FIXED POINT ALGEBRAS OF UHF-ALGEBRAS II

CHANG HO BYUN

1. Introduction

In this note we consider a C^* -dynamical system $(\mathfrak{A}, G, \alpha)$ of product type action, where \mathfrak{A} is a UHF-algebra and G is a finite group. In [3], [6] and [7], the author, A. Kishimoto and N. J. Munch considered properties of the C^* -dynamical system $(\mathfrak{A}, G, \alpha)$. In their results if G is abelian, then the space of tracial states on the fixed point algebra \mathfrak{A}^{α} is n-simplex (the number n is the cardinality of a subgroup K of G whose elements are weakly inner in the trace representation of \mathfrak{A}) and in particular some conditions for \mathfrak{A}^{α} to be UHF were obtained.

In this paper we show that the number of extremal tracial states on the fixed point algebra \mathfrak{A}^{α} is the cardinality of the orbit space \widehat{K}/G where K is some normal subgroup of G and we get conditions under which \mathfrak{A}^{α} is a UHF-algebra when G is non-abelian.

2. Notations and preliminaries

Let G be a finite group and K_n , $n \in \mathbb{N}$ be matrix factors of rank $|K_n|$, that is, $|M_n(\mathbb{C})| = n$. Here $M_n(\mathbb{C})$ means always the factor of all $n \times n$ complex matrices. Consider unitary representations $\pi_n : G \to K_n$ and define the homomorphism α of G into the group of all *-automorphisms of $\mathfrak{A} = \bigotimes_{n=1}^{\infty} K_n$ by $\alpha_g = \bigotimes_{n=1}^{\infty} Ad\pi_n(g)$.

We assume throughout that the automorphisms α_g are not inner in \mathfrak{A} except g =the unit e in G.

If G is a (non-abelian) finite group, the structure of ideals in \mathfrak{A}^{α} was investigated in [8] by N. Riedel. Let τ be the unique tracial state on a UHF-algebra \mathfrak{A} . Since the trace is α -invariant, we obtain a W^* -dynamical system $(\pi_{\tau}(\mathfrak{A})'', G, \widetilde{\alpha})$ which the C^* -dynamical system $(\mathfrak{A}, G, \alpha)$ is

Received August 27, 1992.

Supported by GARC-KOSEF(1992) and the Mathematical Research Center of Chonnam National University

extended to (here π_{τ} is the G.N.S.-representation constructed by τ). We set $K = \{g \in G : \widetilde{\alpha}_g \text{ is an inner automorphism of } \pi_{\tau}(\mathfrak{A})''\}$. Let \widehat{K} be the dual object of K. Since K is a normal subgroup of G, we obtain a G-space (G, \widehat{K}) with the action $(g \cdot \pi)(k) = \pi(g^{-1}kg)$ for $k \in K$, $g \in G$ and $\pi \in \widehat{K}$. We give an equivalent relation \sim by $\pi \sim \rho$ $(\pi, \rho \in \widehat{K})$ if and only if $g \cdot \pi = \rho$ for some $g \in G$. Then we obtain a G-space \widehat{K}/\sim (denoted by \widehat{K}/G).

By [8, §3], we may assume that there exists an invariant set Ω in the dual object \widehat{G} of G such that the set Ω is the family $J(\pi_n)$ of all irreducible subrepresentations of π_n ($n \geq 2$). By [5, Proposition 2.7(vii)], there is a normal subgroup H of G such that $\Omega = \{\pi \in \widehat{G} : \pi|_H$ is trivial}. By the above assumption and [2, Lemma 3.5], the invariant set Ω is the whole space of \widehat{G} . Since $J(\pi_3) = \widehat{G}$ and $\pi_1 \otimes \pi_2$ contains a trivial representation of G, we have $J(\pi_1 \otimes \pi_2 \otimes \pi_3) = \widehat{G}$. After "compressing" $K'_1 = K_1 \otimes K_2 \otimes K_3$, we may assume that $J(\pi_n) = \widehat{G}$ for all $n \geq 1$. Then we show, by [8, Theorem 3.1], that the fixed point algebra \mathfrak{A}^{α} is simple.

Put $W_g^{n,m} = \bigotimes_{i=n+1}^m \pi_i(g)$, n < m. Since $W^{n,m}$ is a unitary representation of G into $\bigotimes_{i=n+1}^m K_i$, we get an irreducible decomposition $W^{n,m} = \sum_{\pi \in \widehat{G}} \lambda_{\pi}^{n,m} \pi$ where $\lambda_{\pi}^{n,m}$ is the multiplicity of π in $W^{n,m}$. As [1, 2, 7, 8], $\mathfrak{A}^{\alpha} = \{x \in \mathfrak{A} : \alpha_g(x) = x \text{ for all } g \in G\}$ is equal to $\overline{\bigcup_{n=1}^{\infty} \mathfrak{A}_n^{\alpha}}$ where $\mathfrak{A}_n = \bigotimes_{i=1}^n K_i$ and — denotes the norm closure. Then the finite dimensional algebra $\mathfrak{A}_n^{\alpha} = \mathfrak{A}_n \cap \{W_g^{0,n} : g \in G\}'$ is isomorphic to $\bigoplus_{\pi \in \widehat{G}} \mathfrak{A}_{\pi}^n$ where \mathfrak{A}_{π}^n is a non-zero factor of type $I_{\lambda_{\pi}^{0,n}}$ because of $J(\pi_i) = \widehat{G}$ for all $i \in \mathbb{N}$. Therefore \mathfrak{A}^{α} is an AF algebra and its structure is completely determined by the partial embedding $\mathfrak{A}_{\pi}^n \to \mathfrak{A}_{\rho}^{n+1}$ [1]. We define a positive operator $E_{\rho,\overline{\pi}}^{n,m}$,

$$E_{\rho,\overline{\pi}}^{n,m} = \int_G \overline{\chi_{\rho}(g)} \chi_{\pi}(g) W_g^{n,m} dg$$

where χ_{π} is the character of G associated with π and dg is a normalized Harr measure on G. The way how to prove the main theorem is essentially due to the one done in [7].

Let τ be the canonical trace on \mathfrak{A} , that is, $\tau = \bigotimes_{i=1}^{\infty} |K_i|^{-1} Tr$, where Tr is the usual trace on the matrix algebra K_i .

LEMMA 2.1 [7, LEMMA 2.1]. The partial embedding $\mathfrak{A}_{\pi}^{n} \to \mathfrak{A}_{\rho}^{n+1}(\pi, \rho \in \widehat{G})$ has a multiplicity $|K_{n+1}|\tau(E_{\rho,\overline{\pi}}^{n,n+1})$.

Proof. Let $\pi \otimes \pi_{n+1} = \sum_{\omega \in \widehat{G}} \lambda_{\omega} \omega$ be the irreducible decomposition of $\pi \otimes \pi_{n+1}$ where λ_{ω} is the multiplicity of ω in $\pi \otimes \pi_{n+1}$. Then we obtain

$$|K_{n+1}|\tau(E_{\rho,\overline{\pi}}^{n,n+1}) = \int_{G} \overline{\chi_{\rho}(g)} \chi_{\overline{\pi}}(g) Tr(\pi_{n+1}(g)) dg$$

$$= \int_{G} \overline{\chi_{\rho}(g)} (Tr \otimes Tr) ([\pi \otimes \pi_{n+1}](g)) dg$$

$$= \sum_{\omega \in \widehat{G}} \int_{G} \overline{\chi_{\rho}(g)} \lambda_{\omega} \chi_{\omega}(g) dg$$

$$= \sum_{\omega \in \widehat{G}} \lambda_{\omega} \delta_{\rho,\omega} = \lambda_{\rho}$$

where $\delta_{\rho,\omega}$ is Kronecker's delta.

REMARK 2.2. The partial embedding $\mathfrak{A}_{\pi}^{n} \to \mathfrak{A}_{\rho}^{m}$ (n < m) has multiplicity

$$|K_{n+1}||K_{n+2}|\cdots|K_m|\tau(E_{\rho,\overline{\pi}}^{n,m}).$$

By the quite same reason done at [7, §3], we require that $W_k^{n,\infty} = st - \lim_{m \to \infty} W_k^{n,m}$ exists for $k \in K$ and $n \in \mathbb{N}$. The restriction $\pi|_K$ to K of an irreducible representation π of G is $\sum_{\omega \in \widehat{K}} \beta_\omega \omega$ as an irreducible decomposition. Since K is a normal subgroup of G, the multiplicity β_ω is

$$eta_{\omega} = \left\{ egin{aligned} d_{\pi} > 0 & \quad ext{when } \omega \in G\omega' ext{ for some } \omega' \in \widehat{K}, \\ 0 & \quad ext{otherwise}. \end{aligned}
ight.$$

We denote this orbit $G\omega'$ by $s(\pi)$.

LEMMA 2.3.

$$\lim_{m \to \infty} \tau(E_{\rho,\overline{\pi}}^{n,m}) = \int_{K} \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \tau(W_{g}^{n,\infty}) \, dg,$$

$$\lim_{n \to \infty} \left(\lim_{m \to \infty} \tau(E_{\rho,\overline{\pi}}^{n,m}) \right) = \begin{cases} (|K|/|G|) d_{\rho} d_{\pi} |s(\pi)|, & \text{if } s(\pi) = s(\rho) \\ 0, & \text{otherwise} \end{cases}$$

where $|\cdot|$ is the cardinality of a set.

Proof. By [7, Lemma 2.2], we have

$$\lim_{m \to \infty} \tau(E_{\rho,\overline{\pi}}^{n,m}) = \lim_{m \to \infty} \int_{G} \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \tau\left(\bigotimes_{i=n+1}^{m} \pi_{i}(g)\right) dg$$

$$= \lim_{m \to \infty} \int_{G} \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \prod_{i=n+1}^{m} \tau(\pi_{i}(g)) dg$$

$$= \int_{K} \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \tau(W_{g}^{n,\infty}) dg.$$

Since $\lim_{n\to\infty}\prod_{i=n}^{\infty}\tau(\pi_i(g))=1$ for $g\in K$, we have

$$\lim_{n\to\infty} \left(\lim_{m\to\infty} \tau(E_{\rho,\overline{\pi}}^{n,m}) \right) = \int_K \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \, dg.$$

By the orthogonality of characters of a compact group, we obtain

$$\int_K \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \, dg = \left\{ \begin{array}{ll} (|K|/|G|) d_{\rho} d_{\pi} |s(\pi)| & \text{if } s(\pi) = s(\rho) \,, \\ 0 & \text{otherwise.} \end{array} \right.$$

Let τ' be another normalized trace on \mathfrak{A}^{α} . Then for a minimal projection $f_{\pi}^{n} \in \mathfrak{A}_{\pi}^{n}$ ($\pi \in \widehat{G}$), we put $\xi_{\pi}^{n} = \tau'(f_{\pi}^{n})$. Then ξ_{π}^{n} is positive and is independent for the choice of f_{π}^{n} . By Lemma 2.1, the vectors $\xi^{n} = (\xi_{\pi}^{n})_{\pi \in \widehat{G}}$ and $\xi^{n+1} = (\xi_{\pi}^{n+1})_{\pi \in \widehat{G}}$ satisfy an equality

(1)
$$\xi_{\pi}^{n} = \sum_{\rho \in \widehat{G}} |K_{n+1}| \tau(E_{\rho,\overline{\pi}}^{n,n+1}) \xi_{\rho}^{n+1}.$$

Then by setting $\eta_{\pi}^{n} = (\prod_{i=1}^{n} |K_{i}|) \xi_{\pi}^{n}$, we have

$$\eta_{\pi}^{n} = \sum_{\rho \in \widehat{G}} \tau(E_{\rho,\overline{\pi}}^{n,n+1}) \eta_{\rho}^{n+1},$$

that is, $\eta^n = \eta^{n+1}C(n, n+1)$ where $\eta^n = (\eta^n_\pi)_{\pi \in \widehat{G}}$ and the matrix $C(n, n+1) = (\tau(E^{n,n+1}_{\rho,\overline{\pi}}))_{\rho,\pi \in \widehat{G}}$.

REMARK 2.4. For n < m < l,

(1-1)
$$\eta^n = \eta^m C(n,m), \quad C(m,l)C(n,m) = C(n,l),$$

where the matrix $C(n,m) = (\tau(E_{\rho,\overline{\pi}}^{n,m}))_{\rho,\pi \in \widehat{G}}$.

We compute

$$\begin{split} |G|^{-1} \sum_{\pi \in \widehat{G}} \dim \pi \eta_{\pi}^{n} &= |G|^{-1} \sum_{\pi \in \widehat{G}} \dim \pi \left(\sum_{\rho \in \widehat{G}} \tau(E_{\rho,\overline{\pi}}^{n,n+1}) \eta_{\rho}^{n+1} \right) \\ &= \sum_{\rho \in \widehat{G}} \left(|G|^{-1} \sum_{\pi \in \widehat{G}} \dim \pi \tau(E_{\rho,\overline{\pi}}^{n,n+1}) \eta_{\rho}^{n+1} \right) \\ &= \sum_{\rho \in \widehat{G}} \left(\int_{G} \overline{\chi_{\rho}(g)} \left\{ |G|^{-1} \sum_{\pi \in \widehat{G}} \dim \pi \chi_{\pi}(g) \right\} \tau(W_{g}^{n,n+1}) \, dg \right) \eta_{\rho}^{n+1} \\ &= \sum_{\rho \in \widehat{G}} \left(\int_{G} \overline{\chi_{\rho}(g)} \delta_{g,e} \tau(W_{g}^{n,n+1}) \, dg \right) \eta_{\rho}^{n+1} \\ &= \sum_{\rho \in \widehat{G}} |G|^{-1} \dim \rho \eta_{\rho}^{n+1}, \end{split}$$

since a left regular representation of G is $\sum_{\pi \in \widehat{G}} (\dim \pi)\pi$. Therefore we have

$$|G|^{-1}\dim\rho\eta_{\rho}^{n}\leq\sum_{\varrho\in\widehat{G}}|G|^{-1}\dim\rho\eta_{\rho}^{n}=\sum_{\varrho\in\widehat{G}}|G|^{-1}\dim\rho\eta_{\rho}^{1}$$

and

$$\sup_{\rho \in \widehat{G}} \eta_{\rho}^{n} \leq \sum_{\rho \in \widehat{G}} \dim \rho \eta_{\rho}^{1}$$

for all $n \in \mathbb{N}$. Hence we may take a subsequence $\{\eta^{n_q}\}$ of $\{\eta^n\}$ which converges to a vector $\eta = (\eta_\pi)_{\pi \in \widehat{G}}$. It follows from (1-1) that

$$\lim_{n_q \to \infty} (\eta^{n_p} - \eta^{n_q}) = \lim_{n_q \to \infty} \eta^{n_q} (C(n_p, n_q) - I)$$

where I is the identity matrix. By Lemma 2.3, we get

$$0 = \lim_{n_p \to \infty} \left(\lim_{n_q \to \infty} (\eta^{n_p} - \eta^{n_q}) \right) = \eta(C - I)$$

where the matrix C is equal to $((|K|/|G|)d_{\rho}d_{\pi}|s(\pi)|\delta_{s(\pi),s(\rho)})_{\rho,\pi\in\widehat{G}}$. Then the vector η satisfies a relation

$$\eta_{\pi} = (|K|/|G|) \sum_{s(\pi)=s(\rho)} d_{\rho} d_{\pi} |s(\pi)| \eta_{\rho}.$$

We put

$$x_{s(\pi)} = \sum_{\rho \in \widehat{G}, s(\rho) = s(\pi)} d_{\rho} \eta_{\rho}.$$

Hence we obtain a vector $(x_{s(\pi)})_{s(\pi) \in \widehat{K}/G}$ such that

(2)
$$\eta_{\pi} = (|K|/|G|)d_{\pi}|s(\pi)|x_{s(\pi)}.$$

On the other hand, since $\eta^{n_p} = \eta^{n_q} C(n_p, n_q)$, $(n_p < n_q)$, we have

$$\eta^{n_p} = \lim_{n_p \to \infty} \eta^{n_q} C(n_p, n_q) = \eta C(n_p, \infty),$$

where $C(n, \infty) = \lim_{m \to \infty} C(n, m)$. Therefore, for all n, we have

(3)
$$\eta^n = \eta^{n_p} C(n, n_p) = \eta C(n_p, \infty) C(n, n_p) = \eta C(n, \infty).$$

3. Main results

THEOREM 3.1. Let $(\mathfrak{A}, G, \alpha)$ and K be as in §2. Then the number of all extremal tracial states on the fixed point algebra \mathfrak{A}^{α} equals the cardinality of the orbit space \widehat{K}/G .

Proof. For an orbit $s(\pi) \in \widehat{K}/G$, we set

$$x_{s(\pi)} = \begin{cases} x, & \text{if } s(\rho) = s(\pi) \\ 0, & \text{otherwise,} \end{cases}$$

and we define vectors

$$\eta_{s(\pi)} = (d_{\pi}|s(\pi)|\delta_{s(\pi),s(\rho)})_{\rho \in \widehat{G}} \quad \text{and} \quad \eta^n = \frac{x|K|}{|G|}\eta_{s(\pi)}C(n,\infty).$$

Therefore we also set

$$\xi^n = \left(\prod_{i=1}^n |K_i|^{-1}\right) \eta^n.$$

Since $C(n+1,\infty)C(n,n+1)=C(n,\infty)$ by (1-1), we get

(4)
$$\xi^{n} = \left(\prod_{i=1}^{n} |K_{i}|^{-1}\right) \frac{x|K|}{|G|} \eta_{s(\pi)} C(n, \infty)$$

$$= \left(\prod_{i=1}^{n} |K_{i}|^{-1}\right) \frac{x|K|}{|G|} \eta_{s(\pi)} C(n+1, \infty) C(n, n+1)$$

$$= \left(\prod_{i=1}^{n} |K_{i}|^{-1}\right) \eta^{n+1} C(n, n+1)$$

$$= |K_{n+1}| \xi^{n+1} C(n, n+1),$$

which is the equality (1). If $\pi_1 = \sum_{\rho \in \widehat{G}} \lambda_{\rho}^{0,1} \rho$ is an irreducible decomposition, then

$$\bigoplus_{\rho \in \widehat{G}} \mathfrak{A}^1_{\rho} = \bigoplus_{\rho \in \widehat{G}} (M_{\lambda^{0,1}_{\rho}}(\mathbb{C}) \otimes I_{\dim \rho}).$$

Since $|K_1|\xi^1 = \frac{x|K|}{|G|}\eta_{s(\pi)}C(1,\infty)$ and x is an arbitrary positive number, we can decide uniquely x such that $\sum_{\rho\in\widehat{G}}\xi^1_{\rho}\lambda^{0,1}_{\rho}=1$. Since

$$|K_{n+1}|C(n,n+1)(\lambda_{\rho}^{0,n})_{\rho\in\widehat{G}}=(\lambda_{\rho}^{0,n+1})_{\rho\in\widehat{G}},$$

we have

(5)
$$\sum_{\rho \in \widehat{G}} \xi_{\rho}^{n} \lambda_{\rho}^{0,n} = (\xi_{\rho}^{n})_{\rho \in \widehat{G}} (\lambda_{\rho}^{0,n})_{\rho \in \widehat{G}}$$

$$\begin{split} &= \left(\prod_{i=1}^{n} |K_{i}|^{-1}\right) \frac{x|K|}{|G|} \eta_{s(\pi)} C(n,\infty) (\lambda_{\rho}^{0,n})_{\rho \in \widehat{G}} \\ &= \frac{x|K|}{|K_{1}||G|} \eta_{s(\pi)} C(n,\infty) C(1,n) (\lambda_{\rho}^{0,1})_{\rho \in \widehat{G}} \\ &= \frac{x|K|}{|K_{1}||G|} \eta_{s(\pi)} C(1,\infty) (\lambda_{\rho}^{0,1})_{\rho \in \widehat{G}} \\ &= (\xi_{\rho}^{1})_{\rho \in \widehat{G}} (\lambda_{\rho}^{0,1})_{\rho \in \widehat{G}} = 1. \end{split}$$

Hence for each $\bigoplus_{\rho \in \widehat{G}} \mathfrak{A}_{\pi}^n$, we set a trace $\tau_{s(\pi)}^n = \sum_{\rho \in \widehat{G}}^{\oplus} \xi_{\rho}^n Tr$ where Tr are canonical traces on $M_{\lambda_{\rho}^{0,n}}(\mathbb{C})$ for all $\rho \in \widehat{G}$. Then $\{\tau_{s(\pi)}^n : n \in \mathbb{N}\}$ gives a tracial state (denoted by $\tau_{s(\pi)}$) on \mathfrak{A}^{α} by (4) and (5). Because of (2) and (3), the tracial states $\{\tau_{s(\pi)} : s(\pi) \in \widehat{K}/G\}$ are extremal on \mathfrak{A}^{α} .

REMARK 3.2. Let $(\mathfrak{A}, G, \alpha)$ be as in §2. If G is abelian, the orbit space \widehat{K}/G is equal to \widehat{K} . Since $|\widehat{K}| = |K|$, Theorem 4.2 in [7] follows from Theorem 3.1.

THEOREM 3.3. The center of the fixed point algebra

$$(\pi_{\tau}(\mathfrak{A})'')^{\widetilde{\alpha}} = \{ x \in \pi_{\tau}(\mathfrak{A})'' : \widetilde{\alpha}_{g}(x) = x, g \in G \}$$

is $|\widehat{K}/G|$ -dimensional.

Proof. At first, we must compute $\eta = (\eta_{\pi})_{\pi \in \widehat{G}}$ in (2) for a restricted trace $\tau|_{\mathfrak{A}^{\alpha}}$ of the unique trace τ to \mathfrak{A}^{α} . By an easy computation, we have

$$\xi_{\pi}^{n} = \dim \pi \prod_{i=1}^{n} |K_{i}|^{-1}, \quad \eta_{\pi}^{n} = \dim \pi,$$

therefore $\eta_{\pi} = \dim \pi$ for all $\pi \in \widehat{G}$. Then we may set $x_{s(\pi)}$ in (2) by $x_{s(\pi)} = \frac{|G| \dim \pi}{|K||s(\pi)|d_{\pi}}$ which depends only on the orbit $s(\pi)$. Hence the trace $\tau|_{\mathfrak{A}^{\pi}}$ is of the form

$$\sum_{s(\pi)\in\widehat{K}/G}a_{s(\pi)}\tau_{s(\pi)},\quad a_{s(\pi)}>0,\quad \sum_{s(\pi)\in\widehat{K}/G}a_{s(\pi)}=1.$$

Since by Theorem 3.1, the center of $(\pi_{\tau}(\mathfrak{A})'')^{\tilde{\alpha}}$ is smaller than $|\widehat{K}/G|$ -dimensional, it must be $|\widehat{K}/G|$ -dimensional. Note that the minimal projections of its center are corresponded to $\{\tau_{s(\pi)}\}_{s(\pi)\in\widehat{K}/G}$.

We can obtain the next corollary directly from Theorem 3.3.

COROLLARY 3.4. Let $(\mathfrak{A}, G, \alpha)$ be as in §2. The fixed point algebra $(\pi_{\tau}(\mathfrak{A})'')^{\widetilde{\alpha}}$ is a factor if and only if the automorphism $\widetilde{\alpha}_{g}$ is not inner in $\pi_{\tau}(\mathfrak{A})''$ for all $g \neq e$.

Next we want get conditions under which the fixed point algebra \mathfrak{A}^{α} is UHF. We will follow to the line of proof investigated in [3].

Let $\mathcal{B}(l^2(G))$ be the algebra of all linear operators on $l^2(G)$. \mathfrak{B} denotes the UHF-algebra $\bigotimes_{n=1}^{\infty} \mathcal{B}(l^2(G))$, i.e., the infinite tensor product of copies of $\mathcal{B}(l^2(G))$ with type $|G|^{\infty}$. We define a left regular representation λ of G on $l^2(G)$ by

$$(\lambda_g \xi)(h) = \xi(g^{-1}h)$$
 for $g, h \in G$ and $\xi \in l^2(G)$.

The action $Ad\lambda$ of G on $\mathcal{B}(l^2(G))$ is defined by

$$Ad\lambda_g(x) = \lambda_g x \lambda_g^*$$
 for $g \in G$ and $x \in \mathcal{B}(l^2(G))$.

Also we define the action β of G on \mathfrak{B} such that $\beta_g = \bigotimes_{n=1}^{\infty} Ad\lambda_g$ for all $g \in G$. Then we get a C^* -dynamical system (\mathfrak{B} , G, β). Now we can obtain the following lemma and theorem as in [3].

LEMMA 3.5. The fixed point algebra \mathfrak{B}^{β} is *-isomorphic to \mathfrak{B} .

Proof. Only in this lemma, we use the same notation for (\mathfrak{B}, G, β) as $(\mathfrak{A}, G, \alpha)$ in §2. By Lemma 2.1, we compute the multiplicity of partial embedding $\mathfrak{A}^{n}_{\pi} \to \mathfrak{A}^{n+1}_{\rho}$ $(\pi, \rho \in \widehat{G})$ as follows,

$$\begin{split} |\mathcal{B}(l^2(G))||G|^{-1}Tr(E_{\rho,\overline{\pi}}^{n,n+1}) &= Tr\left(\int_G \overline{\chi_{\rho}(g)}\chi_{\pi}(g)\lambda_g\,dg\right) \\ &= \int_G \overline{\chi_{\rho}(g)}\chi_{\pi}(g)Tr(\lambda_g)\,dg = \dim\pi\dim\rho \end{split}$$

because $Tr(\lambda_g) = |G|\delta_{g,e}$. Then the Bratteli diagram for \mathfrak{B}^{β} is Figure 1;

We transform Figure 1 to Figure 2 and Figure 3. Then Figure 3 is a Bratteli diagram of \mathfrak{B} , hence \mathfrak{B}^{β} is *-isomorphic to \mathfrak{B} . (See [1].)

THEOREM 3.6. Let $(\mathfrak{A}, G, \alpha)$ be as in §2. Then the followings are equivalent:

- (i) \mathfrak{A}^{α} is a UHF-algebra.
- (ii) A^α is *-isomorphic to A.
- (iii) There exists a UHF-algebra $\mathfrak C$ such that $\mathfrak A$ is *-isomorphic to $\mathfrak C \bigotimes \mathfrak B$ and α is conjugate to $\iota \otimes \beta$, where ι is the identity automorphism of $\mathfrak C$.
- (iv) There exists an increasing sequence $\{n_k : k \in \mathbb{N}\}$ of non negative integers such that $n_1 = 0$ and

$$C(n_k, n_{k+1}) = (|G|^{-1} \operatorname{dim} \rho \operatorname{dim} \pi)_{\rho, \pi \in \widehat{G}}$$

i.e., $\tau(E_{\rho,\overline{\pi}}^{n_k,n_{k+1}}) = |G|^{-1} \dim \rho \dim \pi \text{ for all } \rho, \pi \in \widehat{G} \text{ and all } k \in \mathbb{N}.$

Proof. By Lemma 3.5, $(iii)\Rightarrow(ii)\Rightarrow(i)$ is evident.

The rest of the proof is analogous to that in [3]. Suppose that (i) holds. Then, by [1, 2.5 and 2.6], there are increasing sequences $\{\mathfrak{B}(k)\}_{k=1}^{\infty}$ of matrix factors and $\{n_k\}_{k=1}^{\infty}$ of non negative integers $(n_1 = 0 \text{ and } \mathfrak{A}_0^{\alpha})$ such that

$$\mathfrak{A}^{\alpha}_{n_k} = \bigoplus_{\pi \in \widehat{G}} \mathfrak{A}^{n_k}_{\pi} \subset \mathfrak{B}(k) \subset \mathfrak{A}^{\alpha}_{n_{k+1}} = \bigoplus_{\pi \in \widehat{G}} \mathfrak{A}^{n_{k+1}}_{\pi}.$$

Let a_{π}^{k} (resp. b_{π}^{k}) be the multiplicity of partial embedding of $\mathfrak{A}_{\pi}^{n_{k}} \to \mathfrak{B}(k)$ (resp. $\mathfrak{B}(k) \to \mathfrak{A}_{\pi}^{n_{k+1}}$). Then the multiplicity of partial embedding of $\mathfrak{A}_{\pi}^{n_{k}} \to \mathfrak{A}_{\rho}^{n_{k+1}}$ is by Lemma 2.1,

(6)
$$a_{\pi}^{k}b_{\rho}^{k} = \left(\prod_{i=n_{k}+1}^{n_{k+1}} |K_{i}|\right) \tau(E_{\rho,\overline{\pi}}^{n_{k},n_{k+1}}).$$

Now we have

$$\sum_{\pi \in \widehat{G}} \dim \pi a_\pi^k b_\rho^k$$

$$(7)$$

$$= \left(\prod_{i=n_k+1}^{n_{k+1}} |K_i|\right) \int_G \overline{\chi_{\rho}(g)} \left(\sum_{\pi \in \widehat{G}} \dim \pi \chi_{\pi}(g)\right) \tau(W_g^{n_k, n_{k+1}}) dg$$

$$= \left(\prod_{i=n_k+1}^{n_{k+1}} |K_i|\right) \int_G \overline{\chi_{\rho}(g)} |G| \delta_{g,e} \tau(W_g^{n_k, n_{k+1}}) dg$$

$$= \left(\prod_{i=n_k+1}^{n_{k+1}} |K_i|\right) \dim \rho.$$

Similarly $\sum_{\rho \in \widehat{G}} \dim \rho a_{\pi}^k b_{\rho}^k = (\prod_{i=n_k}^{n_{k+1}} |K_i|) \dim \pi$. Hence we can write as

$$a_{\pi}^{k} = a_{k} \dim \pi$$
 for all $\pi \in \widehat{G}$ $(a_{k} : \text{independent for } \pi)$, $b_{\rho}^{k} = b_{k} \dim \rho$ for all $\rho \in \widehat{G}$ $(b_{k} : \text{independent for } \rho)$.

Since $\sum_{\pi \in \widehat{G}} (\dim \pi)^2 = |G|$, we get

$$a_k b_k = |G|^{-1} \prod_{i=n_k+1}^{n_{k+1}} |K_i|,$$

by substituting a_k and b_k into (7). Therefore we have $\tau(E_{\rho,\overline{\pi}}^{n_k,n_{k+1}}) = |G|^{-1} \dim \pi \dim \rho$ by (6) which means that (iv) holds.

Next we will prove (iv) \Longrightarrow (iii). Considering the trivial representation of G, we have

$$|G|^{-1}\dim\rho=\int_G\overline{\chi_{\rho}(g)}\tau(W_g^{n_k,n_{k+1}})\,dg,$$

which implies that the representation $W^{n_k,n_{k+1}}$ of G is equivalent to $(\prod_{i=n_k+1}^{n_{k+1}}|K_i|)|G|^{-1}$ -multiple of the left regular representation λ . Hence there is a matrix factor C_k such that

$$\bigotimes_{i=n_k+1}^{n_{k+1}} K_i = C_k \bigotimes \mathcal{B}(l^2(G))$$

and $AdW^{n_k,n_{k+1}}$ is conjugate to $\iota \otimes Ad\lambda$ for all k where ι is the identity map on C_k . Put $\mathfrak{C} = \bigotimes_{k=1}^{\infty} C_k$. Therefore \mathfrak{A} is *-isomorphic to $\mathfrak{C} \otimes \mathfrak{B}$ (identifying $\mathfrak{C} \otimes \mathfrak{B}$ and $\bigotimes_{k=1}^{\infty} (C_k \otimes \mathcal{B}(l^2(G)))$ and α is conjugate to $\iota \otimes \beta$ where ι is the identity map on \mathfrak{C} , which implies (iii).

References

- O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer Math. Soc. 171 (1972), 195-234.
- 2. O. Bratteli, Crossed products of UHF-algebras by product type actions, Duke Math. J. 46 (1979), 1-23.
- 3. C. H. Byun, S. J. Cho and S. G. Lee, Fixed point algebras of UHF-algebras, Bull. Korean Math. Soc. 25 (1988), 179-183.
- E. Hewitt and K. A. Ross, Abstract harmonic analysis II, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- 5. R. Iltis, Some algebraic structure in the dual of compact group, Canad. J. Math. 20 (1968), 1499-1510.
- 6. A. Kishimoto, On the fixed-point-algebra of a UHF-algebra under a periodic automorphism of product type, Publ. RIMS, Kyoto Univ. 13 (1977), 777-791.
- 7. N. J. Munch, The fixed-point algebra of tensor-product actions of a finite abelian group on UHF-algebras, J. Funct. Anal. 52 (1983), 413-419.
- 8. N. Riedel, Remarks on the fixed point algebras of product type actions, Monatsh. Math. 89 (1980), 235-242.

Chonnam National University Kwangju 500-757, Korea