HEREDITARY PROPERTIES OF MINIMAL ISOMETRIC DILATIONS AND MINIMAL COISOMETRIC EXTENSIONS*

IL BONG JUNG

The notation and terminology employed herein agree with those in [1], [3], and [9]. Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . Throughout this paper, we write N for the set of natural numbers. For a Hilbert space \mathcal{K} and operators $T_i \in \mathcal{L}(\mathcal{K})$, i = 1, 2, we write $T_1 \cong T_2$ if T_1 is unitarily equivalent to T_2 . For T in $\mathcal{L}(\mathcal{H})$ we let Lat(T) denote the lattice of subspaces invariant for T. If $\mathcal{M} \in \text{Lat}(T)$ we write $T|\mathcal{M}$ for the restriction of T to \mathcal{M} . A subspace \mathcal{K} is semi-invariant for T if there exist \mathcal{M} and \mathcal{N} in Lat(T) with $\mathcal{M} \supset \mathcal{N}$ such that $\mathcal{K} = \mathcal{M} \ominus \mathcal{N}$. If \mathcal{K} is semi-invariant for T, we write

$$(1) T_{\mathcal{K}} = P_{\mathcal{K}}T|\mathcal{K}$$

for the *compression* of T to K, where P_K is the orthogonal projection whose range is K. Note that by (1) we have

$$(2) T \cong \begin{pmatrix} * & * & * \\ 0 & \tilde{T} & * \\ 0 & 0 & * \end{pmatrix}$$

relative to the decomposition $\mathcal{N} \oplus \mathcal{K} \oplus \mathcal{M}^{\perp}$, where $\tilde{T} = T_{\mathcal{K}}$. We say that an operator B is an extension of T if there exists \mathcal{M} in Lat(B) such that $T = B | \mathcal{M}; B$ is a dilation of T if there is a semi-invariant subspace \mathcal{K} for B such that $T = B_{\mathcal{K}}$.

Received July 2, 1992.

^{*}This work was partially supported by a research grant from Korean Research Foundation, Ministry of Education, 1990-1991.

Let T be a contraction operator in $\mathcal{L}(\mathcal{H})$. Then it follows from [9, Theorem I.4.2] that there exist a Hilbert space \mathcal{K} and an isometry B_T in $\mathcal{L}(\mathcal{K})$ such that $\mathcal{K} \supset \mathcal{H}$ and

$$(3) B_T \cong \begin{pmatrix} * & * \\ 0 & T \end{pmatrix}$$

relative to the decomposition $(\mathcal{K} \ominus \mathcal{H}) \oplus \mathcal{H}$. Furthermore, we may suppose B_T to be minimal, which means that for subspaces \mathcal{M} of \mathcal{K} ,

$$\{(\mathcal{H} \subset \mathcal{M} \subset \mathcal{K}) \land (B_T \mathcal{M} \subset \mathcal{M}) \land (B_T | \mathcal{M} \text{ is an isometry})\} \Rightarrow \mathcal{M} = \mathcal{K}.$$

By (3) and the above statements, it is easy to show that B_T^* is a minimal coisometric extension of T. Of course, this minimality means that for subspaces \mathcal{M}' of \mathcal{K} ,

$$\{(\mathcal{H} \subset \mathcal{M}' \subset \mathcal{K}) \land (B_T^* \mathcal{M}' \subset \mathcal{M}') \land (B_T^* | \mathcal{M}' \text{ is a coisometry})\} \Rightarrow \mathcal{M}' = \mathcal{K}.$$

A contraction operator $T \in \mathcal{L}(\mathcal{H})$ is absolutely continuous if in the canonical decomposition $T = T_1 \oplus T_2$, where T_1 is a unitary operator and T_2 is a completely nonunitary contraction, T_1 is either absolutely continuous or acts on the space (0) (cf. [2]). We write **D** for the open unit disc in the complex space **C** and **T** for the boundary of **D**. Let $\mathcal{C}_1(\mathcal{H})$ be the Banach space of trace-class operators on \mathcal{H} equipped with the trace norm. Then the dual algebra \mathcal{A} can be identified with the dual space of $Q_{\mathcal{A}} = \mathcal{C}_1(\mathcal{H})/^{\perp}\mathcal{A}$, where $^{\perp}\mathcal{A}$ is the preannihilator in $\mathcal{C}_1(\mathcal{H})$ of \mathcal{A} , under the pairing

(4)
$$\langle T, [L]_{\mathcal{A}} \rangle = \operatorname{tr}(TL), \quad T \in \mathcal{A}, \quad [L]_{\mathcal{A}} \in Q_{\mathcal{A}}.$$

We write [L] for $[L]_{\mathcal{A}}$ when there is no possibility of confusion. The space L^p , $1 \leq p \leq \infty$, is the usual Lebesgue function space relative to normalized Lebesgue measure m on \mathbf{T} . The space H^p , $1 \leq p \leq \infty$, is the usual Hardy space on \mathbf{T} . It is well-known (cf. [6]) that the space H^{∞} is the dual space of L^1/H_0^1 , where

(5)
$$H_0^1 = \{ f \in L^1 : \int_0^{2\pi} f(e^{it})e^{int}dt = 0, \text{ for } n = 0, 1, 2, \dots \}$$

and the duality is given by the pairing

(6)
$$\langle f,[g]\rangle = \int fg \, dm, \quad f \in H^{\infty}, \ [g] \in L^1/H_0^1.$$

Recall that a dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. Note that the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$ coincides with the weak*-topology on $\mathcal{L}(\mathcal{H})$ (cf. [5]). For $T \in \mathcal{L}(\mathcal{H})$ we denote by \mathcal{A}_T the dual algebra generated by T.

The following theorem gives a good relationship between Hardy space H^{∞} and a dual algebra generated by an absolutely continuous contraction.

THEOREM 1 [2, THEOREM 4.1]. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism $\Phi_T: \mathcal{H}^{\infty} \to \mathcal{A}_T$ defined by $\Phi_T(f) = f(T)$ such that

- (a) $\Phi_T(1) = 1$, $\Phi_T(\xi) = T$,
- (b) $\|\Phi_T(f)\| \le \|f\|_{\infty}, f \in H^{\infty},$
- (c) Φ_T is continuous if both H^{∞} and A_T are given their weak* topologies,
 - (d) the range of Φ_T is weak* dense in A_T ,
- (e) there exists a bounded, linear, one-to-one map $\phi_T: Q_T \to L^1/H_0^1$ such that $\phi_T^* = \Phi_T$, and
- (f) if Φ_T is an isometry, then Φ_T is a weak* homeomorphism of H^{∞} onto \mathcal{A}_T and ϕ_T is an isometry of Q_T onto L^1/H_0^1 .

Recall that $T \in C_{.0}$ if $||T^{*n}x|| \to 0$ for any $x \in \mathcal{H}$. We say $T \in C_{0}$. if $T^{*} \in C_{.0}$. And we denote that $C_{00} = C_{.0} \cap C_{0}$.. And recall (cf. [1]) that a completely nonunitary contraction $T \in \mathcal{L}(\mathcal{H})$ is said to be of class C_{0} if there exists $u \in H^{\infty}$, $u \not\equiv 0$, such that the functional calculus u(T) = 0 in Theorem 2.1. It follows from [1, Corollary II.4.2] that $C_{0} \subset C_{00}$.

Let T be a contraction operator in $\mathcal{L}(\mathcal{H})$ and let $B_T \in \mathcal{L}(\mathcal{K})$ be a minimal isometric dilation of T. Then it follows from the Wold decomposition theorem (cf. [9, Theorem I.1.1]) that

$$(7) B_T = U_T \oplus R_T,$$

where $U_T \in \mathcal{L}(\mathcal{U}_T)$ is a (forward) unilateral shift operator of some multiplicity and $R_T \in \mathcal{L}(\mathcal{R}_T)$ is a unitary operator. Note that by (3)

$$(8) B_T^* \cong \begin{pmatrix} * & 0 \\ * & T^* \end{pmatrix}$$

relative to the decomposition $(\mathcal{K} \ominus \mathcal{H}) \oplus \mathcal{H}$. Moreover, by (7) and (8) it is obvious that

$$B_T^* = U_T^* \oplus R_T^*$$

is a minimal coisometric extension of T^* .

Suppose $T \in \mathcal{L}(\mathcal{H})$ has a non-zero semi-invariant subspace \mathcal{M} (i.e., $\mathcal{M} \neq (0)$). Then by (2) a minimal isometric dilation $B_T \in \mathcal{L}(\mathcal{K})$ is an isometric dilation of $T_{\mathcal{M}}$. Hence $T_{\mathcal{M}}$ has a minimal isometric dilation $B_{T_{\mathcal{M}}} \in \mathcal{L}(\widetilde{\mathcal{K}})$ such that $\mathcal{M} \subset \widetilde{\mathcal{K}} \subset \mathcal{K}$ with $\widetilde{\mathcal{K}}$ in $Lat(B_T)$ and $B_{T_{\mathcal{M}}} = B_T |\widetilde{\mathcal{K}}$.

Now we are ready to define hereditary properties of minimal isometric dilations and minimal coisometric extensions.

DEFINITION 2. Let T be a contraction operator in $\mathcal{L}(\mathcal{H})$.

- (a) T has property (H_1) if, for any non-zero semi-invariant subspace \mathcal{M} for T, the minimal isometric dilation $B_{T_{\mathcal{M}}} \in \mathcal{L}(\widetilde{\mathcal{K}})$ of $T_{\mathcal{M}}$ which is obtained as a restriction $B_T|\widetilde{\mathcal{K}}$ of the minimal isometric dilation B_T of T with $\widetilde{\mathcal{K}} \in \operatorname{Lat}(B_T)$ satisfies $\mathcal{U}_{T_{\mathcal{M}}} \subset \mathcal{U}_T$.
- (a*) T has property (H_1^*) if, for any non-zero invariant subspace \mathcal{M} for T, the minimal coisometric extension $B'_{T_{\mathcal{M}}} \in \mathcal{L}(\widetilde{\mathcal{K}})$ of $T_{\mathcal{M}}$ which is obtained as a restriction $B'_{T}|\widetilde{\mathcal{K}}$ of the minimal coisometric extension B'_{T} of T with $\widetilde{\mathcal{K}} \in \operatorname{Lat}(B'_{T})$ satisfies $\mathcal{U}_{T_{\mathcal{M}}} \subset \mathcal{U}_{T}$.
- (b) T has property (H_2) if, for any non-zero semi-invariant subspace \mathcal{M} for T, the minimal isometric dilation $B_{T_{\mathcal{M}}} \in \mathcal{L}(\widetilde{\mathcal{K}})$ of $T_{\mathcal{M}}$ which is obtained as a restriction $B_T|\widetilde{\mathcal{K}}$ with $\widetilde{\mathcal{K}} \in \operatorname{Lat}(B_T')$ satisfies $\mathcal{R}_{T_{\mathcal{M}}} \subset \mathcal{R}_T$.
- (b*) T has property (H_2^*) if, for any non-zero invariant subspace \mathcal{M} for T, the minimal coisometric extension $B'_{T_{\mathcal{M}}} \in \mathcal{L}(\widetilde{\mathcal{K}})$ of $T_{\mathcal{M}}$ which is obtained as a restriction $B'_{T}|\widetilde{\mathcal{K}}$ with $\widetilde{\mathcal{K}} \in \operatorname{Lat}(B'_{T})$ satisfies $\mathcal{R}_{T_{\mathcal{M}}} \subset \mathcal{R}_{T}$.

REMARK 3. According to the notation of Definition 2(a*) and (b*) it is not difficult to show that if \mathcal{M} is a semi-invariant subspace for T and the minimal coisometric extension of $T_{\mathcal{M}}$ is obtained as a restriction $B_T'|\widetilde{\mathcal{K}}$ for some $\widetilde{\mathcal{K}} \in \operatorname{Lat}(B_T')$, then $\mathcal{M} \in \operatorname{Lat}(T)$.

Note from Definition 2 that (a) and (b) are related with (a*) and (b*) as dual properties, respectively. But it is interesting to see that by some examples and Theorem 7 there are some gaps between (a) and (a*).

LEMMA 4. If $T \in C_{\cdot 0}$, then T has property (H_1) .

Proof. Let \mathcal{M} be a non-zero semi-invariant subspace for T. Then it is not difficult to show that $T_{\mathcal{M}} \in C_{\cdot 0}$. Hence by [1, Corollary I.2.11], B_T is a unilateral shift operator of some multiplicity and $B_{T_{\mathcal{M}}}$ is a unilateral shift operator of some multiplicity. Therefore T has property (H_1) .

EXAMPLE 5. If $U \in \mathcal{L}(\mathcal{H})$ is a unilateral shift operator of multiplicity one, then by Lemma 4 U has property (H_1) . Furthermore, the fact that U has property (H_1^*) will be proved in Theorem 7. But its adjoint operator U^* doesn't have property (H_1) . (Indeed, there is a nontrivial invariant subspace \mathcal{M} for U^* (i.e., $(0) \neq \mathcal{M} \neq \mathcal{H}$). If we denote $\tilde{U} = U^*|\mathcal{M}$, then $\tilde{U} \in C_0 \subset C_0$ (cf. [1] or [8, Theorem 1]). Hence by [1, Corollary I.2.11] $B_{\tilde{U}}$ is a unilateral shift operator of multiplicity one. But B_{U^*} is a bilateral shift operator of multiplicity one. Therefore U^* doesn't have property (H_1) .)

By the above example, in general, the fact that an operator T has property (H_1^*) doesn't always mean that T^* has property (H_1) . The following proposition should be compared with Example 5.

PROPOSITION 6. If $U \in \mathcal{L}(\mathcal{H})$ is a unilateral shift of multiplicity one and \mathcal{K} is a nontrivial semi-invariant subspace for U^* , then $U_{\mathcal{K}}^*$ has property (H_1) .

Proof. Let \mathcal{K} be a nontrivial semi-invariant subspace for U^* . Then there exist \mathcal{M} , $\mathcal{N} \in \text{Lat}(U^*)$ with $\mathcal{M} \supset \mathcal{N}$ such that

(10)
$$U \cong \begin{pmatrix} * & 0 & 0 \\ * & \tilde{U}^* & 0 \\ * & * & * \end{pmatrix}$$

relative to the decomposition $\mathcal{N} \oplus \mathcal{K} \oplus \mathcal{M}^{\perp}$, where $\tilde{U} = U_{\mathcal{K}}^*$. Since $\mathcal{K} \neq (0) \neq \mathcal{H}$, by [4, Proposition I.7.13] we have

$$(11) U \cong \begin{pmatrix} \tilde{U}^* & 0 \\ * & * \end{pmatrix}$$

relative to the decomposition $\mathcal{K} \oplus \mathcal{M}^{\perp}$. Hence $\tilde{U}^* \in C_0 \subset C_{00}$ and $\tilde{U}^* \in C_{00}$. By Lemma 4, we have this proposition.

THEOREM 7. Every contraction operator in $\mathcal{L}(\mathcal{H})$ has

- (a) property (H_1^*) ,
- (b) property (H_2) and
- (c) property (H_2^*) .

Proof. (a) Let T be a contraction operator in $\mathcal{L}(\mathcal{H})$ and let \mathcal{M} be a non-zero invariant subspace for T. Let $B_T' \in \mathcal{L}(\mathcal{K})$ and let $B_{\tilde{T}}' \in \mathcal{L}(\widetilde{\mathcal{K}})$ be minimal coisometric extensions of T and \tilde{T} , respectively, such that $B_T' | \widetilde{\mathcal{K}} = B_{\tilde{T}}'$, where $\widetilde{\mathcal{K}} \in \operatorname{Lat}(B_T')$. Then we have

(12)
$$B_T' = U_T^* \oplus R_T^* \in \mathcal{L}(\mathcal{U}_T \oplus \mathcal{R}_T)$$
$$\cong \begin{pmatrix} \tilde{T} & * \\ 0 & * \end{pmatrix}$$

relative to the decomposition $\mathcal{M} \oplus (\mathcal{K} \ominus \mathcal{M})$, and

(13)
$$B_{\tilde{T}}' = U_{\tilde{T}}^* \oplus R_{\tilde{T}}^* \in \mathcal{L}(U_{\tilde{T}} \oplus \mathcal{R}_{\tilde{T}})$$
$$\cong \begin{pmatrix} \tilde{T} & * \\ 0 & * \end{pmatrix}$$

relative to the decomposition $\mathcal{M} \oplus (\widetilde{\mathcal{K}} \ominus \mathcal{M})$. Now we shall claim that $\mathcal{U}_{\widetilde{T}} \subset \mathcal{U}_T$. To do so, let $x = s \oplus r \in \mathcal{U}_T \oplus \mathcal{R}_T$. Since

$$B_{\widetilde{T}}' = B_T' | \widetilde{\mathcal{K}},$$

we have that

(15)
$$||U_{T}^{*n}x||^{2} = ||B_{T}^{'n}x||^{2} = ||B_{T}^{'n}x||^{2}$$

$$= ||(U_{T}^{*n} \oplus R_{T}^{*n})(s \oplus r)||^{2}$$

$$= ||U_{T}^{*n}s||^{2} + ||R_{T}^{*n}r||^{2}$$

$$= ||U_{T}^{*n}s||^{2} + ||r||^{2}.$$

Letting $n \to \infty$ on the equation (15), we have that ||r|| = 0. So $x \in \mathcal{U}_T$. This proves that $\mathcal{U}_{\tilde{T}} \subset \mathcal{U}_T$.

(c) Using notation in the proof of (a), we shall show that $\mathcal{R}_{\tilde{T}} \subset \mathcal{R}_T$. Let $x \in \mathcal{R}_{\tilde{T}}$ and let $x = s \oplus r \in \mathcal{U}_T \oplus \mathcal{R}_T$. Then we have

(16)
$$||s||^2 + ||r||^2 = ||x||^2 = ||R_{\tilde{T}}^{*n}x||^2 = ||B_{\tilde{T}}^{\prime n}x||^2 = ||B_T^{\prime n}x||^2$$
$$= ||U_T^{*n}s||^2 + ||R_T^{*n}r||^2 = ||U_T^{*n}s||^2 + ||r||^2$$

for any $n \in \mathbb{N}$. Since $||U_T^{*n}s|| \to 0$, s = 0. This proves that $\mathcal{R}_{\tilde{T}} \subset \mathcal{R}_T$.

(b) Let \mathcal{M} be a non-zero semi-invariant subspace for T. Then there exist $\mathcal{M}_1, \mathcal{M}_2 \in \operatorname{Lat}(T)$ with $\mathcal{M}_1 \supset \mathcal{M}_2$ such that $\mathcal{M} = \mathcal{M}_1 \ominus \mathcal{M}_2$. Furthermore, we have

$$(17) T \cong \begin{pmatrix} * & * & * \\ 0 & \tilde{T} & * \\ 0 & 0 & * \end{pmatrix}$$

relative to the decomposition $\mathcal{M}_2 \oplus \mathcal{M} \oplus \mathcal{M}_1^{\perp}$, where $\tilde{T} = T_{\mathcal{M}}$. Let $B_T \in \mathcal{L}(\mathcal{K})$ and $B_{\tilde{T}} \in \mathcal{L}(\tilde{\mathcal{K}})$ be minimal isometric dilations of T and \tilde{T} , respectively, such that $B_T | \mathcal{K} = B_{\tilde{T}}$ and $\tilde{\mathcal{K}} \in \text{Lat}(B_T)$. By (7), we have that

(18)
$$B_T = U_T \oplus R_T \in \mathcal{L}(\mathcal{U}_T \oplus \mathcal{R}_T)$$
$$\cong \begin{pmatrix} * & * & * \\ 0 & \tilde{T} & * \\ 0 & 0 & * \end{pmatrix}$$

relative to the decomposition $((\widetilde{\mathcal{K}} \ominus \mathcal{H}) \oplus \mathcal{M}_2) \oplus \mathcal{M} \oplus \mathcal{M}_1^{\perp}$, and

(19)
$$B_{\tilde{T}} = U_{\tilde{T}} \oplus R_{\tilde{T}} \in \mathcal{L}(\mathcal{U}_{\tilde{T}} \oplus \mathcal{R}_{\tilde{T}})$$
$$\cong \begin{pmatrix} * & * \\ 0 & \tilde{T} \end{pmatrix}$$

relative to the decomposition $(\widetilde{\mathcal{K}} \ominus \mathcal{M}) \oplus \mathcal{M}$. Now we shall claim that $\mathcal{R}_{\widetilde{T}} \subset \mathcal{R}_T$. Let $x \in \mathcal{R}_{\widetilde{T}}$ and let $x = s \oplus r \in \mathcal{U}_T \oplus \mathcal{R}_T$. Since $B_{\widetilde{T}} = B_T | \widetilde{\mathcal{K}}$, we have

$$B_T^{*n} = \begin{pmatrix} B_T^{*n} & 0 \\ A_n & * \end{pmatrix}$$

relative to the decomposition $\widetilde{\mathcal{K}} \oplus (\mathcal{K} \ominus \widetilde{\mathcal{K}})$, where A_n is some bounded operator from $\widetilde{\mathcal{K}}$ to $\mathcal{K} \ominus \widetilde{\mathcal{K}}$, for any $n \in \mathbb{N}$. Furthermore, by (19) we have that

(21)
$$||x||^{2} \leq ||x||^{2} + ||A_{n}x||^{2} = ||R_{T}^{*n}x||^{2} + ||A_{n}x||^{2} = ||B_{T}^{*n}x \oplus A_{n}x||^{2} = ||B_{T}^{*n}x||^{2} \leq ||x||^{2}.$$

Hence $A_n x = 0$ for any $n \in \mathbb{N}$. This proves that

(22)

$$||s||^{2} + ||r||^{2} = ||x||^{2} = ||R_{\tilde{T}}^{*n}x||^{2} = ||B_{\tilde{T}}^{*n}x||^{2}$$

$$= ||B_{\tilde{T}}^{*n}x||^{2} + ||A_{n}x||^{2} = ||B_{\tilde{T}}^{*n}x \oplus A_{n}x||^{2}$$

$$= ||B_{T}^{*n}x||^{2} = ||U_{T}^{*n}s||^{2} + ||R_{T}^{*n}r||^{2} = ||U_{T}^{*n}s||^{2} + ||r||^{2}.$$

Letting $n \to \infty$ on the right side of (22), we have that s = 0. So $x \in \mathcal{R}_T$. Hence the proof is complete.

References

- 1. H. Bercovici, Operator theory and arithmetic in H^{∞} , Math. Surveys and Monographs, vol. 26, Amer. Math. Soc., Providence, R.I., 1988.
- H. Bercovici, C. Foias and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series, vol. 56, Amer.Math. Soc., Providence, R.I., 1985.
- 3. A. Brown and C. Pearcy, Introduction to operator theory I, Elements of functional analysis, Springer-Verlag, New York, 1977.
- J. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman, Boston, 1981.
- J. Dixmier, Von Neumann algebras, North-Holland Publishing Company, New York, Oxford, 1969.
- 6. P. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- G. Exner and I. Jung, Dual operator algebras and a hereditary property of minimal isometric dilations, Michigan Math. J. 39 (1992).
- 8. I. Jung and Y. Kim, A note on unilateral shift operators and Co-operators, J. Austral. Math. Soc. Ser. A 53 (1992), 137-142.
- B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on the Hilbert space, North Holland, Amsterdam, 1970.

Department of Mathematics College of Natural Sciences Kyungpook National University Taegu 702–701, Korea