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A NEW PROOF OF KRALL'S THEOREM

KIL HYUN KWON AND BYEONG HOON Yoo

1. Introduction

Let us consider a linear differential equation of order N ~ 1 of <the
form

(1.1)
N

Lfi(x)y(i)(x) = AY(X)
i=O

where fiex), i = 0, ... , N, are real-valued smooth functions on R With
f N(x) ¢ °and Ais a real parameter, and ask: When does the differential
equation (1.1) have an orthogonal polynomial set as solutions?

It is easy to see that if the differential equation (1.1) has polynomial
solutions Pn(x) of degree n for n = 0,1, ... , N, then it must be of the
form

N N i

(1.2) LN(y) = Lfi(x)y(i)(x) = LLfiixiy(i)(x) = AnY(X)
i=O i=O i=O

where f ii are real constants and

(1.3) An = f oo + fun + ... + fNNn(n - 1)··· (n - N + 1)

for n = 0,1, ... ,N.
In 1929, S. Bochner [1] (see also H. L. Krall and O. Frink [8]) proved

that there are essentially (that is, up to a linear change of variable)
only four distinct orthogonal polynomial sets satisfying the differential
equation (1.2) for N = 2. They are now called the classical orthogonal
polynomials of Jacobi, Laguerre, Hermite, and Bessel. He also proposed

Received. August 12, 1992. Revised January 25, 1993.



256 Kil Hyun Kwon and Byeong Hoon Yoo

implicitly a problem of classifying all orthogonal polynomials satisfying
the differential equation (1.2).

The classifying problem itself is not resolved yet in general except for
N = 2 (due to S. Bochner [1Dand for N = 4 (due to H. L. Krall [7]).
However, H. L. Krall [6] found a remarkable theorem (d. Theorem 2.1)
characterizing all differential equations of the form (1.2) which have an
orthogonal polynomial set as solutions. Its proof in [6] is based on the
notion of dual equation to the differential equation (1.2), which is de­
veloped by I. M Sheffer [15]. Later a second simpler proof using the
generating functions of orthogonal polynomials was found by H. L. Krall
and I. M. Sheffer [9].

Here we shall give a new third proof of the Krall's characterization
theorem as well as some other equivalent characterizations. The idea of
our proof is based on the observation that if the differential equation (1.2)
has orthogonal polynomials as solutions, then it must be "symmetrizable
on polynomials" (see section 2).

We believe that our new proof shed some light on the important prob­
lem of identifying the orthogonal polynomial solutions of th~ equation
(1.2) as eigenfunctions of an operator which is self-adjoint on suitable
Hilbert or Krein space (see [2, 3, 4, 5, 11D.

The first another is partially supported by Korea Sci. & Eng. Found.
(90-08-00-02) and Global Analysis Research Center.

2. Main result
All polynomials in the followings are assumed to be real polynomials

in one variable and we let 'P the space of all real polynomials. We shall
call any liner functional CT on P a moment functional and

(2.1) CTn := (CT, xn ), n = 0,1, ...

the moments of CT. We denote the degree of a polynomial ¢(x) by deg t/J
with convention deg 0 = O. By a polynomial set, we mean a sequence
of polynomials {t/Jn(x)}go with degt/Jn = n, n = 0,1, .... Any polyno­
mial set {t/Jn(x)}go determines a moment functional CT, called a canonical
moment functional of { t/Jn(x)}go by requiring

(2.2) (CT, t/Jo) ~ 0 and (CT, t/Jn) = 0, n = 1,2, ....

Note that a canonical moment functional is uniquely determined by
{t/Jn(x)}go up to a non-zero constant multiple.
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DEFINITION 2.1. A polynomial set {Pn(x)}~ is an orthogonal poly­
nomial set (OPS in short) if there is a moment functional u such that

(2.3) m and n =0,1, ...

(2.4)

where K n are non-zero real constants. H then, we call {Pn(xHO' an OPS
relative to u and {un := (u,xn)}O' the moments of {Pn(x)}O'.

Note that if {Pn(x)}go is an OPS relative to u, then u must be a
canonical moment functional of {Pn(xH~.

The main goal of this paper is to provide a new simple and illuminat­
ing proof of the following theorem due to Krall [6].

THEOREM 2.1. Let {Pn(x)}O' be a polynomial set and {un}go the
moments of any canonical moment functional u of {Pn(x)}go. Then,
{Pn(x)}go is an OPS satisfying tbe differential equa.tion (1.2) for each
n = 0, 1, ... if and only if {un}go sa.tisfy

(i) ~n:= det[ui+j]i,j=o =I- 0, n =0, 1, ...
and

N i.
(ii) Sl:(m):= E E ('-:-1)P(m-2k-l,i-2k-l)fi,i_jUm _j=0

i=2l:+1j=O
for k = 0,1, ... [N;1] andm =2k+1, 2k+2, ... , wbere

P(n, k) = { ° , n = 0,
n(n-l)···(n-k+1), n=1,2, ....

FUrtbermore, if then, N must be even, say, N = 2r for some r = 1,2, ....

We begin with recalling a few well known facts on the symmetrizabil­
ity of linear differential operators of the form

N

L:= L(x,D) = Lai(X)Di
o

where D = d/dx, ai(x) are real-valued functions in Ci(I), aN(x) ¢. 0,
and I is an open interval. The formal adjoint of L is a differential
operator L * defined by

N

(2.5) L*(y) = L(-1)i(aiy)(i), y(x) in CN(I).
o



258 Kil Byun Kwon and Byeong Boon Yoo

The operator L is called symmetric if L = L *. It is called symmetrizable
if there is a real-valued function s(x) ¢ °in eN(I) such that sL is
symmetric. Then we call sex) a symmetry factor of L.

LEMMA 2.2 (Littlejohn [12) and Littlejohn and Race [14J). For any
real-valued function sex) ¢ 0 in eN(I), the followings are all equivalent:

(i) s(x) satisfies N + 1 equations

N (")~ i Z (i-k)(2.6) ~(-1) k (lis) =lks , k=O,I, ... ,N.

(ii) sex) satisfies r:= [Nil} equations

._ r 2t-2k+1 ( 2l )(2l -2k +1) 22l- 2k+2 - 1.
(2.7) Rk(S).- L L 2k-l " l- k+ 1

l=k ;=0 J

B2t_2k+2a~~l-2k+I-j)i j ) - a2k-Is = 0, k = 1,2, ... , r.

where B 2i are Bernoulli numbers defined by
00 2·

X X B2iX I

exp(x) -1 = 1-"2 +~ (2i)! .

(iii) sex) sa.tisfies r := [Nt l } equations

(2.8) RK(S):= t (_l)ie-~ -1)(ais)(i-U-I) = 0,
i-2k+1

k = 0,1, ... , r - 1.

(iv) For any two real-valued functions y(x) and z(x) in eN(I), one
of which has a compact support in 1

(2.9) (sLy, z) :=1z(x)(sLy)(x)dx = 1y(x)(sLz)(x) dx := (y,sLz).

(v) There are r+l real-valued functions Ji(x) in e2i(I), i = 0, 1,".",
r = [Nt l }, with fr(x) ¢ 0, and

r

(2.10) (sLy)(x) = ~)Ji(x)y(i)(x)}(i), y E eN(I).
o
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Furthermore if anyone of the above equivalent conditions holds, then
N = 2r must be even.

For any moment functional u and any polynomial4>(x), we define two
new moment functionals u', derivative of u, and 4>u by

(2.11)

and

(2.12)

(u', "'(x)} = -(0", ",'(x)}

(4)u, "'(x)} = (O",4>(x)t/J(x)}

for '" in P. Then we have

(2.13) (4>0")' = 4>'u + 4>u'.

Finally we need the following simple fact.

LEMMA 2.3. Let {Pn(x)}OO be an OPS relative to 0". Then we have:

(i) For any polynomial 4>(x), 4>0" = 0 if and only if 4>(x) =0 ;

and

(ii) For any moment functional r, (r,Pn ) = 0, n ~ k + 1 for some
integer k 2:: 0 if and only if T = 4>u for some polynomial 4>(x) of
degree:5 k.

Proof. (i) Assume that 4>u =0 but 4>(x):# 0 and write 4>(x) as 4>(x) =
n

ECjPj(x), cn:f. 0 where n = deg4>(~ 0). Then by the orthogonality of
o

{Pn(x)}go relative to u, we have

and so Cn = 0, which is a contradiction. The converse is trivial.

(ii) Consider a moment functional f given by f = (~CjPj(x)) 0",

where Cj are real constant to be determined. Then we have

(2.14)
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Assume {r, Pn} =°for n > k. Then the equation (2.14) shows that if we
take Cj = {r,Pj}{u,Pj}-I, j = 0,1, ... ,k, (r,Pn) = {f,Pn} for all n 2:: °
so that r = f since {Pn(x)}go is a polynomial set. Conversely if r = </Ju
for some polynomial </J(x) of degree :5 k, then {r,Pn} = {u,</JPn} = °for
n > k.

k =1,2, ... ,r.

(LN(</J)u,t/J) = (LN(t/J)U,q,)

for any polynomials q,(x) and t/J(x).
u satisfies r := [N:1] equations (with Rk as in (2.7»(iii)

(2.16)

(ii)

(2.15)

Now, we are ready to prove Theorem 2.1. In fact we shall prove the
following which is equivalent to Theorem 2.1 and is of interest in itself
(d. (10)).

THEOREM 2.4. Let {Pn(x)}~ be an OPS, u the canonical moment
functional of {Pn(x)}go, and {un}go the moments o{u. Then, the fol­
lowing statements are all equivalent.

(i) For each n = 0,1, ... , Pn(x) satisfies the differential equation
(1.2).
uL N is symmetric on polynomials in the sense that

RkU = 0, k = 0,1, ... , r - l.

{un}~ satisfies r := [Ntl ] recurrence relations 8k(m) = 0, k =
0,1, ... , r -1 and m = 2k +1,2k + 2, ....
{un}o satisfies r := [Ntl ] recurrence relations

(iv) u satisfies r:= [Ntl ] equations ( with Rk as in (2.8»

(2.17)

(v)

(vi)

(2.18)

r 2i ( 2i ) 22i- 2k+2 - 1
Tk(m):=~~ 2k-l P(m-2k+l,2i-2k+1) i-k+l .

2k-l

B2i-2k+2i2i,jUm-2i+j + L i 2k-l,jUm-2k+I+j = 0,
j=O

k = 1,2, ... , r and m = 2k - 1, 2k, ....
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(2.19)

Fhrthermore ifanyone of the above equivalent conditions holds, then
N = 2r must be even.

Proof. For any polynomials 4>(x) and ..p(x), we have from (2.11),
(2.12), and (2.13) that

N IN
(LN(.pp,.p1 =(t; l,.p(i)<1,.p) =\~(-1)'(.pl;<1)(;),.p)

=(~~(-l)'G).p(i)(l,<1)(;-i),.p)

= Ift(-I)i(~)(£iO')(i-I:)",(I:),tP).
\1:=0 a=1:

Hence, the condition (2.15) is equivalent to

N (.)i I (i-I:)?:(-1) k (iiO') = £1:0', k = 0, 1, ... , N.
1=1:

Therefore, the equivalence of the conditions (ii), (iii), and (iv) comes
immediately from Lemma 2.2. Now, assume that the condition (ii) holds.
Equivalently, it means that 0' satisfies N +1 equations in (2.19). Since

LN(Pn) = E£iP~i) is a polynomial of degree $ n, we may write it as
o

N n

LN(Pn) =L: liP~i) = E CjPj
o 0

where Cj are constants depending on n. Then for k = 0,1, ... , n, we
have by (2.19)

cl:(O',pl) = I O',t£iP~i)PI:) = t(-I)d(pl:iiO')(i),Pn)
\ 1=0 1=0 \

N N C) N= ~ t1(_1)i ~ (P~j)(liO')(i-j),Pn) = ~(P~j)ljO', Pn)

~ (j) { ° if k < n,
= L-(O"PI: ljPn) = \ ( P2) 'f k =

j=O An 0', n 1 n.
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Hence, we have Ck = 0, k < n and Cn = An SO that LN(Pn) = AnPn.
Conversely, assume that the condition (i) holds. Multiplying LNPn =

AnPn by Pk and applying q we obtain

(2.20)
N N

(q,plc ~iiP~i») = (~(-1)i(Pkiiq)<i),Pn)

= An(q,PkPn) = { ~n(q,p~)
ifk#n,

ifk=n.

N
H we set Vk := E(-1)i(Pki iq)(i) , then the equation (2.20) implies

o
(Vk' Pn ) = °for k > n so that by Lemma 2.3 we have

k

(2.21) Vic = L(Vk,Pj)(q, Pj)-lPj(x)q = AkPk(X)q,
j=O

k = 0,1, ....

On the other hand, we have
(2.22)

N N N") N
Vt = ~(-l)'(Ptl;.,)(·) =~r.l) ~(-l)'C (l•.,)(;-;) = ~p~;)u;

where

j = 0,1, ... ,N.

Hence, we have from (2.21) and (2.22) that

N k

(2.23) Vk ='AkPk(X)q =L plj)uj =L p~j)Uj,
;=0 j=O

k = 0,1, ... ,N.

Finally we claim that Uj = lj(x)q, j = 0,1, ... ,N so that the condition
(2.19), i.e., (2.15) holds. For j = 0, Vo = APo(x)q = Pouo and so
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Uo = AOO' = loO'. Assume that Uj = lj(x)O', j = 0,1, ... , k for some
k :5 N - 1. Then from (2.23) we have

and so

k

P (k+1) \ ~ n(j)
k+1 Uk+1 = Ak+1 Pk+lO' - L..." ~k+lUj

;=0

= (Ak+1 Pk+1 - tp~~ll;)O'
,=0

N k_(~D p(j) ~p(;) IJ)- f;:r, {.; k+1 - ~ k+1{.; (T

(1:+1)=Ik+1Pk+1 0'.

Hence, Uk+1 = Ik+l(X)O' by Lemma 2.3.
Finally, the condition (v) (resp. (vi» is just a restatement of the

condition (iv) (resp. (iii» in terms of the moments {O'n}OO of 0'.

REMARK. The equivalence of two moment relations Sk(m) = 0 in (v)
and T1:(m) = 0 in (vi) was first observed by L. L. Littlejohn [13] in which
he gave the precise connection between them (see the equation (5.5) in
[13]).

Now, Theorem 2.1 comes directly from Theorem 2.4 since a poly­
nomial set {Pn(x)}OO is an OPS if and only if the moments {O'n}OO of
{Pn(x)}OO satisfy the condition (i) in Theorem 2.2.

3. Applications

The condition (v) for the symmetry factor s(x) in Lemma 2.2 has an
analogue for the canonical moment functional 0' of an OPS satisfying the
differential equation (1.2). To be precise we have:
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THEOREM 3.1. Let {Pn(x)}go and (1 be the same as in Theorem 2.4.
Then anyone of the equivalent conditions (i) '" (vi) in Theorem 2.4 is
also equivalent to the following :

(vii) There are r + 1 moment functionals {Ti}O such that Tr ~ 0 and

(3.1)
r

L 2r( 4»(1 =L(-l)i[4>(i)Ti](i)
o

for evezy polynomial 4>(x).
(viii) There are r moment functionals {Ti}r such that T r ~ 0 and

(3.2)
r

L(Ti'P~)p~i)} = 0
i=l

for m #= n, m and n = 1,2, ....

lfbrthermore, {Pn(x )}() is symmetric ifand only if {Ti}~ can be chosen
to be symmetric.

The proofof Theorem 3.1 is straight forward application of Lemma 2.2
and Theorem 2.4 and we refer the details to [10].

In particular when r = 1, we get the following generalization of Balm's
characterization of classical orthogonal polynomials.

COROLLARY 3.2. An OPS {Pn(x)}go is classical, that is, they satisfy
the differential equation (1.2) with N = 2 if and only if {P~(x)}~ is a
weak orthogonal polynomial set in the sense that there is a nontrivial
moment functional T with

(3.3)

for m =F n, m and n = 1,2, ....

The rising interest in OPS's satisfying a differential equation (1.2)
lies partly in the fact that they provide good examples of realizing the
general Weyl-Titchmarsh theory of higher order differential equations
(see [2, 3, 4, 5]). In this sense, the equivalence of conditions (i) and (ii)
in Theorem 2.4 is quite interesting.
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