ON THE UNIPOTENT RADICALS OF PARABOLIC SUBGROUPS IN CHEVALLEY GROUPS

IN-SOK LEE* AND BOK HEE IM

1. Introduction

Let (E, Φ, Δ) be a root system of rank ℓ where E is a Euclidean space, Φ is the set of roots and $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ is a set of simple roots. Let $I = \{1, \ldots, \ell\}$ and J be a subset of I. Consider any type of Chevalley group G, over an arbitrary field F, defined by a complex semisimple Lie algebra with the root system Φ (see [7]). Then G is generated by the elements $x_{\alpha}(t)$ where α runs over Φ and t runs over F. Let P_J be the parabolic subgroup of G corresponding to J (see [1, §2.1]). Then we have a Levi decomposition $P_J = L_J U_J$ with a Levi subgroup L_J of P_J and the unipotent radical U_J of P_J . The unipotent radical U_J is a subgroup of P_J generated by $\{x_{\alpha}(t) | \alpha \in \Phi^+ - \Phi_J, t \in F\}$ where Φ^+ is the set of all positive roots and Φ_J is the subsystem of Φ spanned by $\{\alpha_j | j \in J\}$ ([1, Proposition 2.6.4]).

The structure of U_J and the automorphism group of U_J has been studied by Gibbs([2]) when $J = \emptyset$, Khor([6]) when Φ is of type A_ℓ and Im([4] and [5]) when Φ is of type B_ℓ , C_ℓ or D_ℓ . In these cases Khor and Im showed that $\Phi^+ - \Phi_J$ can be partitioned into blocks of roots and the set of these blocks can be identified with some (not necessarily reduced) root system of rank $\ell - |J|$. However the works of Khor and Im strongly depend on the ordinary matrix representation of G so that they had to restrict themselves to special types of G, for example $SL_{\ell+1}(F)$ or $Sp_{2\ell}(F)$.

In this paper, we study the structure of U_J when Φ is a simply-laced root system, that is, of type A, D and E. We consider W_J -orbits of $\Phi^+ - \Phi_J$, where W_J is the subgroup of the Weyl group W generated by $\{s_j|j\in J\}$ and s_j is the simple reflection corresponding to the simple root

Received September 22, 1992.

^{*}Supported in part by 1991 Basic Science Research Institute Program, Ministry of Education, BSRI-91-104.

 α_j . We show that the set of W_J -orbits of $\Phi^+ - \Phi_J$ can be identified with a subset of the lattice $(\mathbb{Z}^+)^{\ell-|J|}$ containing the standard unit vectors. We also show that the addition of W_J -orbits (see Definition 3.2) can be characterized by the addition of corresponding lattice points. Therefore we have an obvious notion of the height function (or the *level* function) in this orbit space. The notion of level function plays an important role when we study the automorphism group of U_J (see [2], [6] and [4]).

2. The W_J -orbits of $\Phi^+ - \Phi_J$

As in the Section 1, let (E, Φ, Δ) be a simply-laced root system (see [3]) where E is a Euclidean space equipped with a positive definite scalar product $(\ ,\)$ and $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ is a set of simple roots. We denote by Φ^+ the set of positive roots in Φ . Let W be the Weyl group of the root system Φ generated by the simple reflections $s_i, i = 1, \ldots, \ell$, corresponding to the simple roots α_i . For $x, y \in E$ we denote (x, y) = 2(x, y)/(y, y).

Let $I = \{1, ..., \ell\}$ and J be a subset of I. Let Φ_J be the subsystem of Φ spanned by $\{\alpha_j | j \in J\}$ and W_J be the Weyl group of Φ_J . Then W_J is the subgroup of W generated by $\{s_j | j \in J\}$. Since W_J acts on Φ_J and s_j , $j \in J$ permutes $\Phi^+ - \{\alpha_j\}$ ([3, 10.2.B]), W_J acts on $\Phi^+ - \Phi_J$.

Since the case when J = I or $J = \emptyset$ is trivial, we may assume $J \neq I$ and $J \neq \emptyset$. Set $I - J = \{i_1, \ldots, i_n\}$. For $\alpha \in \Phi^+ - \Phi_J$, we denote by $[\alpha]$ the W_J -orbit containing α .

Let $n_1\alpha_1 + n_2\alpha_2 + \cdots + n_\ell\alpha_\ell$ be the maximal positive root in Φ ([3, 10.4.A]).

DEFINITION 2.1. For $\alpha \in \Phi^+ - \Phi_J$ and $\mathbf{A} = (a_1, \dots, a_n) \in \mathbb{Z}^n$, we say that α is of type \mathbf{A} if

$$\alpha = a_1 \alpha_{i_1} + a_2 \alpha_{i_2} + \cdots + a_n \alpha_{i_n} + (\text{terms in } \alpha_j, \ j \in J).$$

We set Λ to be the set consisting of elements (a_1, \ldots, a_n) in \mathbb{Z}^n , where $0 \le a_k \le n_{i_k}$ for $k = 1, \ldots, n$, such that there exists a root in $\Phi^+ - \Phi_J$ of type (a_1, \ldots, a_n) .

The main result of the present section is that the set of W_J -orbits of $\Phi^+ - \Phi_J$ is parameterized by Λ . In fact, we have the following.

THEOREM 2.2. Let α and β be in $\Phi^+ - \Phi_J$. Assume α is of type A and β is of type B respectively. Then $[\alpha] = [\beta]$ if and only if A = B.

Proof. Suppose $A \neq B$. Then β cannot be a W_J -conjugate of α , for the action of s_j possibly change the coefficients of α_j for $j \in J$. Conversely, assume A = B. We have to show that α is a W_J -conjugate of β . This is a result of the following three lemmas.

LEMMA 2.3. Let $\alpha - \beta = \alpha_j$ for some $j \in J$. Then $s_j(\alpha) = \beta$.

Proof. Since we are assuming that Φ is simply-laced, $s_j(\alpha)$ is equal to α , $\alpha + \alpha_j$ or $\alpha - \alpha_j$ and $s_j(\beta)$ is equal to β , $\beta + \alpha_j$ or $\beta - \alpha_j$. We find that $s_j(\alpha) - s_j(\beta) = -\alpha_j$ is true only when $s_j(\alpha) = \alpha - \alpha_j$ and $s_j(\beta) = \beta + \alpha_j$. This proves the lemma.

LEMMA 2.4. Let $\alpha - \beta = \alpha_{j_1} + \cdots + \alpha_{j_t}$ for some j_1, \ldots, j_t in J which are not necessarily distinct. Then $s_{j_{\sigma(1)}} s_{j_{\sigma(2)}} \cdots s_{j_{\sigma(t)}}(\alpha) = \beta$ for some permutation σ of $\{1, \ldots, t\}$.

Proof. We prove the lemma by the induction on t. There is nothing to prove if t=1 by the previous lemma and let us assume $t\geq 2$. Then it is enough to show that $\beta+\alpha_{j_u}$ is a root for some u. Because if $\beta+\alpha_{j_u}$ is a root then $\alpha-(\beta+\alpha_{j_u})$ is a sum of t-1 simple roots and by the induction hypothesis $\beta+\alpha_{j_u}$ is a W_J -conjugate of α . Again by the previous lemma, we have $s_{j_u}(\beta+\alpha_{j_u})=\beta$ and thus our assertion can be shown. Now, on the contrary, suppose that $(\beta,\alpha_{j_u})\geq 0$ for all $u=1,\ldots,t$. Then $(\beta,\alpha-\beta)\geq 0$ and hence $(\alpha,\beta)\geq 2$, which is a contradiction. Therefore $(\beta,\alpha_{j_u})<0$ for some u and $\beta+\alpha_{j_u}$ is a root.

LEMMA 2.5. Let $\alpha - \beta = \alpha_{j_1} + \cdots + \alpha_{j_t} - \alpha_{j_{t+1}} - \cdots - \alpha_{j_{t+s}}$ for some j_1, \ldots, j_{t+s} in J which are not necessarily distinct but $j_u \neq j_{t+v}$ for $u = 1, \ldots, t$ and $v = 1, \ldots, s$. Then $[\alpha] = [\beta]$.

Proof. We use the induction on t+s. If t+s=1, our assertion is already proved in Lemma 2.3. If $t+s\geq 2$, we may assume $t\geq 1$ and $s\geq 1$ by Lemma 2.4. Using the similar argument as in the proof of Lemma 2.4, we can show that it is enough to prove that $(\alpha,\alpha_{j_u})>0$ for some $u=1,\ldots,t$ or $(\alpha,\alpha_{j_{t+v}})<0$ for some $v=1,\ldots,s$. Suppose, on the contrary, that $(\alpha,\alpha_{j_u})\leq 0$ for all $u=1,\ldots,t$ and $(\alpha,\alpha_{j_{t+v}})\geq 0$ for all $v=1,\ldots,s$. Then $(\alpha-\beta,\alpha)\leq 0$ and thus $0<(\alpha,\alpha)\leq (\alpha,\beta)$. This implies that $\alpha-\beta$ is a root which is impossible.

This completes the proof of Theorem 2.2.

Theorem 2.2 implies that the set of W_J -orbits of $\Phi^+ - \Phi_J$ is in one-to-one correspondence with Λ .

3. The addition between W_J -orbits

We begin with the following interesting observation.

PROPOSITION 3.1. Let α be a root of type A in $\Phi^+ - \Phi_J$. Assume that α has the maximal height among roots of type A. Then for any root β of type A, $\alpha - \beta$ is a sum of simple roots α_j for $j \in J$. Therefore such α is uniquely determined.

Proof. The uniqueness follows easily from the first statement. Suppose $(\alpha_j, \alpha) < 0$ for some $j \in J$. Then $\alpha + \alpha_j$ is a root but this is impossible for α has the maximal height. Thus we have $(\alpha_j, \alpha) \geq 0$ for all $j \in J$. Now let $\beta = w(\alpha)$ for some $w \in W_J$. Write $w = s_{j_1} \cdots s_{j_m}$ where j_1, \ldots, j_m are in J. We show that $\alpha - \beta$ is a sum of simple roots α_j for $j \in J$ by the induction on m. Since $s_j(\alpha) = \alpha$ or $\alpha - \alpha_j$ for all $j \in J$, we can easily verify our assertion when m = 1 or 2. So let us assume $m \geq 3$. If $s_{j_m}(\alpha) = \alpha$, then the induction hypothesis completes the proof. If $s_{j_m}(\alpha) = \alpha - \alpha_{j_m}$, then again by the induction hypothesis, we may assume that $s_{j_1} \cdots s_{j_{m-1}}(\alpha_{j_m})$ is a negative root. In this case, by [3, 10.2.C], we have

$$s_{j_1}\cdots s_{j_{m-1}}=s_{j_1}\cdots s_{j_{t-1}}s_{j_{t+1}}\cdots s_{j_m}$$

for some $t = 1, \ldots, m - 1$. Thus we have

$$w(\alpha) = s_{j_1} \cdots s_{j_{t-1}} s_{j_{t+1}} \cdots s_{j_{m-1}}(\alpha)$$

and the induction hypothesis applies.

By the above proposition, the root of maximal height of given type is well-defined. By the same argument, we can also show that there is a unique root of minimal height of given type.

Now, we define the addition between the W_J -orbits in $\Phi^+ - \Phi_J$.

DEFINITION 3.2. For α , β and γ in $\Phi^+ - \Phi_J$, we say $[\alpha] + [\beta] = [\gamma]$ if there exist $\alpha' \in [\alpha]$ and $\beta' \in [\beta]$ such that $\alpha' + \beta' \in [\gamma]$.

We note that the addition of two orbits is not always defined.

We consider Λ as a subset of the additive group \mathbb{Z}^n . The following result shows that the addition of W_J -orbits can be characterized by the addition in Λ .

THEOREM 3.3. Let A and B be (not necessarily distinct) elements of Λ such that A + B is also an element of Λ . Let α be the root of type A with minimal height and let β be the root of type B with maximal height. Then $\alpha + \beta$ is a root.

The following corollary is clear from the above theorem.

COROLLARY 3.4. Let α , β and γ be roots of type A, B and C respectively. Then $[\alpha] + [\beta] = [\gamma]$ if and only if A + B = C.

Proof of Theorem 3.3. We set $\alpha = \gamma_1$ and $\beta = \gamma_{-1}$. Suppose that $\gamma_1 + \gamma_{-1} \notin \Phi$ but

$$\gamma = \gamma_1 + \gamma_{-1} + \sum_{j \in J_1} x_j \alpha_j - \sum_{j \in J_{-1}} x_j \alpha_j,$$

is a root, where J_1 and J_{-1} are disjoint subsets of J and x_j are positive integers. We choose γ such that the positive integer

$$\sum_{j\in J_1\cup J_{-1}}x_j$$

is minimal. We will show that this leads to a contradiction.

If $\langle \gamma, \alpha_j \rangle > 0$ for some $j \in J_1$, then $\gamma - \alpha_j \in \Phi$ but this is impossible because of the minimality of γ . Thus we may assume $\langle \gamma, \alpha_j \rangle \leq 0$ for all $j \in J_1$ and similarly $\langle \gamma, \alpha_j \rangle \geq 0$ for all $j \in J_{-1}$. We also note that $\langle \gamma_1, \alpha_j \rangle \leq 0$ and $\langle -\gamma_{-1}, \alpha_j \rangle \leq 0$ for all $j \in J$ by Proposition 3.1. For $j \in J_1 \cup J_{-1}$, we can write

$$\langle \gamma, \alpha_i \rangle = \langle \gamma_1, \alpha_i \rangle + \langle \gamma_{-1}, \alpha_i \rangle + y_i,$$

where y_j is a Z-linear combination of $\{x_j|j\in J_1\cup J_{-1}\}$ which depends on the location of α_j in the Dynkin diagram of $\{\alpha_j|j\in J_1\cup J_{-1}\}$. By the preceding remarks, we find that

$$-2 \le \varepsilon y_j \le 1$$
 for $j \in J_{\varepsilon}$ and $\varepsilon \in \{-1, 1\}$.

We also note that if $j \in J_{\varepsilon}$ then $\varepsilon y_j = 1$ implies $\langle \varepsilon \gamma_{\varepsilon}, \alpha_j \rangle = -1$ for $\varepsilon \in \{-1, 1\}$. We choose $j_1 \in J_1 \cup J_{-1}$ such that there is at most one α_j $(j_1 \neq j \in J_1 \cup J_{-1})$ which is not perpendicular to α_{j_1} . This is possible, since the Dynkin diagram does not contain a cycle.

Since $y_j, j \in J_1 \cup J_{-1}$, is determined by the connected component of α_j in the Dynkin diagram of $\{\alpha_j | j \in J_1 \cup J_{-1}\}$, we let \mathcal{C} be the connected component of α_{j_1} in the Dynkin diagram of $\{\alpha_j | j \in J_1 \cup J_{-1}\}$. We consider the following four possibilities for \mathcal{C} . In the following description of \mathcal{C} , the number k on a vertex represents the simple root α_{j_k} $(j_k \in J_1 \cup J_{-1})$. We shall assume that the numbering of vertices in the Dynkin diagram is

- (a) that of [3, p.58] for types A_m , E_6 , E_7 and E_8 ,
- (b) that of [3, p.58] in the reverse order for type D_m .

For the simplicity, we set $\alpha_{j_1} = a_1$, $\alpha_{j_k} = a_k$, $x_{j_k} = X_k$ and $y_{j_k} = Y_k$. We say $a_k \in J_{\varepsilon}$ if $j_k \in J_{\varepsilon}$. We define $\varepsilon_k = 1$ if $a_k \in J_1$ and $\varepsilon_k = -1$ if $a_k \in J_{-1}$.

CASE I.
$$C = A_m, m \ge 1$$
.

If m=1, then $\varepsilon_1 Y_1=2X_1\geq 2$ which is absurd. Thus we assume $m\geq 2$. First, we assume that $\varepsilon_k=\varepsilon$ for all $k=1,\ldots,m$. Then we have the following system of linear inequalities:

$$\begin{array}{rclcrcl} -2 & \leq & \varepsilon Y_1 & = & 2X_1 - X_2 & \leq & 1 \\ -2 & \leq & \varepsilon Y_s & = & -X_{s-1} + 2X_s - X_{s+1} & \leq & 1 & (s = 2, \dots, m-1) \\ -2 & \leq & \varepsilon Y_m & = & -X_{m-1} + 2X_m & \leq & 1 \end{array}$$

Summing up all the middle terms in the above system of inequalities, we get

$$\sum_{k=1}^m \varepsilon Y_k = X_1 + X_m \ge 2.$$

Hence εY_k are equal to 1 for at least two values of k, say $\varepsilon Y_s = 1 = \varepsilon Y_t$. Then, as we have seen above, $\langle \varepsilon \gamma_\varepsilon, a_s \rangle = -1 = \langle \varepsilon \gamma_\varepsilon, a_t \rangle$. Considering the Dynkin diagram of $\{\varepsilon \gamma_\varepsilon, a_1, \ldots, a_m\}$, we conclude that this is absurd. (See the proof of the classification theorem of Dynkin diagrams, for example, [3, pp. 58-63].) Next, we assume that ε_k are not all same. We observe that if $\varepsilon_1 \neq \varepsilon_2$ then $\varepsilon_1 Y_1 = 2X_1 + X_2 \geq 3$ which is absurd. Hence we may assume $\varepsilon_1 = \varepsilon_2$ and similarly we may assume $\varepsilon_{m-1} = \varepsilon_m$. We also observe that if $\varepsilon_s \neq \varepsilon_{s-1} = \varepsilon_{s+1}$ for some s then $\varepsilon_s Y_s = X_{s-1} + 2X_s + X_{s+1} \geq 4$ which is impossible. Thus we may assume that ε_k remain unchanged for more than two consecutive terms. In particular we must have $m \geq 4$. Now, if

$$\varepsilon_1 = \varepsilon_2 = \cdots = \varepsilon_r \neq \varepsilon_{r+1} = \varepsilon_{r+2} = \cdots$$

then we have the following system of linear inequalities:

$$\begin{array}{rclcrcl} -2 & \leq & \varepsilon_{1}Y_{1} & = & 2X_{1}-X_{2} & \leq & 1 \\ -2 & \leq & \varepsilon_{s}Y_{s} & = & -X_{s-1}+2X_{s}-X_{s+1} & \leq & 1 \\ -2 & \leq & \varepsilon_{r}Y_{r} & = & -X_{r-1}+2X_{r}+X_{r+1} & \leq & 1 \\ -2 & \leq & \varepsilon_{r+1}Y_{r+1} & = & X_{r}+2X_{r+1}-X_{r+2} & \leq & 1 \\ & & \vdots & & & \vdots \\ -2 & \leq & \varepsilon_{m}Y_{m} & = & -X_{m-1}+2X_{m} & \leq & 1 \end{array}$$

Summing up all the middle terms, we get

$$\sum_{k=1}^{m} \varepsilon_k Y_k \ge X_1 + 2X_r + 2X_{r+1} + X_m \ge 6.$$

Therefore $\varepsilon_k Y_k$ must be equal to 1 for at least six values of k, and this gives a contradiction if we consider the Dynkin diagram of $\{\gamma_1, a_1, \ldots, a_m\}$ or $\{-\gamma_{-1}, a_1, \ldots, a_m\}$.

CASE II.
$$C = D_m, m \ge 4$$
.

First, suppose that $\varepsilon_k = \varepsilon$ for all k = 1, ..., m. Then we have the following system of linear inequalities:

Note that the coefficient matrix of the above system is nothing but the Cartan matrix of the type D_m . Since the inverse of the Cartan matrix is known, we find that $\varepsilon Y_t = 1$ for some $t = 2, \ldots, m-1$ if $m \geq 5$, and that $\varepsilon Y_t = 1$ for at least two values of t if m = 4. But the Dynkin diagram of $\{\varepsilon \gamma_{\varepsilon}, a_1, \ldots, a_m\}$ gives a contradiction. Second, suppose that ε_k are not all same. In this case, we have already seen in Case I that $\varepsilon_1 = \varepsilon_2 = \varepsilon_3$. If $\varepsilon_3 \neq \varepsilon_4$, then by the same method as in the Case I we get

$$\sum_{k=1}^m \varepsilon_k Y_k \ge X_1 + X_2 + X_3 + X_m \ge 4$$

and this is impossible. Hence we may assume that $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \varepsilon_4$. Then, again using the method of Case I, we get

$$\sum_{k=1}^{m} \varepsilon_k Y_k \ge X_1 + X_2 - X_3 + 2X_r + 2X_{r+1} + X_m$$

for some $r \geq 4$. Suppose that

$$\sum_{k=1}^m \varepsilon_k Y_k \leq 2.$$

Then, since $X_3 \leq X_1 + X_2 + 2$, we have

$$5 \le 2X_r + 2X_{r+1} + X_m \le 4$$

and this is absurd. Thus we must have

$$\sum_{k=1}^m \varepsilon_k Y_k \geq 3,$$

but this implies $\varepsilon_k Y_k = 1$ for at least three values of k, which is also absurd.

CASE III. $C = E_6$.

If $\varepsilon_1 = \varepsilon_3 \neq \varepsilon_2 = \varepsilon_4 = \varepsilon_5 = \varepsilon_6$ or $\varepsilon_1 = \varepsilon_3 = \varepsilon_5 = \varepsilon_6 \neq \varepsilon_2 = \varepsilon_4$ then we have

$$\sum_{k=1}^{6} \varepsilon_k Y_k \ge X_1 + X_2 + X_4 + X_6 \ge 4$$

and this is impossible. Thus, by the symmetry, we may assume that $\varepsilon_k = \varepsilon$ for all k = 1, ..., 6. In this case, the coefficient matrix of the system of inequalities is nothing but the Cartan matrix of the type E_6 . Since we know the inverse of the Cartan matrix, we can easily verify that there are too many edges in the Dynkin diagram of $\{\varepsilon \gamma_{\varepsilon}, a_1, ..., a_6\}$.

CASE IV.
$$C = E_7$$
.

This case occurs only when $\Phi = E_8$ and $J = \{1, 2, ..., 7\}$. Then there are two W_J -orbits, namely, $[\alpha_8]$ and $[\alpha_{\max}]$ where α_{\max} is the maximal positive root. Note that $\gamma_1 = \alpha_8$ is the root of minimal height in $[\alpha_8]$ and $\gamma_{-1} = \alpha_{\max} - \alpha_8$ is the root of maximal height in $[\alpha_8]$. Therefore we have $\gamma_1 + \gamma_{-1} = \alpha_{\max} \in \Phi$. This completes the proof of Theorem 3.3.

4. The level function on *J*-roots

Next, we define a projection of the W_J -orbit space onto \mathbb{R}^n (or \mathbb{Z}^n) in a natural way.

DEFINITION 4.1. Let V be the real vector space whose basis is consisting of W_J -orbits of $\Phi^+ - \Phi_J$ and R be the subspace of V spanned by all possible relations $[\alpha] + [\beta] = [\gamma]$ among the orbits. We set $\mathcal{E} = V/R$. By Theorem 2.2 and Corollary 3.4, we may identify V with the real vector space with a basis Λ and R with the subspace spanned by all possible relations $\mathbf{A} + \mathbf{B} = \mathbf{C}$ in Λ . We call the image of $[\alpha]$ (or \mathbf{A}) in \mathcal{E} a J-root and denote it by $\langle \alpha \rangle$ or $\langle \mathbf{A} \rangle$.

Our situation is now similar to that of constructing a base of a root system.

DEFINITION 4.2. A J-root is called an indecomposable J-root if it cannot be written as a sum of two (not necessarily distinct) J-roots.

Note that the unit vectors $\mathbf{E}_i = (0, \dots, 1, \dots, 0)$ are contained in Λ for all $i = 1, \dots, n$.

PROPOSITION 4.3. $\langle \alpha_i \rangle$, $i \in I - J$, in \mathcal{E} are the only indecomposable J-roots and every J-root is a sum of indecomposable J-roots. Moreover, for any J-root $\langle \alpha \rangle$, we can write

$$\langle \alpha \rangle = \langle \alpha_{k_1} \rangle + \cdots + \langle \alpha_{k_t} \rangle, \qquad k_1, \ldots, k_t \in I - J$$

such that

$$\langle \alpha_{k_1} \rangle + \cdots + \langle \alpha_{k_s} \rangle$$

is a *J*-root for all s = 1, ..., t.

Proof. It is enough to prove the second statement. Let α be of type $A=(a_1,\ldots,a_n)$. We show that $\langle \alpha \rangle$ can be written as in the proposition by induction on $a=a_1+\cdots+a_n$. If a=1, we are done. If a>1, we write $\alpha=\alpha_{k_1}+\cdots+\alpha_{k_t}$ such that $\alpha_{k_1}+\cdots+\alpha_{k_s}\in\Phi$ for all $s=1,\ldots,t$ ([3, 10.2.A]). Since a>1, the number of indices k_s in I-J is greater than 1. Choose the maximal u such that $k_u\in I-J$. Then $[\alpha]=[\alpha_{k_1}+\cdots+\alpha_{k_u}]=[\alpha_{t_1}+\cdots+\alpha_{k_{u-1}}]+[\alpha_{k_u}]$ and hence $\langle \alpha \rangle=\langle \alpha_{k_1}+\cdots+\alpha_{k_{u-1}}\rangle+\langle \alpha_{k_u}\rangle$. Now the induction hypothesis completes the proof.

PROPOSITION 4.4. \mathcal{E} is an n-dimensional vector space over \mathbb{R} with a basis $\{\langle \alpha_i \rangle | i \in I - J\}$.

Proof. First, we define a map φ from \mathbb{R}^n onto \mathcal{E} by $\varphi(\varepsilon_i) = \langle \alpha_i \rangle$, where ε_i are the standard unit vectors, for $i = 1, \ldots, n$. Next, we define a map ψ from V onto \mathbb{R}^n by $\psi([\alpha]) = (a_1, \ldots, a_n)$ where α is of type (a_1, \ldots, a_n) . Then ψ induces a mapping from \mathcal{E} onto \mathbb{R}^n by Corollary 3.4. Now it is clear that ψ is the inverse mapping of φ .

Hence we have a natural notion of the *level* function on J-roots. That is we define the level of $\langle \alpha \rangle$ by the sum of coefficients with respect to the basis $\{\langle \alpha_i \rangle | i \in I - J\}$ of \mathcal{E} .

References

- 1. R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley-Interscience, New York, 1985.
- 2. J. A. Gibbs, Automorphisms of certain unipotent groups, J. Algebra 14 (1970), 203-228.
- 3. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, 1972.
- B. Im, The automorphisms of the unipotent radicals of certain parabolic subgroups of Sp_{2l}(K), Honam Math. J. 9 (1987), 7-17.
- 5. B. Im, Nonreduced root systems and some unipotent subgroups of orthogonal groups, Comm. Korean Math. Soc. 7 (1992), 41-48.
- 6. H. P. Khor, The automorphisms of the unipotent radical of certain parabolic subgroups of $GL(1+\ell,K)$, J. Algebra 96 (1985), 54-77.

7. R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.

Department of Mathematics Seoul National University Seoul 151-742, Korea

Department of Mathematics Chonnam National University Kwangju 500-757,Korea