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ON THE REDUCED INDEX OF

RELATIVELY OPEN OPERATORS

CHUN IN CHOI AND HONG YOUL LEE

It is well known that ifT is a semi-Fredholm operator between Banach
spaces and if T has an index then Tt, the adjoint of T, has an index with
index(T) = -index(Tt). In this note we extend this result for incomplete
spaces.

Throughout this note suppose X and Y are normed spaces, write
£(X, Y) for the bounded linear operators from X to Y and xt for the
dual space of X. IT T E £(X, Y) write Tt E £(yt, xt) for the adjoint
of T. It is also known that if T E £(X, Y) then

(0.1)

(cf.[l] Theorem IV.2.3 (i». IT dimT-1(O) and dimY/dT(X) are not
both infinite, we shall say that T has a reduced index. The reduced index
of T is defined by

~(T) = dimT-1(0) - dim Y/clT(X),

with the understanding that for any natural number n,

00 - n = 00, n - 00 = -00, and - (-00) = 00.

We recall [2] that T E £(X, Y) is said to be bounded below if there is
k > 0 for which

IIxll ::; kllTxll for each x E X,

is said to be open if there is k > 0 for which

Y E {Tx : IIxll ::; kllyll} for each y E Y,
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and is said to be relatively open if its truncation T" : X --+ T(X) is
open. Evidently,

(0.2) T relatively open and one-one {::::::? T bounded below.

We also recall that ([4] Theorem Ii [2] (5.5.3.2»

(0.3)

and

(0.4)

T relatively open ==} Tt relatively open

T bounded below ¢=:=} Tt open.

Relative openness can be tested with the reduced minimum modulus (d.
[1], [3])

,),(T) = inf {IITxll : dist(x, T- 1(0» ~ I} if 0 -# T E £(X, Y)i

if T = 0 we may take ,),(T) = 00. Evidently,

(0.5) T relatively open ¢=:=} ')'(T) > O.

If X and Y are both complete then T is relatively open if and only if T
has a closed range «0.5) and [1] Theorem IV.1.6).

We are ready to meet:

THEOREM 1. If T E £(X, Y) is relatively open and has a reduced
index then Tt has a reduced index and

(1.1)

Proof. Suppose T E £(X, Y) is relatively open. If Z is a subspace of
X, write Z.l.. for the annihilator of Z in xt. We now claim that

(1.2)
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Indeed, if we define the mapping T1 : XjT-I(O) --+ Y by setting

T1(x + T-1(0» = Tx E Y for each x E X,
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then, by (0.2), T1 is bounded below, so that, by (0.4), Tl is open and
hence onto; we thus have

where the first isomorphism follows from [1] Theorem 1.6.4 (ii) and the
last isomorphism follows from the observation that, for each 9 E yt,

Therefore (1.2) gives

dimxt jclTt(yt) = dimXt jTt(yt) = dimXt jT-1(0)J..

(1.3) = dim(T-1(0»t = dimT-1(O),

where the first equality follows from the fact that if T is relatively open
then by (0.3) Tt is relatively open, and hence has a closed range because
xt and yt are complete, and the third equality follows from [1] Theorem
1.6.4 (i). We therefore have, by (0.1) and (1.3),

z(T) = dim T-1(O) - dim yjcl T(X)

= dimXt jcl Tt(yt) - dim(Tt)-I(O) = -z(Tt).

IT X and Y are Banach spaces and T E £(X, Y) then the assumption
on T in Theorem 1 is equivalent to the condition that Tis semi-Predholm,
in the sense that T(X) is closed and T has an index; therefore, in this
case, Theorem 1 reduces to [1] Theorem V.2.3 (ii).

We recall that, between normed spaces, the bounded below operators
form an open set:
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LEMMA 2. Let 5 and T be in £(X, Y). If T is bounded below and
11511 < -y(T) then T - 5 is bounded below and

(2.1) dimY/clT(X) = dimY/c1(T - 5)(X).

Proof. See [1] Corollary V.1.3 and [3] Theorem 3.

We conclude with:

THEOREM 3. If5 andT are in£(X,Y) and ifdimT-l(O) = dim(T­
8)-1(0) < 00 there is implication

11811 < -y(T) ==> I(T - 5) = I(T).

Proof. Suppose 11511 < "}'(T); thus T is relatively open. H dimT-1(0)
=dim(T - 5)-1(0) < 00, there is a closed subspace W of X such that

X =W €a T-1(0).

IT l' is the restriction of T to W then, by (0.2), Tis bounded below and
T(W) = T(X). H S is the restriction of 8 to W then, by assumption,
IISI1 < 11511 < -y(T) ~ "}'(1'); thus, by Lemma 2, T - S is also bounded
below. We thus have, by (0.2) and (2.1),

dim(T - 5)-1(0) = dimT- 1(0) =0 and

dimY/cl(1' - S)(W) =dimY/~1'(W),

which gives, by Lemma V.1.5 (iii) in [1],

I(T) = 1(1') + dim T-1(0) = 1(1' - S) +dim (T - 8)-1(0) = I(T - 5).

What is not so obvious, and looks like an interesting problem is to
speculate under what conditions on T the "classical"punctured neigh­
borhood theorem or its extended form ([3], [5], [6]) holds. We invite the
reader to consider the problem.
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