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ON THE UNIPOTENT RADICALS OF PARABOLIC

SUBGROUPS IN CHEVALLEY GROUPS

IN-SOK LEE· AND BOK HEE 1M

1. Introduction

Let (E, 9, A) be a root system of rank i where E is a Euclidean space,
9 is the set of roots and A = {al' . .. , at} is a set of simple roots. Let
I = {I, ... ,i} and J be a subset of I. Consider any type of Chevalley
group G, over an arbitrary field F, defined by a complex semisimple Lie
algebra with the root system 9 (see [7]). Then G is generated by the
elements xo(t) where a runs over 9 and t runs over F. Let PJ be the
parabolic subgroup of G corresponding to J (see [1, §2.1]). Then we 'have
a Levi decomposition PJ = LJUJ with a Levi subgroup LJ of PJ and
the unipotent radical UJ of PJ. The unipotent radical UJ is a subgroup
of PJ generated by {xo(tlla E 4-+ - 9 J, t E F} where 9+ is the set of
all ,p()Sitive roots and9J is the subsystem of 9 spanned by {ajjj E J}
([1, Proposition 2.6.4]). ' .

The structure of UJ and the automorphism group of UJ has been
studied by Gibbs([2)) when J = 0, Khor([6]) when 9 is of type At and
1m((4] and [5]) when 9 is of type B" Ct or D,. In these cases Khor
and 1m showed that 9+ - ~J can be partitioned into blocks of roots
and the set of these blocks can be identified with some (not necessarily
reduced) root system of rank i-IJI. However the works of Khor and 1m
strongly depend on the ordinary matrix representation of G so that they
had to restrict themselves to special types of G, for example SLt+I(F)
or Sp21(F).

In this paper, we study the structure of UJ when 9 is a simply-laced
root system, that is, of type A, D and E. We consider Wrorbits of
9+ - • J, where W J is the subgroup of the Weyl group W generated by
{8j Ii E J} and 8j is the simple reflection corresponding to the simple root
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aj. We show that the set of WJ-orbits of <)+ - <)J can be identified with
a subset of the lattice Cl+)i-IJI containing the standard unit vectors.
We also show that the addition of WJ-orbits (see Definition 3.2) can be
characterized by the addition of corresponding lattice points. Therefore
we have an obvious notion of the height function (or the level function)
in this orbit space. The notion of level function plays an important role
when we study the automorphism group of UJ (see [2], [6] and [4]).

2. The W rorbits of <)+ - <) J

As in the Section 1, let (E, <), d) be a simply-laced root system (see
-{BJ}- 'where E"is-aEttelidean"spaceequiptred"With apositive'definitescmm­
product ( , ) and d = {aI, ... ,ai} is a set of simple roots. We denote
by <)+ the set of positive roots in <). Let W be the Weyl group of
the root system <) generated by the simple reflections Si, i = 1, ... , i,
corresponding to the simple roots ai. For x, y E E we denote (x,y) =
2(x, y)!(y, y).

Let I = {I, ... ,t} and J be a subset of I. Let ~J be the subsystem
of ~ spanned by {ajli E J} and WJ be the Weyl group of c)J. Then
W J is the subgroup of W genera.ted by {Sj Ii E J}. Since W J acts on <)J
and Sit i E J permutes ~+ - {aj} ([3, IO.2.B]), WJ a.cts on ~+ - ~J.

Since the case when J = I or J =0 is trivial, we may assume J =I I
and J =10. Set 1- J = {ill ... ' in}. For a E ~+ - ~J, we denote by [a]
the WJ-orbit containing a.

Let nl al + n2a2 +... +nt(rt be the maximal positive root in <) ([3,
1O.4.AJ).

DEFINITION 2.1. For a E ~+ - <)J and A = (al, ... ,an) E zn, we
say that a is of type A if

We set A to be the set consisting of elements (al, ... , an) in zn, where
o~ air: :5 ni. for k = 1, ... ,n, such that there exists a root in ~+ - ~J

of type (all ... ,an).

The main result of the present section is that the set of WJ-orbits of
<)+ - ~ J is parameterized by A. In fact, we have the following.
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THEOREM 2.2. Let a and {3 be in ~+ - ~ J. Assume a is of type A
and {3 is of type B respectively. Then [a] = [{3] if and only if A = B.

Proof. Suppose A =f B. Then {3 cannot be a WJ-conjugate of a,
for the action of Sj possibly change the coefficients of aj for j E J.
Conversely, assume A = B. We have to show that a is a Wrconjugate
of 13. This is a result of the following three lenunas.

LEMMA 2.3. Let a - (3 = aj for some j E J. Then sj(a) = 13.
Proof. Since we are assuming that ~ is simply-laced, s;(a) is equal

to a, a + aj or a - aj and Sj({3) is equal to {3, (3 + aj or 13 - aj. We
find that sj(a) - Sj(f3) = -aj is true only when s;(a) = a - aj and
Sj(f3) = 13 + aj. This proves the lemma.

LEMMA 2.4. Let a - 13 = ait + ... +ajt for some iI, ... ,jt in J which
are not necessarily distinct. Then Sj"(1)Sj"(2)·· .Sj,,(t)(a) = 13 for some
permutation (1 of {I, ... , t}.

Proof. We prove the lemma by the induction on t. There is nothing to
prove if t = 1 by the previous lemma and let us assume t ;::: 2. Then it is
enough to show that 13+a j .. is a root for some u. Because if 13 +a j .. is a
root then a - (fJ+aj .. ) is a sum of t -1 simple roots and by the induction
hypothesis fJ+aj .. is a Wrconjugate of a. Again by the previous lemma,
we have S j .. (13 + a j .. ) = 13 and thus our assertion can be shown. Now,
on the contrary, suppose that (fJ, a j .. ) ;::: 0 for all u = 1, ... , t. Then
(fJ, a - fJ) ;::: 0 and hence {a, fJ} ;::: 2, which is a contradiction. Therefore
({3, aj.. ) < 0 for some u and fJ + aj.. is a root.

LEMMA 2 5 Let a - f.l = a' + ... + a· - a' - ... - a' for• • fJ 11 1t 1t+1 1t+.
some it, ,jt+1I in J which are not necessarily distinct but ju =f jt+t1
for u = 1, ,t and v = 1, ... ,S. Then [a] = [{3].

Proof. We use the induction on t +s. IT t + S = 1, our assertion is
already proved in Lemma 2.3. IT t + S ;::: 2, we may assume t ;::: 1 and
S ;::: 1 by Lemma 2.4. Using the similar argument as in the proof of
Lemma 2.4, we can show that it is enough to prove that (a, a ju) > 0 for
some u = 1, ... , t or (a, ajt+,,) < 0 for some v = 1, ... , s. Suppose, on
the contrary, that (a,aj.. ) ~ 0 for all u = 1, ... ,t and (a,ajt+,,);::: 0 for
all v = 1, ... , s. Then (a - f3,a) $ 0 and thus 0 < (a, a) $ (a, 1'). This
implies that a - {3 is a root which is impossible.
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This completes the proof of Theorem 2.2.
Theorem 2.2 implies that the set of WJ-orbits of (})+ - ~J is in one­

to-one correspondence with A.

3. The addition between Wrorbits

We begin with the following interesting observation.

PROPOSITION 3.1. Let a be a root of type A in (})+ - (})J. Assume
that 0 has the maximal height among roots of type A. Then for any
root fJ of type A, a - fJ is a sum ofsimple roots OJ for i E J. Therefore
such cr is tmiqrrely determined;

Proof. The uniqueness follows easily from the first statement. Sup­
pose (aba) < 0 for some i E J. Then a + ai is a root but this is
impossible for a has the maximal height. Thus we have (aj,a) ~ 0 for
all j E J. Now let fJ = w(a) for some w E WJ. Write w = Sjl ••• sim
where it, ... ,im are in J. We show that 0- fJ is a sum. of simple roots
aj for i E J by the induction on m. Since sj(a) = a or a - OJ for all
i E J, we can easily verify our assertion when m = 1 or 2. So let us
assume m ~ 3. If simCo) = a, then the induction hypothesis completes
the proof. If S jm ( a) =a - a jm' then again by the induction hypothesis,
we may assume that Sil •• 'Sjm_l{ajm) is a. negative root. In this case,
by [3, 10.2.C), we have

for some t = 1, ... , m - 1. Thus we have

and the induction hypothesis applies.

By the above proposition, the root of maximal height of given type
is well-defined. By the same argument, we can also show that there is a
unique root of minimal height of given type.

Now, we define the addition between the WJ-orbits in (})+ - (}) J.
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DEFINITION 3.2. For a, (J and 1 in 4)+ - 4)J, we say [a] + [(J] = h]
if there exist a' E [a] and (J' E [(J] such that a' + (J' E h].

We note that the addition of two orbits is not always defined.
We consider A as a subset of the additive group zn. The following

result shows that the addition of WJ-orbits can be characterized by the
addition in A.

THEOREM 3.3. Let A and B be (not necessarily distinct) elements
of A such that A + B is also an element of A. Let a be the root of type
A with minimal height and let (J be the root of type B with maximal
height. Then a + (J is a root.

The following corollary is clear from the above theorem.

COROLLARY 3.4. Let a, (J and 1 be roots of type A, B and C re­
spectively. Then [a] + [(J) = hl if and only if A + B = C.

Proof of Theorem 3.3. We set a = 11 and (J = 1-1. Suppose that
11 +1-1 f}. 4) but

1 =11 + 1-1 + L xjaj - L xjaj,
jEJl JELl

is a root, where J I and J- I are disjoint subsets of J and Xj are positive
integers. We choose 1 such that the positive integer

is minimal. We will show that this leads to a contradiction.
H (1,aj) > 0 for some j E JI , then 1 - aj E 4) but this is impossible

because of the minimality of 1. Thus we may assume (1, a j) ~ 0 for
all j E J 1 and similarly ('''(,OJ) ~ 0 for all j e J-I . We also note that
("'(t,aj) ~ 0 and (-1-1,aj) ~ 0 for all j E J by Proposition 3.1. For
j E J1 U J-b we can write
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where Yj is a Z-linear combination of {xjli e J1 U J-tl which depends
on the location of OJ in the Dynkin diagram of {ojli e J1 U J-d. By
the preceding remarks, we find that

-25 eYj $1 for j e Jtt and e e {-1,1}.

We also note that if j e Jtt then eYj = 1 implies (e"Ytt, OJ) = -1 for
e E {-I, I}. We choose it e J1 UJ-1 such that there is at most one OJ
(it ::f:. j e J1 U J- 1 ) which is not perpendicular to 0it. This is possible,
since the Dynkin diagram does not contain a cycle.

Since Yj, je JlUJ-'1, is determined by the connected component of OJ
in the Dynkin diagram of {OJIi e J1 U J-I}, we let C be the connected
component of 0it in the Dynkin diagram of {ojli E J1 U J- 1 }. We
consider the following four possibilities for C. In the following description
of C, the number k on a vertex represents the simple root OJ. (j,. e
Jl U J-1). We shall assume that the numbering of vertices in the Dynkin
diagram is
(a) that of [3, p.58) for types Am, E 6 , E7 and Es,
(b) that of [3, p.58) in the reverse order for type Dm •

For the simplicity, we set Oil = aI, 0i. = a,., Xj. = X,. and Yi" = Y,..
We say (lk e Jtt if i,. e Jtt . We define e,. = 1 if a,. e J1 and e,. = -1 if
a,. e J-1•

CASE 1. C = Am, m 2: l.

H m = 1, then elYi = 2X1 2: 2 which is absurd. Thus we assume
m 2: 2. First, we assume that ek =e for all k = 1, ... ,m. Then we have
the following system of linear inequalities:

-2 < eYI - 2X1 -X2

-2 < eY. - -X.- 1 +2X. - X.+I
-2 < eYm - -Xm - 1 +2Xm

5 1
< 1
< 1

(s = 2, ... , m - 1)

Summing up all the middle terms in the above system of inequalities, we
get

m

LeY,. = Xl +Xm 2: 2.
k=1
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Hence cYk are equal to 1 for at least two values of k, say eY. = 1 = cY;.
Then, as we have seen above, (C/e, a.) = -1 = (cie, at). Considering
the Dynkin diagram of {C/e, at, ... , am}, we conclude that this is ab­
surd. (See the proof of the classification theorem of Dynkin diagrams,
for example, [3, pp. 58-63].) Next, we assume that ek are not all same.
We observe that if Cl =1= C2 then Cl Yi = 2Xl + X 2 ~ 3 which is ab­
surd. Hence we may assume Cl = C2 and similarly we may assume
Cm-l = em. We also observe that if C. =1= C.-l = C.+l for some s then
c.Y. = X.- l + 2X. + X.+l ~ 4 which is impossible. Thus we may as­
sume that Ck remain unchanged for more than two consecutive terms.
In particular we must have m ~ 4. Now, if

Cl = C2 = ... = Cr =1= Cr+l = cr+2 = ... ,

then we have the following system of linear inequalities:

-2 < clYl - 2Xl -X2 < 1
-2 < e.Y. - -X.-l + 2X. - X.+l < 1. (2 ~ s ~ r - 1)
-2 < erYr - -Xr- l +2Xr + X r+l < 1
-2 < cr+lYr+l - X r + 2Xr+l - X r+2 < 1

-2 < cmYm - -Xm- l +2Xm < 1

Summing up all the middle terms, we get
m

LCkYk ~Xl +2Xr +2Xr+l +Xm ~6.
k=l

Therefore CIl; YIl; must be equal to 1 for at least six values of k, and this
gives a contradiction if we consider the Dynkin diagram of {II, al , ... ,
am} or {-I-I, al,···, am}.

CASE II. C = Dm , m ~ 4.

First, suppose that ek = C for all k = 1, ... , m. Then we have the
following system of linear inequalities:

-2 ~ eYI 2XI - X a < 1
-2 ~ eY2 2X2 - X a < 1
-2 ~ eYa - -Xl -X2 +2Xa-X4 < 1
-2 ~ cY. - -X.-I + 2X. - X.+l < 1 (4 ~ s ~ m -1)
-2 < eYm - -Xm- l +2Xm < 1
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Note that the coefficient matrix of the above system is nothing but the
Caftan matrix of the type D m • Since the inverse of the Caftan matrix is
known, we find that de = 1 for some t = 2, ..• , m -1 if m ~ 5, and that
eYi = 1 for at least two values of t if m =4. But the Dynkin diagram of
{e"Ye,at, ... ,am} gives a contradiction. Second, suppose thatel: are not
all same. In this case, we have already seen in Case I that el = e2 =ea.
II ea =F e4, then by the same method as in the Case I we get

m

2:el:Yk ~ Xl +X2+X3 +Xm ~ 4
1:=1

arid this is imposSlole. Hence we may assume that el = e2 = ea . e4.
Then, again using the method of Case I, we get

m

LCI:Yk ~ Xl +X2-Xa+ 2Xr +2X'r+l +Xm
k=l

for some r ~ 4. Suppose that
m

2:ckYk :5 2.
1:=1

Then, since Xa :5 Xl +X2 +2, we have

5 <2Xr +2Xr+l +Xm :5 4

and this is absurd. Thus we must have

but this implies cl:YI: = 1 for at least three values of Ie, which is also
absurd.

CASE III. C = E6 •

H Cl = ca =F e2 = e4 = Cs = C6 or el = ea = es = C6 =F C2 = C4 then
we have

6

Lel:Yk ~ Xl +X2 +X4 +X6 ~ 4
1:=1
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and this is impossible. Thus, by the symmetry, we may assume that
e" = e for all k = 1, ... ,6. In this case, the coefficient matrix of the
system of inequalities is nothing but the Carlan matrix of the type E6 •

Since we know the inverse of the Carlan matrix, we can easily verify that
there are too many edges in the Dynkin diagram of {e;e,al, ... ,a6}.

CASE IV. C = E,.

This case occurs only when. = Es and J = {1, 2, ... ,7}. Then there
are two WJ-orbits, namely, [as] and [amax] where amax is the maximal
positive root. Note that ;1 = as is the root of minimal height in [as]
and ;-1 = amax - as is the root of maximal height in [as]. Therefore
we have;1 +;-1 = a max E •. This completes the proof of Theorem 3.3.

4. The level function on J-roots

Next, we define a projection of the Wrorbit space onto Rn (or zn)
in a natural way.

DEFINITION 4.1. Let V be the real vector space whose basis is con­
sisting of WJ-orbits of .+-•J and R be the subspace of V spanned by
all possible relations fa] + (,8] =hl among the orbits. We set £ = V/ R.
By Theorem 2.2 and Corollary 3.4, we may identify V with the real vec­
tor space with a basis A and R with the subspace spanned by all possible
relations A + B = C in A. We call the image of [a] (or A) in £ a J-root
and denote it by (a) or (A).

Our situation is now similar to that of constructing a base of a root
system.

DEFINITION 4.2. A J-root is called an indecomposable J-root if it
cannot be written as a sum of two (not necessarily distinct) J-roots.

Note that the unit vectors Ei = (0, ... ,1, ... ,0) are contained in A
for all i = 1, ... , n.

PROPOSITION 4.3. (ai), i E 1- J, in £ are the only indecomposable
J -roots and every J -root is a sum ofindecomposable J -roots. Moreover,
for any J -root (a), we can write
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such that
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is a J-root for all s = 1, ... , t.

Proof. It is enough to prove the second statement. Let a be of type
A = (at, ... ,an). We show that (a) can be written as in the proposition
by induction on a = at + ... + an' If a = 1, we are done. If a > 1,
we write a = akl + .,. + akt such that akl + ... + ak. E it» for all
s = 1, ... , t ([3, 10.2.A]). Since a > 1, the number of indices k. in
I - J is greater than 1. Choose the maximal u such that kg E I - J.
Then [a} = [akl + ... + ak.. } = [atl + ... + akU_l} + [a"..] and hence
(a) = {akl+.. +akU_l)+{ak..}. Now the induction hypothesis completes
the proof.

PROPOSITION 4.4. e is an n-dimensional vector space over a with a
basis {{a;)Ii E 1- J}.

Proof. First, we define a map c.p from an onto e by c.p(€';) = (ai),
where €'i are the standard unit vectors, for i = 1, ... , n. Next, we define
a map t/J from V onto IRn by ""([a)) = (at, ... ,an) where a is of type
(at, ... , an). Then"" induces a mapping from e onto IRn by Corollary
3.4. Now it is clear that"" is the inverse mapping of cp.

Hence we have a natural notion of the level function on J -roots. That
is we define the level of (a) by the sum of coefficients with respect to the
basis {(ai)li E 1- J} of e.
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