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FIXED POINT ALGEBRAS OF UHF-ALGEBRAS II

CHANG Ho BYUN

1. Introduction

In this note we consider a C*-dynamical system (2, G, a) of product
type action, where 2 is a UHF-algebra and G is a finite group. In [3], [6]
and [7], the author, A. Kishimoto and N. J. Munch considered properties
of the C*-dynamical system (2, G, a). In their results if G is abelian,
then the space of tracial states on the fixed point algebra A is n-simplex
(the number n is the cardinality of a subgroup K of G whose elements
are weakly inner in the trace representation of ) and in particular some
conditions for A* to be UHF were obtained.

In this paper we show that the number of extremal tracial states on
the fixed point algebra A is the cardinality of the orbit space K /G
where K is some normal subgroup of G and we get conditions under

which A“ is a UHF-algebra when G is non-abelian.

2. Notations and preliminaries

Let G be a finite group and K,, n € N be matrix factors of rank |K,|,
that is, |M,(C)| = n. Here M,(C) means always the factor of all n x n
complex matrices. Consider unitary representations 7, : G — K, and
define the homomorphism a of G into the group of all *-automorphisms
of A= Qo Kn by ayg = Qe Adm,(g).

We assume throughout that the automorphisms a4 are not inner in
A except g =the unit e in G.

If G is a (non-abelian) finite group, the structure of ideals in A* was in-
vestigated in [8] by N. Riedel. Let 7 be the unique tracial state on a UHF-
algebra 2. Since the trace is a-invariant, we obtain a W*-dynamical
system (7-(A)', G, @) which the C*-dynamical system (%, G, ) is
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extended to (here 7, is the G.N.S.-representation constructed by 7). We
set K = {g € G : a4 is an inner automorphism of #,(A)"}. Let K be
the dual object of K. Since K is a normal subgroup of G, we obtain a
G-space (G, K ) with the action (g - 7)(k) = n(g~1kg) for k € K, 9€G
and 7 € K. We give an equivalent relation ~ by 7 ~ p (%,p € K) if
and only if g - 7 = p for some ¢ € G. Then we obtain a G-space K/~
(denoted by K/G).

By [8, §3], we may assume that there exists an invariant set € in
the dual object G of G such that the set Q is the family J(my) of all
irreducible subrepresentations of 7, (n > 2). By [5, Proposition 2.7(vii)],
there is a normal subgroup H of G such that @ = {r € G : n|y is
trivial}. By the above assumption and [2, Lemma 3.5], the invariant
set Q is the whole space of G. Since J(n3) = G and m, ® 7, contains
a trivial representation of G, we have J(m; ® 7, ® m3) = G. After
“compressing” K] = K; ® K; ® K3, we may assume that J(7,) = G
for all n > 1. Then we show, by [8, Theorem 3.1}, that the fixed point
algebra 2A* is simple.

Put W™ = @i, ,; 7i(9), n < m. Since W™™ is a unitary rep-
resentation of G into @, ,, Ki, we get an irreducible decomposition
Wn™ =3 g™ ® where Ap™ is the multiplicity of = in W™™. As
1,2, 7, 8], A = {z € A : ag(z) = z for all ¢ € G} is equal to
Uno., A2 where 2, = @, Ki and — denotes the norm closure. Then
the finite dimensional algebra A2 = A, (W™ : ¢ € G} is isomor-
phic to @, .5 Az where A7 is a non-zero factor of type I,0» because of
J(mi) = G for all i € N. Therefore A* is an AF algebra and its structure
is completely determined by the partial embedding A7 — A%*! [1]. We

define a positive operator E} 7",

E3T = | x(9)x=(9)W™ dg
G

where x is the character of G associated with = and dg is a normal-
ized Harr measure on G. The way how to prove the main theorem is
essentially due to the one done in [7].

Let 7 be the canonical trace on 2, that is, 7 = @, |K;|~1T'r, where
T'r is the usual trace on the matrix algebra K;.
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LEMMA 2.1 [7, LEMMA 2.1]. The partial embedding Ay — A2 (x,
pPE a) has a multiplicity IKn+1|T(E:”;+1)_

Proof. Let 1®Tn41 =2, €& Aww be the irreducible decomposition of
T @ Tn+1 Where A, is the multiplicity of w in 7 ® 7,,41. Then we obtain

Kl (EREF) = /G Xo@)xXx(6)Tr(Tns1(9)) dg
= /G X (@)(Tr ® Tr)([r ® Tass)(9)) dg
= ZLmAwa(g) dg
weG

=) Abpw =2,
wE@

where 6, ,, is Kronecker’s delta.

REMARK 2.2. The partial embedding A3 — 27’ (n < m) has multi-
plicity
Kns1liK a2l - |[Kmlm(EDF)-

By the quite same reason done at [7, §3], we require that W;"™ =
st —limy, oo W™ exists for k € K and n € N. The restriction 7|x to
K of an irreducible representation 7 of G is Y we Buw as an irreducible
decomposition. Since K is a normal subgroup of G, the multiplicity 8,
is

8 _{d,,>0 when w € Gu' for some w' € K,
L, =

0 otherwise.
We denote this orbit Gw' by s(r).
LEMMA 2.3.

lim r(E}) = [ X @ele)r(Wy =) do,

m—0o0

: . nm (IK|/|Gl)dpdxl|s(m)], if s(7) = s(p)
nl-l-.r%o (m]E»noo T(EP’? ) - { 0 , otherwise
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where | - | is the cardinality of a set.
Proof. By [7, Lemma 2.2}, we have

lim r(EnF)= lim / Xo @ xx(0)7 (BTnsrmi(9)) dg

M0

= hm /xp(g)x«(y) H T(%i(g)) dg

t=n+1

= / Xo(9)x=(9)T (W) dg.
K

Since limp—oo [I1o, 7(7i(g9)) = 1 for g € K, we have

N0 (m—»oo

tim (lim r(E55) = [ %l@xe(o) .
By the orthogonality of characters of a compact group, we obtain

_ (IK1/|1G)dpdxl|s(m)] if s(7) = s(p),
/K xp(9)xx(g)dg = { 0 otherwise.

Let 7' be another noxlnalized trace on A®. Then for a minimal pro-
jection f? € A} (v € G), we put & = 7'(f?). Then £ is positive
and is independent for the choice of f7. By Lemma 2.1, the vectors
= (6:)"56 and €n+1 = (§:+1 )neé satisfy an equality

(1) £ = |Knnlr(Epzthentt,
pEG
Then by setting n2 = ([T, |Kil)¢?, we have
=Y (BTt

pea

that is, ™ = 7"*'C(n,n + 1) where 4 = (n3),c5 and the matrix
C(n,n + 1) = (T(E:,!;-{-l ))p,wEé'



Fixed point algebras of UHF-algebras II 279
REMARK 2.4. Forn <m <,
(1-1) " =9"C(n,m), C(m,l)C(n,m)=C(n,l),
where the matrix C(n,m) = (7(E} 7))

12 “EG
We compute

IGI™* )" dimmn} = |G| Y dimn ET(EMH »+1)

=€G reG

= E (IG'—I Z d1m7r1‘(E"’"+1 a+l)

x€lG

= pzeé ( / xp(g){IGl > dnmvrxx(y)}r(anﬂ) dg) ot

=G

) pezc‘-: (./a Xp(9)8g,eT (W) dy) npt

=Y |G| dim
peG

since a left regular representation of G is ), a(dim 7)x. Therefore we
have

|G|~ dim py} < ) |G|™  dimpy} = D |G|~ dim py}
pEG pe@

and

sup 1): < Z dim pn,l,
PEG peG

for all n € N. Hence we may take a subsequence {7™1 } of { 9™ } which
converges to a vector ) = (1), cg- It follows from (1-1) that

lim (7" —1™) = lim_1"(Clnp,ng) )

Ng—00
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where I is the identity matrix. By Lemma 2.3, we get

0= tim_( tm (o~ ")) =n(C~ D)

np—+00

where the matrix C is equal to ((|K|/ |G|)d,,d,,|s(1r)|6,(,..),,(p))p ~c§ -Then
the vector 7 satisfies a relation

ne=(KI/IG) Y dodels(x)ln,-
s(W)=a(p)

We put

T = D, domp.
p€G,s(p)=s()

Hence we obtain a vector (Z4(x)) ymye /G such that
@) e = (IK|/IG)dals(m)| o(x)-
On the other hand, since 9" = 9"1C(n,,n,), (np < n,), we have

7" = lim 7" C(n,,ng) = nC(n,, o),

Ng—+CO

where C(n,00) = mliinoo C(n,m). Therefore, for all n, we have

(3) 7" = n"?C(n,np) = nC(n,, 0)C(n,np) = nC(n, o).

3. Main results

THEOREM 3.1. Let (A, G, ) and K be as in §2. Then the number
of all extremal tracial states on the fixed point algebra A* equals the
cardinality of the orbit space R /G.

Proof. For an orbit s(x) € K /G, we set

ey = {z, if s(p) = s()

0, otherwise,
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and we define vectors

z|K
Na(x) = (dr's(w)lsa(r),a(p))pe(’;" and 7'" = %”’(I)C(n’ °°)-

= ('ljl IK-'I“> n"

Since C(n + 1,00)C(n,n + 1) = C(n,c0) by (1-1), we get

(4) (II lK l-l) x!'é{l ﬂa(t)C(n’ °°)

=1

Therefore we also set

K
(II 'K |-1) zlall']a(r)o(n +1, OO)C(n, n+ 1)

- (II |K,-|—1) 7™*C(n,n+1)

i=1

= [Kpna|€"H'C(n,n +1),

which is the equality (1). fm =3_ & A%1p is an irreducible decom-
position, then

@ 2[}, = @(Mxﬂ-‘ (©) ® Laim »)-

PG@ peé

Since |K;|¢! = —ll—l-ln,(,,)C(l oo) and z is an arbitrary positive number,
we can decide uniquely z such that 3 2 € A0" = 1. Since

|[Ka41lC(n,n + 1)(A0™) jea = A0 s
we have

(5) Z A" = (60),ea(X™) e

oeG
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(H |K; l'l) ”,'f' Ns(x)C(n, 0)(AP™) e

f==1
_ _=|K]|
|K1llG]
z|K|

— 0,1
K ”le"’(’l')c(l °°)(’\ )peG

= (5p)peG()‘g’l)peé =1L

No(m C(1, 0)C(L, ) (A5") e

Hence for each €D .52z, we set a trace ‘r’(ﬂ,) E?eé £3Tr where T'r
are canonical traces on MAg,n(C) for all p € G. Then {75(m : 7 € N}
gives a tracial state (denoted by 7,(x)) on A* by (4) and (5). Because of
(2) and (3), the tracial states { 7,(x) : 3(7) € K/G} are extremal on 24°.

REMARK 3.2. Let (2, G, a) be as in §2. If G is abelian, the orbit

space K/G is equal to K. Since |K| = |K|, Theorem 4.2 in [7] follows
from Theorem 3.1.

THEOREM 3.3. The center of the fixed point algebra
(7 (A)")% = {z € 7 (A)" : Gy(z) = 2, g € G}

is |K /G|-dimensional.

Proof. At first, we must compute 1 = (7x),cg in (2) for a restricted
trace 7|ge« of the unique trace 7 to A*. By an easy computation, we
have

n
¢r =dimx [ 1K™, 1 =dimm,
=1
therefore 1, = dim= for all » € G. Then we may set Z,(x) in (2) by
Gldim . .
Ty(x) = TII"_IIIO_(I_)W which depends only on the orbit s(x). Hence the trace
7|« is of the form

Z Ay(x)Ta(x)y Cs(x) > 0, z Ay(x) = 1.
s(n)eK/G s(x)ek/G
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Since by Theorem 3.1, the center of (n(2)")¥ is‘smaller than |[K/G|-
dimensional, it must be |K/G|- dimensional. Note that the minimal
projections of its center are corresponded to {'r,(,,)}a(,r) cR/G"

We can obtain the next corollary directly from Theorem 3.3.

COROLLARY 3.4. Let (2, G, a) be as in §2. The fixed point algebra
(n-(A)")¥ is a factor if and only if the automorphism &, is not inner in
7+ (A)" for all g # e.

Next we want get conditions under which the fixed point algebra A
is UHF. We will follow to the line of proof investigated in [3].

Let B(2(G)) be the algebra of all linear operators on (G). B de-
notes the UHF-algebra @, B(1*(G)), i.e., the infinite tensor product
of copies of B(I?(G)) with type |G|*. We define a left regular represen-
tation A of G on P(G) by

(As€)(h) = &(g"h) for g,h € G and £ € B(G).
The action Ad\ of G on B(I%(G)) is defined by
Ad)g(z) = Agz); for g € G and z € B(I¥(Q)).
Also we define the action § of G on B such that §;, = Q.o , Ad), for

n=1

all g € G. Then we get a C*-dynamical system (B, G, §). Now we can
obtain the following lemma and theorem as in [3}.

LEMMA 3.5. The fixed point algebra B” is *-isomorphic to 8.

Proof. Only in this lemma, we use the same notation for (B, G, ) as
(A, G, «) in §2. By Lemma 2.1, we compute the multiplicity of partial
embedding A7 — AZF! (7, p € G) as follows,

B(EG))IG| - Tr(E»2+) = Tr ( [ 3@, dg)
- /G Xo(@)xx(9)Tr(A,) dg = dim = dim p

because Tr(\g) = |G|6;,. Then the Bratteli diagram for B? is Figure
1;
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dimn K
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% (dim @)’
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C
dim % dim ©
dim p
%4, A 2
dim p
dim 7 dim @
BUI*(GY)
dimw dim ®
dim p
A, A 2
dim=n P dim @
B(I*(G)® BUIX(G))
dmn dim p dim ®
%, %
Figure 2

T(dim )’
=[Gl

B(I(G))

IG1

B(I1%(G))® B(I(G))

IG1

Figure 3

We transform Figure 1 to Figure 2 and Figure 3. Then Figure 3 is a
Bratteli diagram of B, hence B is *-isomorphic to 8. (See [1].)
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THEOREM 3.6. Let (2, G, a) be as in §2. Then the followings are
equivalent:
(i) A* is a UHF-algebra.
(ii) A* is *-isomorphic to A.

(iii) There exists a UHF-algebra € such that % is *-isomorphic to
€ B and a is conjugate to ¢ @ B, where ¢ is the identity auto-
morphism of €.

(iv) There exists an increasing sequence { ny : k € N} of non negative
integers such that n, = 0 and

C(nk,nk.;.l) = (IGl_l dimp dim 7 )p,‘l’Eé

ie, T(Epu™*) = |G|~ dimp dim~ for all p,7 € G and all k € N.

Proof. By Lemma 3.5, (iii)=>(ii)=>(i) is evident.

The rest of the proof is analogous to that in [3]. Suppose that (i) holds.
Then, by [1,2.5 and 2.6], there are increasing sequences { B(k) }52, of
matrix factors and {n; }§2, of non negative integers (n; = 0 and 2AF)
such that

A2, = EB AT C B(k) CAL,,, = @ s+,
tE@ ‘n‘G&

Let a¥ (resp. b%) be the multiplicity of partial embedding of A% — B(k)
(resp. B(k) — Az**'). Then the multiplicity of partial embedding of
A" — AL** is by Lemma 2.1,

Ne41
® oot = (1 ) ez,
t=ni+1

Now we have

z dim wa:‘,b:

nea
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()
= ( H |Ki|) Lm (Z dimwx,(g)) T(Wrem+1) dg

t=ng+1 rcG

) ( I1 IK.-I) [ X@NG18, cr(wynnen) dg

i=ni+1

- (T )

t=np+1

Similarly 37 & dim pagd} = ([T} |Ki]) dimx. Hence we can write as

="k

a* =aydimx  for all 7 € G (a; : independent for ),

b": = brdimp for all p € G (b : independent for p).

Since 3, c5(dim7)? = |G|, we get

Rep1

abe = [GI7 [ IKil,

f=n+41

by substituting ax and & into (7). Therefore we have T(E,% *+'
|G|™! dim 7 dim p by (6) which means that (iv) holds.

Next we will prove (iv) = (iii). Considering the trivial representa-
tion of G, we have

IGI™! dimp = /G Ko@) r(Wrsms1) dg,

which implies that the representation W"*"t+1 of G is equivalent to
(IT:21: 41 |K:])IG| ! -multiple of the left regular representation A. Hence
there is a matrix factor C; such that

RE41

& Ki=C:@BE(G)

t=n;+1
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and Ad W™ ™+ is conjugate to ¢ @ AdA for all k where ¢ is the identity
map on Ci. Put € = ®j-, Cx. Therefore ¥ is *-isomorphic to €@ B
(identifying €@ B and @;o,(Ci @ B(2(G))) and a is conjugate to
¢ ® f where ¢ is the identity map on €, which implies (iii).
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