we have Pnu(t) = u(t).

Proof. H we compose Pn on both sides of (2.1), (2.2), then Pnu(t) is
also a solution of (2.1), (2.2). From uniqueness of the solution the result
follows.

Put Aon = AoIHra • For any 9 e Hn x L2(-h,O;Hn) the solution u(t)
of (2.1), (2.2) is the solution satisfied the following

d
(3.1) dt u(t) = Aonu(t) + ')'Aonu(t - h)

+1.°A a(s)Aonu(t + s)ds

(3.2) u(O)=gO, u(s)=gl(s), se[-h,O).
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H we denotes the solution semigroup of the equation (3.1), (3.2) with
Aon in place of Ao by Sn(t) = exp(tAn), then we have that

Sn(t) = S(t)IH,.xL2(-la,O;H,.>,

An = AID(A,.> ,
D(An ) = {(gO,gl);gl e W l ,2(-h,0;Bn ), gO = gl(O)}.

LEMMA 3.2. The adjoint operator ofpn is represented by

P~ = -2
1

. f (/l- A:)-ld/l.
1r1 J,p-hl=E,.

Proof. H /l e p(Ao), then Pn is a bounded linear operator from V·
into V because (/l - Ao)-1 is an isomorphism from V· into V. For any
;0, t/J e V·, from (;0, (li - AO)-lt/J0) = «/l - Ao)-ltP°, t/J0), we have

(P:tP°,t/J0) = ~ f «/l-AO)-ltP0,t/J0)d/l
21r1 J1p-;r;;t=E

= 2
1

. f (tP°,(li - Ao)-lt/J0d/l)
1r1 Jlp-hl=E

=(tP°'-2
1

. f (/l-AO)-lt/J0d/l)
71"1 J1p-p,.I=E

= (tP° ,Pnt/J°).

Let Ani/m()'ni) = /In, n = 1,2, ... , then

Pni = -2
1

. f (A - A)-IdA.
1r1 11>,->,,.;I=E,.;

Set Zni = ImPni·
LEMMA 3.3. tP e Zni if and only if there exists an integer k such that

(Ani - An)ktP = O.

Proof. H (Ani - A)J: tP = 0 where tP =(tP° , ;1), then from 6(Ani)ktP° =
oand 6(An;}J: tPl (s) =0 it follows that

(/In - Ao)J:tP° = 0, (/In - Ao)ktPl(S) =O.

Hence, since tP° = PntP° E B n and tPl(s) = PntPl(S) e B n we have
(Ani - An)J: tP = O. In view of the Lemma 3.1 (Ani - An)ktP = 0 implies
(Ani - A)J: tP = O. Thus Lemma is proved.
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THEOREM 3.1. Suppose that m(O) :f: 0, l' :/: 0 and the generalizes
eigenspaces of Ao are complete in B. Then the generalized eigenspaces
of A are complete in Z.

Proof. From the corresponding result of A. Manitius([2]; Theorem
5.1 and 5.4(ii» in the case a finite dimensional space, the generalized
eigenspaces of An are complete in B n XL2( -h, 0; Hn). In view of Lemma
3.3 the generalized eigenspace of An are U~1 Zni(We remark that in the
case of a finite dimensional case the complex number ,\ satisfied with
m(O) = 0 belongs to the resolvent set). Suppose that (/,Zni) = 0 for
any n and any i where J = (r, r) E H X L2

( -.h, OJ V*). Then in view
of Lemma 3.3 we have that for all <p = (<po, <PI) E Zni

«P:JO,P:J1),(<p0, <pI» = (P:/O, <pO) + 1°1&(p:fl(s),<p1(s»ds

=(/O,Pn<p°) +[1&(/1 (s),Pn<p1(s»ds

= (/0, <pO) + 1°1&(P (s ), <pI (s»tis
= «(/0, 11 ), (<pO, <pI» = O.

Thus «p:r,p:P), Zni) = 0 for any i = 1,2, .... Hence the element
(p:/o,p:r) is orthogonal to H n x L 2(-h, 0; H n ), and hence p:/o = 0
and p:P (8) == O. Since n is arbitrary number we have that r = 0 and.
P =o. We have proved that the generalized eigenspaces of A which is
the set Un i Zni are complete in Z = H X L 2

( -h, OJ V).,

4. Identifiability of linear retarded system

We denote the model system by the equation (2.1), (2.2) with Ao,1',
a replaced by .A:a,1'm , am respectively. The mild solution of (2.1), (2.2)
is denoted by um(tjg), and the solution semigroup for model system by
sm(t) = exp(tAm ). We assume that AO and am satisfy the same type
of assumptions as Ao and a. The conclusions in section 2 holds also for
AO. We shall say that Ao,1', a are identifiable if

Ao = AO, l' =1'm , a(s) =am(s)
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u(tj gi) =um(tj gi), i = 1, ... , q,

where gi = (gf, g}) E Z, i = 1, ... ,q, is a finite set of initial values.
Let {p:' : n = 1,2, ... } be the set of eigenvalues of AO, and by

{t/J:l' ... , t/J:d.. } a base of Ker(p: - (AO)*), whose dn = dim Ker(p:' ­
A:;a). Let {~:J : j = 1, 2, ... } be the totality of the complex numbers
~ satisfying ~/mm(~) = p:,. Let AT be the infinitesimal generator
of the solution semigroup associated with the model equation with AO
replaced by its adjoint (AO)*. If we set ?/J~j = «?/J~j)O ,exp(~:J( ?/J~j)O»,
{(?/J~j)O : k = 1, ... ,dn} is a base of Ker(X:'j - AT)' We denoted by
{tP~j : k = 1, ... ,dn} a base of Ker(~:i - Am). The structual operator
F is defined by

Fg = ([Fg]O, [Fg]I),

[Fg]O =gO,

[FgP(s) = "YAog1
( -h - s) +i 8

k a("Y)Aol("Y - s)d"Y'

for 9 = (gO,gl) E Z. It is easily to see that FE B(Z,Z*). As is easily
seen in [3j Theorem 8.4] the projection PJ::.. has the following equivalent
representation

d..

PJ::..g = L < Fg,?/J:i > z tP:i, 9 E Z.
i=1

Throughout this section we shall assume following:

RANK CONDITION: For the initial values {9h"" g,}

rank({rgi, ?/J~j)Z : i -+ 1, ... ,q, k! 1, ... , dn) = dn

for n = 1,2, ....
The assumption of rank condition is satisfied if and only if
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Proof. Let Ao E up(Am ). Then from Theorem 2.2 it follows that
mm(Ao) i= 0 and Ao/mm(Ao) E u(A-O). Because A~ : V --+ V* is an
isomorphism we have AO i= O. Suppose that Ao E p(A), then there exists
a positive number f such that

{A: 0 < IA - Aol ~ f} C p(Am
), {A: IA - Aol ~ f} c p(A).

Thus since

it is contradict to the rank condition. Hence AO E u(A). Suppose Ao E
ue(A). Then m(Ao) i= 0 and since AO i= 0, A is not eigenvalue. There
exists a positive number f > 0 such that

{A: 0 < IA - Aol ~ f} C p(Am
), {A: IA - Aol = f} c p(A).

Since



300

we have
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AP>::,gi = 2
1

. I A(A - A)-lgidA
1rt J')'->'OI=E

= ~ I {A - (A - A)}(A - A)-lgidA
21rt J')'->'OI=E

= ~1 A(A-A)-lgidA - ~1 gidA
21rt 1>'->'ol=E 21rt 1).->.oI=E

=~1 A(A-A)-lgidA
21rt '>'->'ol=E

=~ I A(A - Am)-lgidA
21rz J1>'-).ol=E

= Am p'\:9i.

By the similarly way we conclude that

A"P>::'9i =(Am)"P.\:9i' k = 0,1, ... ,

and we have

(AO - A)"P'\:gi = (Ao - Am)"P>::'gi =o.
In view of p~gi =1= 0 for some i it is contradiction that AO is not eigen­
value. Therefore we have proved that AO E O'p(A), that is, O'p(Am) C
O'p(A).

Next, let AO E O'e(Am), then mm(Ao) =0 and hence A =1= o. Therefore
exists a sequence {Aj} C O'p(Am) such that Aj converges to Ao. Hence
from Aj E O'p(Am) C O'p(A) it follows that AO is a cluster point of O'(A)
and hence Ao E O'e(A).

THEOREM 4.1. Suppose that the generalized. eigenspa.ces of A8' are
complete in H and the rank condition is satisfied.. Then Ao, "Y, a are
identifiable.

We can proved this theorem following the proof of proposition 3.1 and
theorem 3.1 of [4] by showing Lemma 4.1 instead of O'(Am) C O'(A) to
start with.
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