ON THE REDUCED INDEX OF RELATIVELY OPEN OPERATORS

CHUN IN CHOI AND HONG YOUL LEE

It is well known that if T is a semi-Fredholm operator between Banach spaces and if T has an index then T^{\dagger} , the adjoint of T, has an index with index $(T) = -\text{index}(T^{\dagger})$. In this note we extend this result for incomplete spaces.

Throughout this note suppose X and Y are normed spaces, write $\mathcal{L}(X,Y)$ for the bounded linear operators from X to Y and X^{\dagger} for the dual space of X. If $T \in \mathcal{L}(X,Y)$ write $T^{\dagger} \in \mathcal{L}(Y^{\dagger},X^{\dagger})$ for the adjoint of T. It is also known that if $T \in \mathcal{L}(X,Y)$ then

(0.1)
$$\dim(T^{\dagger})^{-1}(0) = \dim Y/\operatorname{cl} T(X)$$

(cf.[1] Theorem IV.2.3 (i)). If $\dim T^{-1}(0)$ and $\dim Y/\operatorname{cl} T(X)$ are not both infinite, we shall say that T has a reduced index. The reduced index of T is defined by

$$\overline{i}(T) = \dim T^{-1}(0) - \dim Y/\operatorname{cl} T(X),$$

with the understanding that for any natural number n,

$$\infty - n = \infty$$
, $n - \infty = -\infty$, and $-(-\infty) = \infty$.

We recall [2] that $T \in \mathcal{L}(X,Y)$ is said to be bounded below if there is k > 0 for which

$$||x|| \le k||Tx||$$
 for each $x \in X$,

is said to be open if there is k > 0 for which

$$y \in \{Tx : ||x|| \le k||y||\}$$
 for each $y \in Y$,

Received March 25, 1992.

and is said to be *relatively open* if its truncation $T^{\wedge}: X \longrightarrow T(X)$ is open. Evidently,

(0.2) T relatively open and one-one \iff T bounded below.

We also recall that ([4] Theorem 1; [2] (5.5.3.2))

$$(0.3) T ext{ relatively open} \Longrightarrow T^{\dagger} ext{ relatively open}$$

and

(0.4)
$$T$$
 bounded below $\iff T^{\dagger}$ open.

Relative openness can be tested with the reduced minimum modulus (cf. [1], [3])

$$\gamma(T) = \inf \{ ||Tx|| : \operatorname{dist}(x, T^{-1}(0)) \ge 1 \} \quad \text{if } 0 \ne T \in \mathcal{L}(X, Y);$$

if T = 0 we may take $\gamma(T) = \infty$. Evidently,

$$(0.5) T ext{ relatively open} \Longleftrightarrow \gamma(T) > 0.$$

If X and Y are both complete then T is relatively open if and only if T has a closed range ((0.5) and [1] Theorem IV.1.6).

We are ready to meet:

THEOREM 1. If $T \in \mathcal{L}(X,Y)$ is relatively open and has a reduced index then T^{\dagger} has a reduced index and

(1.1)
$$\bar{i}(T) = -\bar{i}(T^{\dagger}).$$

Proof. Suppose $T \in \mathcal{L}(X,Y)$ is relatively open. If Z is a subspace of X, write Z^{\perp} for the annihilator of Z in X^{\dagger} . We now claim that

$$(1.2) T^{-1}(0)^{\perp} \cong T^{\dagger}(Y^{\dagger}).$$

Indeed, if we define the mapping $T_1: X/T^{-1}(0) \longrightarrow Y$ by setting

$$T_1(x+T^{-1}(0))=Tx\in Y$$
 for each $x\in X$,

then, by (0.2), T_1 is bounded below, so that, by (0.4), T_1^{\dagger} is open and hence onto; we thus have

$$T^{-1}(0)^{\perp} \cong (X/T^{-1}(0))^{\dagger} = T_1^{\dagger}(Y^{\dagger}) \cong T^{\dagger}(Y^{\dagger}),$$

where the first isomorphism follows from [1] Theorem I.6.4 (ii) and the last isomorphism follows from the observation that, for each $g \in Y^{\dagger}$,

$$(T_1^{\dagger}g)(x+T^{-1}(0))=gT_1(x+T^{-1}(0))=gT(x)=(T^{\dagger}g)(x).$$

Therefore (1.2) gives

(1.3)
$$\dim X^{\dagger}/\operatorname{cl} T^{\dagger}(Y^{\dagger}) = \dim X^{\dagger}/T^{\dagger}(Y^{\dagger}) = \dim X^{\dagger}/T^{-1}(0)^{\perp}$$
$$= \dim(T^{-1}(0))^{\dagger} = \dim T^{-1}(0),$$

where the first equality follows from the fact that if T is relatively open then by (0.3) T^{\dagger} is relatively open, and hence has a closed range because X^{\dagger} and Y^{\dagger} are complete, and the third equality follows from [1] Theorem I.6.4 (i). We therefore have, by (0.1) and (1.3),

$$\bar{i}(T) = \dim T^{-1}(0) - \dim Y/\operatorname{cl} T(X)$$

$$= \dim X^{\dagger}/\operatorname{cl} T^{\dagger}(Y^{\dagger}) - \dim(T^{\dagger})^{-1}(0) = -\bar{i}(T^{\dagger}).$$

If X and Y are Banach spaces and $T \in \mathcal{L}(X,Y)$ then the assumption on T in Theorem 1 is equivalent to the condition that T is *semi-Fredholm*, in the sense that T(X) is closed and T has an index; therefore, in this case, Theorem 1 reduces to [1] Theorem V.2.3 (ii).

We recall that, between normed spaces, the bounded below operators form an open set:

LEMMA 2. Let S and T be in $\mathcal{L}(X,Y)$. If T is bounded below and $||S|| < \gamma(T)$ then T - S is bounded below and

(2.1)
$$\dim Y/\operatorname{cl} T(X) = \dim Y/\operatorname{cl} (T-S)(X).$$

Proof. See [1] Corollary V.1.3 and [3] Theorem 3.

We conclude with:

THEOREM 3. If S and T are in $\mathcal{L}(X,Y)$ and if $\dim T^{-1}(0) = \dim(T-S)^{-1}(0) < \infty$ there is implication

$$||S|| < \gamma(T) \Longrightarrow \overline{i}(T - S) = \overline{i}(T).$$

Proof. Suppose $||S|| < \gamma(T)$; thus T is relatively open. If dim $T^{-1}(0)$ = dim $(T-S)^{-1}(0) < \infty$, there is a closed subspace W of X such that

$$X=W\oplus T^{-1}(0).$$

If \widetilde{T} is the restriction of T to W then, by (0.2), \widetilde{T} is bounded below and $\widetilde{T}(W) = T(X)$. If \widetilde{S} is the restriction of S to W then, by assumption, $\|\widetilde{S}\| \leq \|S\| < \gamma(T) \leq \gamma(\widetilde{T})$; thus, by Lemma 2, $\widetilde{T} - \widetilde{S}$ is also bounded below. We thus have, by (0.2) and (2.1),

$$\dim(\widetilde{T}-\widetilde{S})^{-1}(0)=\dim\widetilde{T}^{-1}(0)=0$$
 and $\dim Y/\operatorname{cl}(\widetilde{T}-\widetilde{S})(W)=\dim Y/\operatorname{cl}\widetilde{T}(W),$

which gives, by Lemma V.1.5 (iii) in [1],

$$\overline{i}(T) = \overline{i}(\widetilde{T}) + \dim T^{-1}(0) = \overline{i}(\widetilde{T} - \widetilde{S}) + \dim (T - S)^{-1}(0) = \overline{i}(T - S).$$

What is not so obvious, and looks like an interesting problem is to speculate under what conditions on T the "classical" punctured neighborhood theorem or its extended form ([3], [5], [6]) holds. We invite the reader to consider the problem.

Acknowledgement. The authors are grateful to Prof. Woo Young Lee for the suggestions concerning this paper.

References

- 1. S. Goldberg, Unbounded linear operators, McGraw-Hill, New York, 1966.
- 2. R. E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.
- 3. R. E. Harte and W. Y. Lee, The punctured neighbourhood Theorem for incomplete spaces, J. Operator Theory (to appear).
- 4. W. Y. Lee, Relatively open mappings, Proc. Amer. Math. Soc. 108 (1990), 93-94.
- 5. _____, Boundaries of the spectra in $\mathcal{L}(X)$, Proc. Amer. Math. Soc. 116 (1992), 185–189.
- 6. _____, A generalization of the punctured neighborhood theorem, Proc. Amer. Math. Soc. (to appear).

Department of Mathematics Sung Kyun Kwan University Suwon 440-746, Korea