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HEREDITARY PROPERTIES OF

MINIMAL ISOMETRIC DILATIONS AND

MINIMAL COISOMETRIC EXTENSIONS·

IL BONG JUNG

The notation and terminology employed herein agree with those in [1],
[3], and [9]. Let 1i be a separable, infinite dimensional, complex Hilbert
space and let £(1i) be the algebra of all bounded linear operators on 1i.
Throughout this paper, we write N for the set of natural numbers. For
a Hilbert space lC and operators Ti E £(lC), i = 1,2, we write T1 ~ T2
if T1 is unitarily equivalent to T2 • For Tin £(1i) we let Lat(T) denote
the lattice of subspaces invariant for T. IT M E Lat(T) we write TIM
for the restriction of T to M. A subspace lC is semi-invariant for T if
there exist M and N in Lat(T) with M :::> N such that lC =MeN. IT
lC is semi-invariant for T, we write

(1)

for the compression of T to lC, where Pte is the orthogonal projection
whose range is lC. Note that by (1) we have

(2) (* * *)T~ 0 t *
00*

relative to the decomposition NffilCffiMJ.., where i' = Tte. We say that
an operator B is an extension of T if there exists M in Lat(B) such that
T = BIM; B is a dilation of T if there is a semi-invariant subspace lC
for B such that T = B te.
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Let T be a contraction operator in £.(rt). Then it follows from [9,
Theorem 1.4.2] that there exist a Hilbert space 1:- and an isometry BT
in £.(1:-) such that 1:- :::> rt and

(3)

relative to the decomposition (1:-8rt)ffirt. FUrthermore, we may suppose
BT to be minimal, which means that for subspaces M of K.:,

{(rt eM c K.:) 1\ (BTM c M) 1\ (BTIM is an isometry)} =? M = K.:.

By (3) and the above statements, it is easy to show that Bf is a minimal
coisometric extension of T. Of course, this minimality means that for
subspaces M' of 1:-,

{(rt c M' c 1:-)1\ (BfM' c M')I\(BTIM' is a coisometry)}=?M'= 1:-.

A contraction operator T E £.(rt) is absolutely continuous if in the
canonical decomposition T = T1 ffi T2 , where T1 is a unitary operator
and T2 is a completely nonunitary contraction, T1 is either absolutely
continuous or acts on the space (0) (ef. [2]). We write D for the open
unit disc in the complex space C and T for the boundary of D. Let
Cl(rt) be the Banach space of trace-class operators on rt equipped with
the trace norm. Then the dual algebra A can be identified with the dual
space of QA = C1(1t) /.LA, where J.A is the preannihilator in C1('H) of
A, under the pairing

(4) (T, [L]A) = tr(TL), TEA, [L]A E QA'

We write [L] for [L]A when there is no possibility of confusion. The
space IJ!, 1 < p :5 00, is the usual Lebesgue function space relative to
normalized Lebesgue measure monT. The space HP, 1 :5 p < 00, is
the usual Hardy space on T. It is well-known (ef. [6]) that the space
Hoo is the dual space of Ll / HJ, where

1
27r .

(5) H~ = {j E L1 : 0 j(eit)eintdt = 0, for n = 0,1,2, ... }
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and the duality is given by the pairing
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(6)

Recall that a dual algebra is a subalgebra of £(1l) that contains the
identity operator and is closed in the ultraweak operator topology on
£(1l). Note that the ultraweak operator topology on £(1l) coincides
with the weak*-topology on £(1l) (cf. [5]). For T E £(1l) we denote by
.AT the dual algebra generated by T.

The following theorem gives a good relationship between Hardy space
Hoo and a dual algebra generated by an absolutely continuous contrac­
tion.

THEOREM 1 [2, THEOREM 4.1]. Let T be an absolutely continuous
contraction in £(1l). Tben there is an algebra bomomorphism 4>T
H OO -+ .AT defined by 4>T(f) = I(T) such tbat

(a) 4>T(I) = 1, CPT(e) = T,
(b) IIcpT(J)1I ~ 11/1100, 1 E H oo

,

(c) CPT is continuous if both H OO and .AT are given their weak* topolo­
gies,

(d) tbe range of CPT is weak* dense in .AT,
(e) there exists a bounded, linear, one-to-one map 4>T : QT -+ Ll / HJ

such that 4>;' = CPT, and
(f) if CPT is an isometry, then CPT is a weak'" homeomorphism of Hoo

onto .AT and 4>T is an isometry of QT onto Ll / HJ .

Recall that T E C.O if IIT*Rxll-+ 0 for any x E 1l. We say T E Co. if
T* E C.o. And we denote that Coo = C.on Co.. And recall (cf. [1]) that
a completely nonunitary contraction T E £(1l) is said to be of class Co if
there exists 11. E H oo , 11. ~ 0, such that the functional calculus u(T) = 0
in Theorem 2.1. It follows from [1, Corollary 11.4.2] that Co c Coo.

Let T be a contraction operator in £(1l) and let BT E £(IC) be a
minimal isometric dilation of T. Then it follows from the Wold decom­
position theorem (cf. [9, Theorem 1.1.1]) that

(7)
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where UT E £(UT) is a. (forward) unilateral shift operator of some mul­
tiplicity and RT E £('R.T) is a unitary operator. Note that by (3)

(8) B * O! (* 0)
T- * T*

relative to the decomposition (K e 1t.) $1t.. Moreover, by (7) and (8) it
is obvious that

(9)

is a minimal coisometric extension of T* .
Suppose T E £(1t.) has a non-zero semi-invariant subspace M (Le.,

M =I (0». Then by (2) a minimal isometric dilation BT E £(K) is an
isometric dilation of TM. Hence TM has a minimal isometric dilation
BTM E £(f) such that M c f c K with f in Lat(BT) and BTM =
BTIK.

Now we are ready to define hereditary properties of minimal isometric
dilations and minimal coisometric extensions.

DEFINITION 2. Let T be a contraction operator in £(1t.).
(a) T has property (H}) if, fOf any non-zero semi-invariant subspace

M for T, the minimal isometric dilation BTM E £(K) of T,M which is
obtained as a restriction BTIK of the minimal isometric dilation BT of
T with f E Lat(BT) satisfies UTM CUT.

(a*) T has property (Hi) if, for any non-zero invariant subspace M
for T, the minimal coisometric extension BTM E £(f) of T,M which is

obtained as a restriction BTIK of the minimal coisometric extension BT
of T with f E Lat(B'T) satisfies UTM CUT.

(b) T has property (H2 ) if, for any non-zero semi-invariant subspace
M for T, the minimal isometric dilation BTM E £(K) of T,M which is
obtained as a restriction BTIK with K E Lat(BT) satisfies 'R.TM C'RT.

(b*) T has property (H;) if, for any non-zero invariant subspace M
for T, the minimal coisometric extension BTM E £(f) of T,M which is

obtained as a restriction BrlK with K E Lat(Br)satisfies 'RTM C'RT.
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REMARK 3. According to the notation of Definition 2(a*) and (b*)
it is not difficult to show that if M is a semi-invariant subspace for T
and the minimal coisometric extension of TM is obtained as a restriction
BTIK: for some K: E Lat(BT), then M E Lat(T).

Note from Definition 2 that (a) and (b) are related with (a*) and (b*)
as dual properties, respectively. But it is interesting to see that by some
examples and Theorem 7 there are some gaps between (a) and (a*).

LEMMA 4. HT E C.o, tben T bas property (HI)'

Proof. Let M be a non-zero semi-invariant subspace for T. Then it is
not difficult to show that TM E C.o. Hence by [1, Corollary 1.2.11], BT

is a unilateral shift operator of some multiplicity and BTM is a unilateral
shift operator of some multiplicity. Therefore T has property (HI)'

EXAMPLE 5. HUE £(1i) is a unilateral shift operator of multiplicity
one, then by Lemma 4 U has property (HI)' Furthermore, the fact that
U has property (H;) will be proved in Theorem 7. But its adjoint
operator U* doesn't have property (HI)' (Indeed, there is a nontrivial
invariant subspace M for U* (i.e., (0) :F M :F 1i). H we denote fJ =
U*IM, then fJ E Co C C'o (d. (1] or (8, Theorem In. Hence by (1,
Corollary 1.2.11] BO is a unilateral shift operator of multiplicity one.
But Bu. is a bilateral shift operator of multiplicity one. Therefore U*
doesn't have property (HI)')

By the above example, in general, the fact that an operator T has
property (H;) doesn't always mean that T* has property (HI)' The
following proposition should be compared with Example 5.

PROPOSITION 6. HUE £(1i) is a unilateral sbift of multiplicity
one and K:. is a nontrivial semi-invariant subspace for U*, tben UK bas
property (HI)'

Proof. Let K:. be a nontrivial semi-invariant subspace for U*. Then
there exist M, N E Lat(U*) with M :::> N such that

(10)



244 n Bong Jong

relative to the decomposition N EB K. ED M J., where U = UK.. Since
K. =F (0) =F 1l, by [4, Proposition 1.7.13] we have

(11)

(12)

(13)

relative to the decomposition K. EB MJ.. Hence U· E Co C Coo and
U· E 0.0 • By Lemma 4, we have this proposition.

THEOREM 7. Every contraction operator in £(1l) has
(a) property (H;),
(b) property (H2 ) and
(c) property (Hi).

Proof. (a) Let T be a contraction operator in £(1l) and let M be a
non-zero invariant subspace for T. Let BTE £(K.) and let B~ E £(f)
be minimal coisometric extensions of T and T, respectively, such that
B'Tli = B~, where f E Lat(BT). Then we have

BT=U.j. EBRT E £(UTEa'RT)

~(~ :)
relative to the decomposition M E9 (K. eM), and

B~ = Ut EB Rj. E £(UT E9 'Rr)

~ (! :)
relative to the decomposition M E9 (f eM). Now we shall claim that
U1' CUT' To do so, let x =8 EB r E UT E9 'RT' Since

(14) . B'1' = BTlf,

we have that

(15) IIUtRxll2 = IIBlxll2 = IIBlxll2

= II(UrR EB RTR )(8 EB r)1I2

= IIUrR 8112 + IIRTR rl/2

= IIUrR 811 2 +IIr 1l2•
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Letting n -+ 00 on the equation (15), we have that IIrll =o. So x E UTe
This proves that UT CUT'

(c) Using notation in the proof of (a), we shall show that 'RT C'RT.
Let x E'RT and let x = s El) r E UT El) 'RT. Then we have

(16) IIsll2 + IIrll2 = IIxll2 = IIR;'Rx Il2 = IIB~Rxll2 = IIB;'R x Il2
= IIUT

Rsll2+ IIRTRrll2 = IIUTRsll2 + 1Ir112

for any n E N. Since IIUTRslI-+ 0, s = O. This proves that~ C'RT.
(b) Let M be a non-zero semi-invariant subspace for T. Then there

exist M}, M2 E Lat(T) with MI :J M2 such that M = MI e M 2.
Furthermore, we have

(17) (* * *)T'::!. 0 t *
00*

relative to the decomposition M 2 EB M EB Mt, where l' = T,M. Let
BT E .c(~) and BT E £(K) be minimal isometric dilations of T and t,
respectively, such that BTI~ = BT and K E Lat(BT)' By (7), we have
that

(18)

(19)

relative to the decomposition «K e 1i) EB M 2) EB M El) Mt, and

BT = UT El)~ E £(UT EB 'RT)

~ (* !)- 0 T

relative to the decomposition (K e M) EB M. Now we shall claim that
'RT C 'RT. Let x E 'Rt and let x = sEBr E UTEB'RT. Since Bt = BTli,
we have

(20) B*R = (BtR 0)
T AR *
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(21)

relative to the decomposition K, ED (K 8 K,), where An is some bounded
operator from K; to KeK" for any n E N. Furthermore, by (19) we have
that

IIxll2 :5l1xll2 + IIAnxll2 = IIR;.nx1l2 + IIAnxll2

= IIB;.nx ED Anxll2= IIBTnxll2:5 IIx1l 2 •

Hence Anx = 0 for any n E N. This proves that

(22)

118112+ IIrll2 = IIxl/2= IIR~nxl/2 = IIB;.nxW
= IIB;.nxl/2 + I/Anxl/2= I/B;.nx ED Anxll2

= I/BTnx1l2= I/UTnsl/2+ IIRTnrll 2 = I/UTns1l2+ IIr1l2 •

Letting n --+ 00 on the right side of (22), we have that s = o. So x E 'RT'
Hence the proof is complete.
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