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FIXED POINT ALGEBRAS OF UHF-ALGEBRAS II

CHANG Ho BVUN

1. Introduction

In this note we consider a C·-dynamical system (21, G, a) of product
type action, where 21 is a UHF-algebra and G is a finite group. In [3], [6]
and [7], the author, A. Kishimoto and N. J. Munch considered properties
of the C·-dynamical system (21, G, a). In their results if G is abelian,
then the space of tradal states on the fixed point algebra 21Q is n-simplex
(the number n is the cardinality of a subgroup K of G whose elements
are weakly inner in the trace representation of 21) and in particular some
conditions for 21Q to be UHF were obtained.

In this paper we show that the number of extremal tracial states on
the fixed point algebra 21Q is the cardinality of the orbit space K/G
where K is some normal subgroup of G and we get conditions under
which s.xQ is a UHF-algebra when G is non-abelian.

2. Notations and preliminaries

Let G be a finite group and K n , n E N be matrix factors of rank lI<nl,
that is, IMn(C)1 = n. Here Mn(C) means always the factor of all n x n
complex matrices. Consider unitary representations 7rn : G ---+ I<n and
define the homomorphism a of G into the group of all •-automorphisms
of 21 = ®~1 I<n by a g = ®~=1 Ad7rn(g).

We assume throughout that the automorphisms Og are not inner in
21 except 9 =the unit e in G.

IfG is a (non-abelian) finite group, the structure of ideals in 21° was in­
vestigated in [8] by N. Riedel. Let 'T be the unique tracial state on a UHF­
algebra 21. Since the trace is a-invariant, we obtain a W* -dynamical
system (7rT(2l)", G, a) which the C*-dynamical system (21, G, a) is
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extended to (here 1rr is the G.N.S.-representation constructed by T). We
set K = {g E G : ag is an inner automorphism of 1rr (21)"}. Let K be
the dual object of K. Since K is a normal subgroup of G, we obtain a
G-space (G, K) with the action (g ·1r)(k) = 1r(g-lkg) for k E K, 9 E G
and 1r E K. We give an equivalent relation ,.." by 1r ,.." P (1r, P E K) if
and only if 9 . 1r = P for some 9 E G. Then we obtain a G-space K/ ,.."
(denoted by K/G).

By [8, §3], we may assume that there exists an invariant set n in
the dual object Gof G such that the set n is the family J(11"n) of all
irreducible subrepresentations of 1rn (n ~ 2). By [5, Proposition 2.7(vii)],
there is a normal subgroup H of G such that n = {1r E G : 11"IH is
trivial}. By the above assumption and [2, Lemma 3.5], the invariant
set n is the whole space of G. Since J(1ra) = Gand 1rl ® 1r2 contains
a trivial representation of G, we have J(1rl ® 1r2 ® 1ra) = G. After
"compressing" K~ = K 1 ® K 2 ® K a, we may assume that J(11"n) = G
for all n ~ 1. Then we show, by [8, Theorem 3.1], that the fixed point
algebra 21a is simple.

Put w;,m = ®::n+l 1ri(g), n < m. Since wn,m is a unitary rep­
resentation of G into ®::n+l Ki' we get an irreducible decomposition
wn,m - ~ _ >.n,m1r where >.n,m is the multiplicity of 1r in wn,m As- LJ"IfEG "If "If •

[1, 2, 7, 8], 21a = {x E 21 : a,ex) = x for all 9 E G} is equal to

U~=l 21~ where 21" =®~l Ki and - denotes the norm closure. Then
the finite dimensional algebra 21: = 21n nrw.:,n :9 E G}' is isomor­
phic to E9"1fEG 21; where 21; is a non-zero factor of type I :A~.n because of

J(1ri) =Gfor all i E N. Therefore 21a is an AF algebra and its structure
is completely determined by the partial embedding 21; -+ 21:+t [1]. We
define a positive operator E;':,

E:,: = LXp(g)x "If(g)w;,m dg

where X"If is the character of G associated with 1r and dg is a normal­
ized Barr measure on G. The way how to prove the main theorem is
essentially due to the one done in [7].

Let T be the canonical trace on 21, that is, T = ®:1IKil-1Tr, where
Tr is the usual trace on the matrix algebra Ki.
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LEMMA 2.1 [7, LEMMA 2.1]. The partial embedding 21; -+ 21:+1 (1r,
PEG) has a multiplicity IKn+tIT(E;,~+I).

Proof. Let 1r®1rn+t =EWeG AwW be the irreducible decomposition of
1r ® 1rn+1 where Aw is the multiplicity of W in 1r ® 1rn+1. Then we obtain

IKn+llr(E:,~+t)= LXp(g)X1r(g)Tr(1rn+t(g» dg

= LXp(g)(Tr ® Tr)([1r ® 1rn+t](g»dg

=~LXp(g )AwXw(g) dg
weG

= L AwDp,w = Ap
weG

where Dp,w is Kronecker's delta.

REMARK 2.2. The partial embedding 21: -+ 21~ (n < m) has multi­
plicity

By the quite same reason done at [7, §3], we require that W;,oo =
st - limm _ oo W;,m exists for k E K and n E N. The restriction 1rIK to
K of an irreducible representation 1r of G is EweR f3ww as an irreducible
decomposition. Since K is a normal subgroup of G, the multiplicity f3w
IS

f3w = { d'lr >0 0 when W E Gw' for some w' E K,
otherwise.

We denote this orbit Gw' by s(1r).

LEMMA 2.3.

lim r(Epn~) = f Xp(g)X1r(g)r(Wg
n,OO) dg,

m-oo ' lK

lim ( lim r(En~») = {(IKI/lGl)dpd1rIS(1r)I,
n-oo m-oo p,'Ir 0 ,

if s(1r) = s(p)
otherwise
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where I. I is the cardinality of a set.

Proof. By [7, Lemma 2.2], we have

lim T(Epn~) = lim (Xp{g)Xw(g)T (®~n+I1I"i(g») dg
m ....oo ' m....oo la

= lim (xp(g)Xw(g) IT T(1I"i(g»dg
m ....oo la i=n+l

= ( Xp(g)Xw(g)T(Wn,OO) dg.lK 9

Since limn....oo I1::n T(1I"i(g» = 1 for g E K, we have

lim ( lim T(Epn~») = { Xp(g)Xtr(g)dg.
n ....oo m ....oo ' lK

By the orthogonality of characters of a compact group, we obtain

Let T' be another normalized trace on 21Q
• Then for a minimal pro­

jection /; E 21; (11" E G), we put e: = T'u;n. Then e; is positive
and is independent for the choice of f;. By Lemma 2.1, the vectors
en = (e;)wEG and en+! = (e:+I )WEG satisfy an equality

(1) cn = ""' IK IT(En!!:+I)Cn+1
"-w L..J n+l p,w "-p •

pEG

Then by setting 71: = (I1~=lIKil)e;, we have

that is, 71n = "1n+1C(n,n + 1) where "1n = ("1;)WEG and the matrix

C(n,n + 1) = (T(E:,~+l»p,wEG.
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REMARK 2.4. For n < m < I,

279

(1-1) C(m, I)C(n, m) = C(n, I),

where the matrix C(n,m) = (T(E:,:»p,rEG.

We compute

IGI-'~dim,",: = IGr'~dim" (~"(E;.~+lp,;+,)
rEG wEG ~EG

=~ (IGI-1~dim1rT(E:,~+1),,;+1)
peG ...EG

=~ (Lxp(9>{IGI-1~dim1rX...(g) }'T(W;,R+1)dg) ,,;+1
peG wEG

= L (f Xp(9)c5"eT (W;,R+l)d9) ,,;+1
petJ lG

= L IGI-1 dimP'1;+1,
pEG

since a left regular representation of G is EwEG(dim 1r)1r. Therefore we
have

IGI-1 dim R < "" IGI-1 di R = "" IGI-1 dim 1p"P - L.." m P'1P L.." P'1p

pEG pEG

and
su~,,; :5 L dimP'1~
pEG pEG

for all n E N. Hence we may take a subsequence {"Rq } of {"R} which
converges to a vector" = ("W)WEG" It follows from (1-1) that
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where I is the identity matrix. By Lemma 2.3, we get

0= lim (lim ('1np
- '1n ,») = 'I(C - 1)

np-oo n,-oo

where the matrix C is equal to ((IKI/lGl)dpd,..ls(1I")1e5.(1I"),.(p») P,1I"EG .Then
the vector 'I satisfies a relation

'111" = (IKI/IGI) L dpd1l"ls(11")1'Ip'
.(,..)=..(p)

We put

Z"(1I") = L dp'lp.
pECJ,.(p)=..(11")

Hence we obtain a vector (z.(1I"».("')ER/G such that

(2)

On the other hand, since '1np = '1n'C(np,nf ), (np < nfl, we have

where C(n, 00) = lim C(n, m). Therefore, for all n, we have
m-oo

(3) 'In = '1npC(n,np) = "C(np,oo)C(n,np) = "C(n,oo).

3. Main results

THEOREM 3.1. Let (21, G, Q) and K be as in §2. Then the number
of all extremal tradal states on the fixed point algebra 2{0 equals the
cardinality of the orbit space K/G.

Proof. For an orbit s(1I") E K/G, we set

if s(p) = s(11")

otherwise,
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and we define vectors

Therefore we also set

Since C{n + 1, oo}C{n, n + 1} = C{n,oo} by {I-I}, we get

(4) e" = (UIK;j-') i~' "0(.)C(n, 00)

= (UIK;j-') i~,,,o(.)C(n + 1,oo)C(n, n +1)

= (UIK,I-') ,,"+lC(n,n+ 1)

= IKn+1 Ien+IC{n, n + 1},
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which is the equality (I). H 11'1 = E pEG ,,~,lp is an irreducible decom­
position, then

EB21~ = EB{M~~,l{C) ® ldimp).
pEG pEG

Since IK11e = i~''7.(1r)C{1,oo) and z is an arbitrary positive number,
we can decide uniquely z such that EpEG e~,,~,1 = 1. Since

we have

(5) L e;,,~,n = (e;)PEG(,,~,n)PEG
pEG
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Hence for each $ pEG 21:, we set a trace r;(1I") = 2::EG e;Tr where Tr

are canonical traces on M ~~. n (C) for all pEG. Then { r;( ,,) : n EN}
gives a tracial state (denoted by r,,(lf» on 2{Q by (4) and (5). Because of

(2) and (3), the tracial states {r"(1I"): s(1r) E X/G} are extremal on 2{Q.

REMARK 3.2. Let (2{, G, a) be as in §2. If G is abelian, the orbit
space X/G is equal to K. Since IKI = IKI, Theorem 4.2 in [7) follows
from Theorem 3.1.

THEOREM 3.3. The center of the fixed point algebra

(1rr (21)"ii = {x E 1rr (21)" : ag(x) = x, 9 E G}

is IK/GI-dimensional.

Proof. At first, we must compute '1 = ('11f)1I"EG in (2) for a restricted
trace rlaa of the unique trace r to 2{Q. By an easy computation, we
have

n

e: = dim1rnIKil-1
, '1; = dim1r,

i=l

therefore '111' = dim 7r for all 1r E G. Then we may set x.(1I") in (2) by

x.(11') = ir .~:; :... which dePends only on the orbit s(7r). Hence the trace
rlaa is of the form

L a.(1I") r"(1I")' a.(1I") > 0,
.(1I")EK/G

L a.(1I") = 1.
•(1I")EK/G
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Since by Theorem 3.1, the center of (1r"r{21)")ii is.'smaller than IK/GI­
dimensional, it must be IK/GI- dimensional. Note that the minimal
projections of its center are corresponded to {r,,(1r)l.s(n')EK/G.

We can obtain the next corollary directly from Theorem 3.3.

COROLLARY 3.4. Let (21, G, a) be as in §2. Tbe fixed point algebra
(1r r (21)")Q is a factor if and only if tbe automorphism Qg is not inner in
1rr (21)" for all 9 =/: e.

Next we want get conditions under which the fixed point algebra 210'
is UHF. We will follow to the line of proof investigated in [3].

Let 8(P(G)) be the algebra of a11linear operators on P(G). ~ de­
notes the UHF-algebra ®:C=18(12(G)), i.e., the infinite tensor product
of copies of 8(12(G)) with type IGlOO. We define a left regular represen­
tation Aof G on 12(G) by

(Age)(h) = e(g-l h) for g, hE G and eE 12(G).

The action AdA of G on 8(12(G)) is defined by

AdAg(x) = AgXA; for 9 E G and x E 8(12(G)).

Also we define the action Pof G on ~ such that Pg = ®~=1 AdAg for
all 9 E G. Then we get a C*-dynamical system (~, G, P). Now we can
obtain the following lemma and theorem as in [3].

LEMMA 3.5. Tbe fixed point algebra ~P is *-isomorpbic to~.

Proof. Only in this lemma, we use the same notation for (~, G, f3) as
(21, G, a) in §2. By Lemma 2.1, we C9mpute the multiplicity of partial
embedding 21: -+ 21~+l (1r, pEG) as follows,

18(12(G))IIGI-ITr(E:,~+1) = Tr (L Xp(g)X1r(g)Agd9)

=LXp(g)X1r(g)Tr(Ag )d9 = dim1rdimp

because Tr(Ag ) = IGIDg,e. Then the Bratteli diagram for 2JP is Figure
1;
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c c

IGI

IGI

I:.(dim 1t)2

=IGI

Figure 1 Figure 2 Figure 3

We transform Figure 1 to Figure 2 and Figure 3. Then Figure 3 is a
Bratteli diagram of~, hence ~,8 is *-isomorphic to~. (See [1].)
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THEOREM 3.6. Let (21, G, 0:) be as in §2. Then the followings are
equivalent:

(i) 21Q is a UHF-algebra.
(ii) 21Q is •-isomorphic to 21.

(iii) There exists a UHF-algebra (t such that 21 is *-isomorphic to
(t ® ~ and 0: is conjugate to t ® {3, where t is the identity auto­
morphism of (t.

(iv) There exists an increasing sequence { nk : kEN} ofnon negative
integers such that nl = 0 and

C(nk, nk+I) = (IGI-l dimp dim 11" )P,"'EO

i.e., T(E;,;;n lo+1
) = IGI-l dimp dim 11" for all p,1I" E Gand all kEN.

Proof. By Lemma 3.5, (iii)=>(ii)=>(i) is evident.
The rest of the proof is analogous to that in [3]. Suppose that (i) holds.

Then, by [1,2.5 and 2.6], there are increasing sequences {~(k)}~l of
matrix factors and {nk }~l of non negative integers (nl = 0 and 2lg)
such that

21Q = ffi 21nlo C ~(k) C 21Q = lD 21n
1o+1

nloW'" nlo+1W""
",EO "'EO

Let a~ (resp. b~) be the multiplicity of partial embedding of 21:10 -+ ~(k)

(resp. ~(k) -+ 21;10+1). Then the multiplicity of partial embedding of
21;10 -+ 21;10+1 is by Lemma 2.1,

(6)

Now we have
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(7)
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- (.:if IKil) Lxp(g) (~dim1rX7r(g»)r(W;."n"+1)dg
I-n.,+l rEG

-C~:l IKoI) faXp(g )IGI6•..r(W;' .n,.,)dg

- (JI.IK;I) dimp.

a~ = a"dim1r

b: = b"dimp

for all1r E {j (a" : independent for 1r),

for all pEG (b" : indePendent for p).

n.,+l

a"b" = IGI- 1 II IKil,
i=n.,+l

by substituting a" and b" into (7). Therefore we have r(E;''i:n
io+

1
) =

IGI-1 dim 1r dimp by (6) which means that (iv) holds.
Next we will prove (iv) ===> (iii). Considering the trivial representa­

tion of G, we have

which implies that the representation wn."nio+ 1 of G is equivalent to
(n:~~~+I IKiDIGI-1-multiple ofthe left regular representation A. Hence
there is a matrix factor C" such that

n"+l

@ Ki = C,,@8(12(G»
i=n.,+l
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and AdWRJo,RJoH is conjugate to I.®AdA for all k where I. is the identity
map on Ck' Put ~ = ®~1 Ck' Therefore ~ is *-isomorphic to ~®23
(identifying ~®23 and ®~l(Ck®B(r(G»)and a is conjugate to
I. ® fJ where t is the identity map on ~ which implies (iii).

References

1. O. Bratteli, Inductive limiu of finite dimensional C- -algebras, Trans. Amer.
Math. Soc. 111 (1972), 195-234.

2. O. Bratteli, Cro66ed producU of UHF-algebras by product type actiof&6, Duke
Math. J. 46 (1979), 1-23.

3. C. H. Byun, S. J. Cho and S. G. Lee, Fized point algebras of UHF-algebras, Bull.
Korean Math. Soc. 25 (1988), 179-183.

4. E. Hewitt and K. A. Ross, Ab6tract hannonic anal?!6U II, Springer-Verlag, Berlin,
Heidelberg, New York, 1970.

5. R. ntis, Some algebraic dn&cture in the dual of compact group, Canad. J. Math.
20 (1968), 1499-1510.

6. A. Kishimoto, On the fized-point-algebra of a UHF-algebra under a periodic au­
tomorphum of product type, Publ. RIMS, Kyoto Univ. 13 (1977), 777-79l.

7. N. J. Munch, The fized-point algebra of tensor-product actiof&6 of a finite abelian
group Oft UHF-algebras, J. Fwtct. Anal. 52 (1983), 413-419.

8. N. Riedel, Remark. on the fized point algebras of product type acti0f&6, Monatsh.
Math. 89 (1980), 235-242.

Chonnam National University
Kwangju 500-757, Korea




