GENERIC THETA-SERIES OF HALF INTEGRAL WEIGHT

MYUNG-HWAN KIM AND YOUNGSO KO

0. Introduction and Notations

In this article, we prove that the generic theta-series of half integral weight is simultaneous eigen-functions with respect to a certain Hecke ring. An analogous result was given by A. N. Andrianov [A1] for integral weight theta-series in 1979.

For $g \in M_{2n}(\mathbf{R})$, let A_g, B_g, C_g , and D_g denote the $n \times n$ block matrices in the upper left, upper right, lower left, and lower right corners of g, respectively.

Let $G_n = GSp_n^+(\mathbf{R}) = \{g \in M_{2n}(\mathbf{R}); J_n[g] = rJ_n, r > 0\}$ where $J_n = \begin{pmatrix} 0_n & I_n \\ -I_n & 0_n \end{pmatrix}, J_n[g] = {}^tgJ_ng$, and r = r(g) is a real number determined by g. Let $\Gamma^n = Sp_n(\mathbf{Z}) = \{M \in M_{2n}(\mathbf{Z}); J_n[M] = J_n\}$ and $\mathcal{H}_n = \{Z = {}^tZ \in M_n(\mathbf{C}); \operatorname{Im}(Z) \text{ is positive definite}\}$. For $g \in G_n$ and $Z \in \mathcal{H}_n$, we set

$$g\langle Z\rangle = (A_gZ + B_g)(C_gZ + D_g)^{-1} \in \mathcal{H}_n.$$

For $Z \in M_n(\mathbb{C})$, let $e(Z) = \exp(2\pi i \sigma(Z))$ where $\sigma(Z)$ is the trace of Z.

For other standard terminologies and basic facts, we refer the readers [A2], [M], [O].

Received April 29, 1992.

This was partially supported by KOSEF Research Grant (Grant No. 901-0101-016-1).

1. Lifted Hecke Rings

Let n,q be positive integers and p be a prime with gcd(p,q)=1. Let $L^n=L^n_p=\{g\in M_{2n}(\mathbf{Z}[p^{-1}]):J_n[g]=p^\delta J_n,\ \delta\in\mathbf{Z}\}$ where $\delta=\delta(g)$ is an integer determined by g. Let $\Gamma^n_0(q)=\{M\in\Gamma^n;C_M\equiv 0\pmod q\}$ and $L^n_0(q)=L^n_{0,p}(q)=\{g\in L^n;C_g\equiv 0\pmod q\}$. Let $\Gamma^n_0=\{M\in\Gamma^n;C_M=0\}$ and $L^n_0=L^n_{0,p}=\{g\in L^n;C_g=0\}$. Then $(\Gamma^n_0(q),L^n_0(q))$ and (Γ^n_0,L^n_0) are Hecke pairs. We denote their corresponding Hecke rings by $\mathcal{L}^n_0(q)=\mathcal{L}^n_{0,p}(q)$ and $\mathcal{L}^n_0=\mathcal{L}^n_{0,p}$, respectively. We let $E^n=E^n_p=\{g\in L^n;\delta(g)\in 2\mathbf{Z}\}, E^n_0(q)=E^n_{0,p}(q)=E^n\cap L^n_0(q),$ and $E^n_0=E^n_{0,p}=E^n\cap L^n_0$. Then $(\Gamma^n_0(q),E^n_0(q))$ and (Γ^n_0,E^n_0) are also Hecke pairs, whose corresponding Hecke rings are denoted by $\mathcal{E}^n_0(q)=\mathcal{E}^n_{0,p}(q)$ and $\mathcal{E}^n_0=\mathcal{E}^n_{0,p}$, respectively. They are the even subrings of $\mathcal{L}^n_0(q)$, and \mathcal{L}^n_0 , respectively.

Let $\hat{G}_n = \{(g, \alpha(Z)); g \in G_n, \alpha(Z)^2 = t(\det g)^{-1/2} \det(C_g Z + D_g) \}$ for some $t \in \mathbb{C}, |t| = 1, Z \in \mathcal{H}_n\}$. \hat{G}_n is a multiplicative group under the multiplication defined by $(g, \alpha(Z))(h, \beta(Z)) = (gh, \alpha(h\langle Z\rangle)\beta(Z))$ and is called the universal covering group of G_n .

Let $\gamma: \hat{G}_n \to G$ be the projection $\gamma(g, \alpha(z)) = g$. We define an action of \hat{G}_n on \mathcal{H}_n by $\zeta(Z) = \gamma(\zeta)\langle Z \rangle$ for $\zeta \in \hat{G}_n$, $Z \in \mathcal{H}_n$.

For a moment, we assume 4|q. Let

$$(1.1) \theta^n(Z) = \sum_{M \in M_{1,n}(Z)} e({}^t M M Z) = \sum_{N \in M_{n,1}(Z)} e(Z[N]), Z \in \mathcal{H}_n.$$

 $\theta^n(Z)$ is called the standard theta-function. For $M \in \Gamma_0^n(q)$, we define

(1.2)
$$j(M,Z) = \frac{\theta^n(M\langle Z \rangle)}{\theta^n(Z)}, \ Z \in \mathcal{H}_n.$$

The map $j:\Gamma_0^n(q)\to \hat{G}_n$ defined by j(M)=(M,j(M,Z)) is a well defined injective homomorphism [S] such that $\gamma\circ j=1$ on $\Gamma_0^n(q)$. According to Zhuravlev's argument [Zh1] we may conclude that $(\hat{\Gamma}_0^n(q),\hat{L}_0^n(q))$, $(\hat{\Gamma}_0^n,\hat{L}_0^n)$ are Hecke pairs, where $\hat{\Gamma}_0^n(q)=j(\Gamma_0^n(q)),\hat{\Gamma}_0^n=j(\Gamma_0^n),\hat{L}_0^n(q)=\gamma^{-1}(L_0^n(q))$, and $\hat{L}_0^n=\gamma^{-1}(L_0^n)$. We denote their corresponding Hecke rings by $\hat{\mathcal{L}}_0^n(q)=\hat{\mathcal{L}}_{0,p}^n(q),\hat{\mathcal{L}}_0^n=\hat{\mathcal{L}}_{0,p}^n$, respectively. Similarly, $(\hat{\Gamma}_0^n(q),\hat{\mathcal{L}}_0^n(q))$, $(\hat{\Gamma}_0^n,\hat{\mathcal{L}}_0^n)$ are Hecke pairs where $\hat{\mathcal{L}}_0^n(q)=\gamma^{-1}(E_0^n(q)),\hat{\mathcal{L}}_0^n=1$

 $\gamma^{-1}(E_0^n)$, and we denote their corresponding Hecke rings by $\hat{\mathcal{E}}_0^n(q) = \hat{\mathcal{E}}_{0,p}^n(q), \hat{\mathcal{E}}_0^n = \hat{\mathcal{E}}_{0,p}^n$, which are the even subrings of $\hat{\mathcal{L}}_0^n(q), \hat{\mathcal{L}}_0^n$, respectively. It is well known [A1] that there exists an injective homomorphism $\hat{\beta}^n: \hat{\mathcal{L}}_0^n(q) \to \hat{\mathcal{L}}_0^n$ defined by

(1.3)
$$\hat{\beta}^n \left(\sum a_i (\hat{\Gamma}_0^n(q) \zeta_i) \right) = \sum a_i (\hat{\Gamma}_0^n \zeta_i)$$

for any $X = \sum a_i(\hat{\Gamma}_0^n(q)\zeta_i) \in \hat{\mathcal{L}}_0^n(q)$ where ζ_i are chosen to be in \hat{L}_0^n . We also have a well defined surjective ring homomorphism $\pi_k^n : \hat{\mathcal{L}}_0^n \to \mathcal{L}_0^n$ satisfying

(1.4)
$$\pi_k^n(\hat{\Gamma}_0^n\zeta\hat{\Gamma}_0^n) = \tau(\zeta)^{-2k}(\Gamma_0^ng\Gamma_0^n)$$

where k is a positive half integer, i.e., k = m/2 for some odd integer $m \ge 1$, $\zeta = (g, \alpha(Z)) \in \hat{L}_0^n$, and $\tau(\zeta) = \frac{\alpha(Z)}{|\alpha(Z)|}$.

Let $g_s^n = \operatorname{diag}(I_{n-s}, pI_s, p^2I_{n-s}, pI_s) \in \hat{E}_0^n$, s = 0, 1, ..., n. Let $\hat{T}_s^n = (\hat{\Gamma}_0^n(q)\hat{g}_s^n\hat{\Gamma}_0^n(q)) \in \hat{\mathcal{E}}_0^n(q)$, where $\hat{g}_s^n = (g_s^n, p^{(n-s)/2}) \in \hat{E}_0^n$, and let $\hat{\mathcal{L}}_0^n(T) = \hat{\mathcal{L}}_{0,p}^n(T)$ be the subring $\mathbb{C}[\hat{T}_0^n, ..., \hat{T}_{n-1}^n, (\hat{T}_n^n)^{\pm 1}]$ of $\hat{\mathcal{E}}_0^n(q)$. We define

$$\mathbf{L}_0^n(T) = \mathbf{L}_{0,p}^n(T) = (\pi_k^n \circ \hat{\beta}^n)(\mathcal{L}_0^n(T)) \subset \mathcal{E}_0^n.$$

Let S_n be the permutation group on $\{x_1, x_2, \ldots, x_n\}$. Let W_n be the group of automorphisms of $\mathbf{C}_n[\underline{x}] = \mathbf{C}[x_0^{\pm 1}, x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$, generated by S_n and σ_i , $i = 0, \ldots, n$, where σ_i are automorphisms of $\mathbf{C}_n[\underline{x}]$ defined by

$$\sigma_0: x_0 \mapsto -x_0; x_j \mapsto x_j, \forall j \neq 0$$

$$\sigma_i: x_0 \mapsto x_0 x_i; x_i \mapsto x_i^{-1}; x_j \mapsto x_j, \forall j \neq 0, i, \text{ for } i = 1, \dots, n.$$

Let $W_n[\underline{x}]$ be the subring of $C_n[\underline{x}]$ consisting of all W_n -invariant elements. Then we have an isomorphism

(1.5)
$$\psi_n: \mathbf{L}_0^n(T) \to W_n[\underline{x}].$$

For the precise definition of this map, see [A1], [Zh2]. Note that this implies $\mathbf{L}_0^n(T)$ is a commutative ring.

2. Siegel Modular Forms of Half Integral Weight

Let n, q be a positive integers with 4|q. Let χ be a Dirichlet character modulo q. Let p be a prime with gcd(p,q) = 1. Let k be a positive half integer. For a complex valued function F on \mathcal{H}_n and $\zeta = (g, \alpha(Z)) \in \hat{G}_n$, we set

$$(2.1) (F|_{k}\zeta)(Z) = r(g)^{nk/2 - \langle n \rangle} \alpha(Z)^{-2k} F(g\langle Z \rangle), \ Z \in \mathcal{H}_{n}.$$

where < n >= n(n+1)/2.

A function $F: \mathcal{H}_n \to \mathbf{C}$ is called a Siegel modular form of degree n, weight k, level q, with character χ if the following conditions hold: (i) F is holomorphic on \mathcal{H}_n , (ii) $F|_{L}\hat{M} = \chi(\det D_M)F$ for every $\hat{M} = \chi(\det D_M)F$ $(M, j(M, Z)) \in \hat{\Gamma}_0^n(q)$, and (iii) $F|_{L}(M, \alpha(z))$ is bounded as $\text{Im } z \to \infty$, $z \in \mathcal{H}_1$, for every $(M, \alpha(z)) \in \hat{G}_1$ with $M \in SL_2(\mathbf{Z})$ when n = 1. We denote the set of all such Siegel modular forms by $\mathcal{M}_k^n(q,\chi)$. This is a finite dimensional vector space over C [Si2].

A function $F: \mathcal{H}_n \to \mathbf{C}$ is called an even or odd modular form of degree n if F satisfies (i), (ii)' $(\det D_{\omega})^{s} F(M\langle Z \rangle) = F(Z), Z \in \mathcal{H}_{n}$ for every $M \in \Gamma_0^n$, where s = 0 for even and s = 1 for odd modular forms, and (iii)' F(z) is bounded as $\text{Im } z \to \infty, z \in \mathcal{H}_1$ when n = 1. We denote the set of all even modular forms by \mathcal{M}_0^n and odd modular forms by \mathcal{M}_1^n . They are also vector spaces over C.

Let $F \in \mathcal{M}_k^n(q,\chi)$ and $\chi(-1) = (-1)^s$ for s = 0 or 1. For $M \in \Gamma_0^n$, we have $\hat{M} = (M, j(M, Z)) = (M, 1)$ and det $D_{M} = \pm 1$. So, F satisfies (ii)' (iii)' and hence

$$\mathcal{M}_k^n(q,\chi) \subset \mathcal{M}_s^n \text{ if } \chi(-1) = (-1)^s.$$

For $F \in \mathcal{M}_k^n(q,\chi)$ and $\hat{X} = \sum a_i(\hat{\Gamma}_0^n(q)\zeta_i) \in \hat{\mathcal{E}}_0^n(q)$, we set

(2.2)
$$F|_{k,\chi}\hat{X} = \sum a_i \chi(\det A_i) F|_k \zeta_i,$$

where $A_i = A_{\gamma(\zeta_i)}$. As for $F \in \mathcal{M}_s^n$ and $X = \sum a_i(\Gamma_0^n g_i) \in \mathcal{L}_0^n$, we set

(2.3)
$$F|_{k,\chi}X = \sum a_i \chi(\det A_i) F|_k \tilde{g}_i$$

where

(2.4)
$$\tilde{g}_i = (g_i, (\det g_i)^{-1/4} |\det D_i|^{1/2}) \in \hat{L}_0^n,$$

 $A_i = A_{g_i}$, and $\chi(-1) = (-1)^s$.

 \hat{X} and X in (2.2) and (2.3) are well defined operators acting on $\mathcal{M}_{L}^{n}(q,\chi)$ and \mathcal{M}_{L}^{n} , respectively, which are called Hecke operators.

Let $\chi(-1) = (-1)^s$, with s = 0 or 1, $F \in \mathcal{M}_k^n(q,\chi) \subset \mathcal{M}_s^n$, and $\hat{X} = \sum a_i(\hat{\Gamma}_0^n(q)\zeta_i) \in \hat{\mathcal{E}}_0^n(q)$, where $\zeta_i = (g_i, \alpha_i(Z)) \in \hat{\mathcal{E}}_0^n$ with $g_i = \begin{pmatrix} p^{\delta_i}D_i^* & B_i \\ 0 & D_i \end{pmatrix}$. Since j(M, Z) = 1 for any $M \in \Gamma_0^n$, from (1.3) and (1.4) follows that

$$(\pi^n_k \circ \hat{\beta}^n)(\hat{X}) = \sum a_i (t_i \varepsilon_i)^{-2k} (\Gamma^n_0 g_i) \in \mathcal{E}^n_0$$

where $\varepsilon_i = 1$ or $\sqrt{-1}$ according to det $D_i > 0$ or det $D_i < 0$, respectively. So from (2.1)–(2.4) follows

$$\begin{split} F\big|_{k,\chi}(\pi_k^n \circ \hat{\beta}^n)(\hat{X}) &= \sum a_i (t_i \varepsilon_i)^{-2k} \chi(\det p^{\delta_i} D_i^*) F\big|_k \tilde{g}_i \\ &= \sum a_i (t_i \varepsilon_i)^{-2k} \chi(\det p^{\delta_i} D_i^*) (p^{\delta_i})^{nk/2 - \langle n \rangle} \cdot \\ &\qquad (p^{-n\delta_i/4} |\det D_i|^{1/2})^{-2k} F(g_i \langle Z \rangle) \\ &= \sum a_i \chi(\det p^{\delta_i} D_i^*) (p^{\delta_i})^{nk - \langle n \rangle} (t_i (\det D_i)^{1/2})^{-2k} F(g_i \langle Z \rangle) \end{split}$$

so that

(2.5)
$$F|_{k,\chi}\hat{X} = F|_{k,\chi}(\pi_k^n \circ \hat{\beta}^n)(\hat{X}).$$

3. Zharkovskaya Operator

Let n, q, χ, p and k be as above. Let $F \in \mathcal{M}_s^n$. We define $\Phi : \mathcal{M}_s^n \to \mathcal{M}_s^{n-1}$ by

$$(3.1) \quad (\Phi F)(Z') = \lim_{\lambda \to +\infty} F\left(\begin{pmatrix} Z' & 0 \\ 0 & i\lambda \end{pmatrix} \right), \ Z' \in \mathcal{H}_{n-1} \ \text{and} \ \lambda > 0.$$

 Φ is well defined and is called the Siegel operator ($\mathcal{M}_s^0 = \mathbb{C}$, $\mathcal{H}_0 = \{0\}$). It is well known [Si1] that

(3.2)
$$\Phi F \in \mathcal{M}_k^{n-1}(q,\chi) \text{ if } F \in \mathcal{M}_k^n(q,\chi).$$

Let
$$X = \sum a_i(\Gamma_0^n g_i) \in \mathcal{L}_0^n$$
 where $g_i = \begin{pmatrix} p^{\delta_i} D_i^* & B_i \\ 0 & D_i \end{pmatrix} \in \mathcal{L}_0^n$. By

multiplying $\begin{pmatrix} U_i^* & 0 \\ 0 & U_i \end{pmatrix} \in \Gamma_0^n$ for a suitable $U_i \in GL_n(\mathbf{Z})$ from the left

of g_i , we may assume that all the D_i are of the form $D_i = \begin{pmatrix} D'_i & * \\ 0 & p^{d_i} \end{pmatrix}$, $d_i \in \mathbb{Z}$, where $D'_i \in V^{n-1}$ is upper triangular. We set

(3.3)
$$\Psi(X,u) = \sum a_i u^{-\delta_i} (u p^{-n})^{d_i} (\Gamma_0^{n-1} g_i') \in \mathcal{L}_0^{n-1} [u^{\pm 1}]$$

where $g_i' = \begin{pmatrix} p^{\delta_i}(D_i')^* & B_i' \\ 0 & D_i' \end{pmatrix} \in L_0^{n-1}$ and $\mathcal{L}_0^{n-1}[u^{\pm 1}]$ is the polynomial ring in u, u^{-1} over \mathcal{L}_0^{n-1} . Here B_i' and D_i' denote the blocks of size $(n-1)\times (n-1)$ in the upper left corner of B_i and D_i , respectively. If n=1, we set $\Psi(X,u) = \sum a_i u^{-\delta_i} (up^{-1})^{d_i}$. Note that δ_i , d_i are uniquely determined by the left coset $(\Gamma_0^n g_i)$ for each i. $\Psi(-,u)$ is a well defined ring homomorphism : $\mathcal{L}_0^n \to \mathcal{L}_0^{n-1}[u^{\pm 1}]$ (see [Z]).

We define a ring homomorphism $\eta(-,u): \mathbf{C}_n[\underline{x}] \to \mathbf{C}_{n-1}[\underline{x},u^{\pm 1}]$ by $\begin{cases} x_0 \mapsto x_0 u^{-1} \; ; \; x_n \mapsto u \; ; \; x_i \mapsto x_i, \; i \neq 0, n & \text{when } n > 1, \\ x_0 \mapsto u^{-1} \; ; \; x_1 \mapsto u & \text{when } n = 1 \; (\mathbf{C}_0[\underline{x}] = \mathbf{C}). \end{cases}$

Then the following diagram commutes:

$$\begin{array}{ccc}
\mathcal{L}_{0}^{n} & \xrightarrow{\psi_{n}} & \mathbf{C}_{n}[\underline{x}] \\
\Psi(-,u) \downarrow & & \downarrow \eta(-,u) \\
\mathcal{L}_{0}^{n-1}[u^{\pm 1}] & \xrightarrow{\psi_{n-1} \times 1_{u}} & \mathbf{C}_{n-1}[\underline{x}][u^{\pm 1}]
\end{array}$$

where $\psi_{n-1} \times 1_u$ is the ring homomorphism that coincides with ψ_{n-1} on \mathcal{L}_0^{n-1} and fixes u.

We state the following theorem concerning a commuting relation between Hecke operators and the Siegel operator acting on Siegel modular forms of half integral weight. THEOREM 3.1. Let $F \in \mathcal{M}_k^n(q,\chi)$ and $\hat{X} \in \hat{\mathcal{E}}_0^n(q)$, where k is a half integer. Then

$$\Phi(F\big|_{k,Y}\hat{X}) = (\Phi F)\big|_{k,Y}\Psi(Y,p^{n-k}\chi(p)^{-1})$$

where $Y = (\pi_k^n \circ \hat{\beta}^n)(\hat{X}) \in \mathcal{E}_0^n$. (If n = 1, then the action on the right hand side is nothing but a multiplication of complex numbers.)

Proof. See [KKO].

For the integral weight Siegel modular forms, the anology was given by Andrianov [A1]. The following result is also given by Andrianov.

THEOREM 3.2. $\Psi(-,u): \mathbf{L}^n(T) \to \mathbf{L}^{n-1}(T)$ is a surjective ring homomorphism for any $u \in \mathbb{C}$, $u \neq 0$.

Proof. See [A1].

4. Theta-Series of Half Integral Weight

Let $Q \in \mathcal{N}_m^+$, where \mathcal{N}_m^+ is the set of all positive definite (eigenvalues > 0) semi-integral (diagonal entries and twice of non-diagonal entries are integers) $m \times m$ symmetric matrices. The level q of Q is defined to be the smallest positive integer such that $q(2Q)^{-1}$ is integral with even diagonal entries. It is well known [Og] that q is divisible by 4 when m is odd. We define the theta-series of degree n associated to Q by

$$(4.1) \ \theta^n(Z,Q) \ = \sum_{X \in M_{m,n}(\mathbf{Z})} e(Q[X]Z) = \sum_{N \in \mathcal{N}_n} r(N,Q)e(NZ), \ Z \in \mathcal{H}_n$$

where $r(N, Q) = |\{X \in M_{m,n}(\mathbf{Z}); Q[X] = N\}| < \infty$.

We have the following theorem:

Theorem 4.1. Let $Q \in \mathcal{N}_m^+$, m odd. Then

$$\theta^n(Z,Q) \in \mathcal{M}^n_k(q,\chi) \subset \mathcal{M}^n_0$$

where k = m/2 is a half integer, q is the level of Q, and $\chi = \chi_Q$ is the Dirichlet character modulo q defined by

$$\chi_{_{\boldsymbol{Q}}}(d) = \left(\frac{2 \det 2Q}{|d|}\right)_{\mathrm{Jac}}.$$

Proof. See [K].

Let m, n be positive integers. Let Θ_m^n be the vector space over C spanned by $\theta^n(Z, Q), Q \in \mathcal{N}_m^+$, and let $\Theta_m^n(q, d)$ be its subspace spanned by $\theta^n(Z, Q), Q \in \mathcal{N}_m^+$ with $d = \det 2Q$ and q =the level of Q for given positive integers d and q. If m is odd, then from Theorem 4.1 follows

$$\Theta_m^n \subset \mathcal{M}_0^n$$
 and $\Theta_m^n(q,d) \subset \mathcal{M}_k^n(q,\chi)$

where
$$\chi(\det D_{M}) = \left(\frac{2d}{|\det D_{M}|}\right)_{\text{Jac}}$$
 for any $M \in \Gamma_{0}^{n}(q)$.

Let $Q \in \mathcal{N}_m^+$. We denote the class and the genus of Q by (Q) and [Q], respectively. Obviously $(Q) \subset [Q]$. It is well known that [Q] contains a finite number of classes (see, for instance, [O]). Note that $\theta^n(Z, Q_1) = \theta^n(Z, Q)$ for any $Q_1 \in (Q)$. Also note that det 2Q and the level of Q are invariants of [Q] and hence

$$\Theta_m^n[Q] \subset \Theta_m^n(q,d) \subset \Theta_m^n$$

if q = the level of Q and $d = \det 2Q$, where $\Theta_m^n[Q]$ is the subspace of Θ_m^n spanned by $\theta^n(Z, Q_i)$, $Q_i \in [Q]$.

It is well known [Si1] that

$$\Phi(\theta^n(Z,Q)) = \theta^{n-1}(Z',Q)$$

where Φ is the Siegel operator (3.1) and $Z = \begin{pmatrix} Z' & * \\ * & * \end{pmatrix} \in \mathcal{H}_n, Z' \in \mathcal{H}_{n-1}$. In particular, $\Phi: \Theta_m^n[Q] \to \Theta_m^{n-1}[Q], \Phi: \Theta_m^n(q,d) \to \Theta_m^{n-1}(q,d)$ are epimorphisms for all $n \geq 1$ and isomorphisms [F] if n > m.

We now introduce theta operators. Let $m,n\geq 1$ and let p be a prime with gcd(p,q)=1. Let $\alpha:L_0^m\to {\bf C}^\times$ be a character such that $\alpha(\Gamma_0^m)=1$. For $X=(\Gamma_0^mg_0\Gamma_0^m)\in \mathcal{L}_0^m$ with $g_0=\begin{pmatrix}p^bD_0^*&B_0\\O&D_0\end{pmatrix}\in L_0^m$ and $\theta^n(Z,Q)\in \Theta_m^n$ with $Q\in \mathcal{N}_m^+$, we set

$$(4.2) \qquad \theta^{n}(Z,Q) \circ_{\alpha} X = \alpha(g_{0}) \sum_{\substack{D \in \Lambda D_{0} \Lambda / \Lambda \\ p^{\delta}Q[D^{\bullet}] \in \mathcal{N}_{m}^{+}}} l_{X}(Q,D) \theta^{n}(Z,p^{\delta}Q[D^{\bullet}])$$

where $\Lambda = \Lambda^m = SL_m(\mathbf{Z})$ and

$$(4.3) l_{X}(Q,D) = \sum_{B \in B_{X}(D)/\text{mod } D} e(QBD^{-1}).$$

Here $B_X(D)=\{B\in M_m(\mathbf{Z}[p^{-1}]); \begin{pmatrix} p^\delta D^* & B\\ O & D \end{pmatrix}\in \Gamma_0^m g_0\Gamma_0^m\}$ and $B_1,$ $B_2\in B_X(D)$ are said to be congruent modulo D on the right if $(B_1-B_2)D^{-1}\in M_m(\mathbf{Z})$. This congruence is obviously an equivalent relation and the summation in (4.3) is over equivalent classes in $B_X(D)$ modulo D on the right. We extend (4.2) by linearity to the whole space Θ_m^n and the whole ring \mathcal{L}_0^m .

We set

$$\mathcal{L}_{00}^m = \left\{\sum a_i(\Gamma_0^m g_i \Gamma_0^m) \in \mathcal{L}_0^m \; ; \; \delta_i m - 2b_i = 0, b_i = \log_p |\det D_i| \right\}$$

where
$$g_i = \begin{pmatrix} p^{\delta_i} D_i^* & B_i \\ 0 & D_i \end{pmatrix} \in L_0^m$$
 and let $\mathcal{E}_{00}^m = \mathcal{E}_0^m \cap \mathcal{L}_{00}^m$.

We have the following theorem:

THEOREM 4.2.

- (1) The action (4.2) is a well defined action of \mathcal{L}_0^m on Θ_m^n .
- (2) $\Theta_m^n(q,d)$ is invariant under the theta operators of \mathcal{L}_{00}^m if p is relatively prime to q, the level of Q.
- (3) $\Theta_m^n[Q]$ is invariant under the theta operators of \mathcal{E}_{00}^m if p is relatively prime to 2q.

Proof. See [A1] for m even. Here we assume that m is odd. Let

(4.4)
$$\varepsilon(Z,Q) = \sum_{U \in \Omega} e(Q[U]Z), \ Z \in \mathcal{H}_m,$$

where $\Omega = \Omega^m = GL_m(\mathbf{Z})$. $\varepsilon(Z, Q)$ is called the epsilon-series of Q. For every $M = \begin{pmatrix} D^* & B \\ 0 & D \end{pmatrix} \in \Gamma_0^m$ with $D \in \Omega$, we have

(4.5)
$$\varepsilon(M\langle Z\rangle, Q) = \sum_{U \in \Omega} e(Q[UD^*]Z)e(Q[U]BD^{-1}) = \varepsilon(Z, Q)$$

Note that $e(Q[U]BD^{-1}) = 1$ because $Q[U] \in \mathcal{N}_m^+$ and BD^{-1} is integral symmetric [M]. From (4.5) and the definition of even modular forms follows that $\varepsilon(Z,Q) \in \mathcal{M}_0^m$. Let

$$\mathcal{A}_m = \left\{ \sum a_i \varepsilon(Z, Q_i); \, Q_i \in \mathcal{N}_m^+ \right\} \subset \mathcal{M}_0^m.$$

Let k=m/2 and χ be a character satisfying $\chi(-1)=1$. Let $X=(\Gamma_0^mg_0\Gamma_0^m)\in\mathcal{L}_0^m$ with $g_0=\begin{pmatrix}p^\delta D_0^*&B_0\\0&D_0\end{pmatrix}\in\mathcal{L}_0^m$. Then

$$X = \sum_{\substack{D \in \Omega \setminus \Omega D_0 \Omega \\ B \in B_X(D) / \text{mod } D}} (\Gamma_{\emptyset}^m g)$$

where $g = \begin{pmatrix} p^{\delta}D^* & B \\ 0 & D \end{pmatrix}$. From (2.1) and (2.4) one can deduce

$$(4.6) \qquad \varepsilon(Z,Q)\big|_{k,\chi}X = \alpha_{k,\chi}(g_0) \sum_{\substack{D \in \Lambda D_0 \Lambda / \Lambda \\ p^{\delta}Q[D^*] \in \mathcal{N}_m^+}} l_{\chi}(Q,D)\varepsilon(Z,p^{\delta}Q[D^*]).$$

where $\alpha_{k,\chi}:L_0^m\to \mathbf{C}^{\times}$ is a character defined by

(4.7)
$$\alpha_{k,\chi}(g) = \chi(p^{\delta m-b})p^{\delta(mk-\langle m\rangle)-bk}$$

We now define a linear map

$$\vartheta_m^n:\mathcal{A}_m\to \Theta_m^n \ \text{by} \ \vartheta_m^n(\varepsilon(Z,Q))=\theta^n(Z,Q), \ Q\in \mathcal{N}_m^+.$$

Obviously ϑ_m^n is a well-defined epimorphism. From (4.2) and (4.6) follows

(4.8)
$$\vartheta_m^n(\varepsilon(Z,Q)\big|_{k,\chi}X) = \theta^n(Z,Q) \circ_\alpha X, \ X \in \mathcal{L}_0^m,$$

where $\alpha = \alpha_{k,\chi}$ is the character (4.7). Oviously $\theta^n(Z,Q) \circ_{\alpha} X_1 \circ_{\alpha} X_2 = \theta^n(Z,Q) \circ_{\alpha} X_1 X_2$. From the surjectivity of ϑ_m^n , (4.6) and the above follows (1).

For (2) and (3), exactly the same arguments for the case m even [A1] apply here.

5. Main Theorem

Let $Q \in \mathcal{N}_m^+$ with m odd. We set $\Psi = \Psi_Q : \hat{\mathcal{L}}_0^n(T) \to \hat{\mathcal{L}}_0^{n-1}(T)$ by requiring the following diagram commutes:

$$\hat{\mathcal{L}}_{0}^{n}(T) \xrightarrow{\sim} \mathbf{L}_{0}^{n}(T)$$

$$\Psi = \Psi_{Q} \downarrow \qquad \qquad \qquad \qquad \downarrow \Psi(-,p^{n-k}\chi_{Q}^{-1}(p))$$

$$\hat{\mathcal{L}}_{0}^{n-1}(T) \xrightarrow{\sim} \mathbf{L}_{0}^{n-1}(T)$$

where k=m/2 and χ_Q is the character in Theorem 4.1. Since the right vertical arrow is surjective by Theorem 3.2, Ψ is also surjective. We let Ψ^r be the r-th iteration of Ψ for r>0 and $\Psi^0=$ the identity map. For $\hat{X}\in\hat{\mathcal{L}}_0^{n-r}(T),\ 0\leq r\leq n,\ \text{let}\ \Psi^{-r}(\hat{X})$ denote any element in $\hat{\mathcal{L}}_0^n(T)$ whose image under Ψ^r is \hat{X} .

Let $X = (\Gamma_0^m g \Gamma_0^m) \in \mathcal{L}_0^m$ for $g = \begin{pmatrix} p^\delta D^* & B \\ 0 & D \end{pmatrix} \in L_0^m$. We define the signature s(X) of X by $s(X) = 2b - m\delta$ where $b = \log_p |\det D|$. A linear combination of double cosets with the same signature $s \in \mathbb{Z}$ in \mathcal{L}_0^m is said to be s-homogeneous of signature s. For general $X = \sum_i a_i(\Gamma_0^m g_i) \in \mathcal{L}_0^m$ with $g_i = \begin{pmatrix} p^{\delta_i} D_i^* & B_i \\ 0 & D_i \end{pmatrix}$ and $b_i = \log_p |\det D_i|$, we denote the s-homogeneous part of signature s in X by $X_{(s)}$, i.e.,

$$X_{(s)} = \sum_{i,2b_i - m\delta_i = s} a_i (\Gamma_0^m g_i).$$

Let $\hat{X} \in \hat{\mathcal{L}}_0^m(T)$ and $Y = (\pi_k^m \circ \hat{\beta}^m)(\hat{X}) \in \mathbf{L}_0^m(T)$. We define a homomorphism $\xi^m = \xi_Q^m : \hat{\mathcal{L}}_0^m(T) \to \mathcal{E}_{00}^m$ by

(5.2)
$$\xi^{m}(\hat{X}) = \sum_{s>0} (\chi_{Q}(p)p^{m/2})^{s} Y_{(-2s)} X_{m}^{+s}$$

where

$$X_m^{+s} = p^{-sm} \sum_{\substack{D \in \Lambda^m \setminus M_m(\mathbf{Z})/\Lambda^m \\ \det D = p^s}} \left(\Gamma_0^m \begin{pmatrix} D^* & 0 \\ 0 & D \end{pmatrix} \Gamma_0^m \right) \in \mathcal{E}_0^m.$$

From Theorems 3.1, 4.2, and the above, one can deduce the following by the same argument for even m as in [A1]: Let $m, n \ge 1$ be integers, m odd, $m \ge n$. Let $Q \in \mathcal{N}_m^+$ with level q, $4 \mid q$. Let p be a prime with gcd(p,q) = 1. Then for $\hat{X} \in \hat{\mathcal{L}}_0^n(T)$, we have

(5.3)
$$\theta^{n}(Z,Q)|_{k,\mathcal{X}}\hat{X} = \theta^{n}(Z,Q) \circ_{\alpha} \xi^{m}(\Psi^{n-m}(\hat{X}))$$

where k = m/2, $\chi = \chi_Q$, and $\alpha = \alpha_{k,\chi}$ (see Theorem 4.1 and (4.7)).

Theorem 4.2 and (5.3) say that $\hat{\theta}^n(Z,Q)$, $Q \in \mathcal{N}_m^+$, applied by a Hecke operator $\hat{X} \in \hat{\mathcal{L}}_0^n(T)$, can be written as a linear combination of $\theta^n(Z,Q_i)$, $Q_i \in [Q]$.

Let $Q \in \mathcal{N}_m^+$. Let Q_1, \dots, Q_h be the full set of representatives of the classes in the genus [Q] of Q. We define the generic theta-series of degree n associated to [Q] by

(5.4)
$$\theta^n(Z,[Q]) = \left(\sum_{i=1}^h \frac{\theta^n(Z,Q_i)}{e_i}\right) \left(\sum_{i=1}^h \frac{1}{e_i}\right)^{-1}, \ Z \in \mathcal{H}_n$$

where e_i is the order of the orthogonal group $O(Q_i)$.

THEOREM 5.1. Let $m \geq n \geq 1$ be integers with m odd. Let $Q \in \mathcal{N}_m^+$. Let q and $\chi = \chi_Q$ be the level and the character of Q, respectively. Let p be a prime relatively prime to q. Then for any $\hat{X} \in \hat{\mathcal{L}}_0^n(T)$,

(5.5)
$$\theta^{n}(Z,[Q])\big|_{k,\chi}\hat{X} = \lambda(\hat{X},\chi)\theta^{n}(Z,[Q])$$

where k = m/2 and the eigenvalue $\lambda(\hat{X}, \chi)$ is determined by:

(5.6)
$$\lambda(\hat{X},\chi) = f(p^{nk-\langle n \rangle}\chi(p)^n, p^{1-k}\chi(p)^{-1}, \cdots, p^{n-k}\chi(p)^{-1}).$$

where
$$f(x_0, x_1, \dots, x_n) = (\psi_n \circ \pi_k^n \circ \hat{\beta}^n)(\hat{X}) \in W_n[\underline{x}].$$

Proof. According to (5.3), it suffices to show that $\theta^n(Z,[Q])$ is an eigenform of any theta operator $X \in \mathcal{E}_{00}^m$. Then by (4.8), this is equivalent to show that $\varepsilon(Z,[Q])$ is an eigenform of any Hecke operator $X \in \mathcal{E}_{00}^m$, where

$$\varepsilon(Z,[Q]) = \biggl(\sum_{i=1}^h \frac{\varepsilon(Z,Q_i)}{e_i}\biggr) \biggl(\sum_{i=1}^h \frac{1}{e_i}\biggr)^{-1}.$$

From definition of $\varepsilon(Z,Q)$ in (4.4) follows

$$\varepsilon(Z,[Q]) = \mu^{-1} \sum_{N \in [Q]} e(NZ)$$

where $\mu = \sum_{i=1}^{h} \frac{1}{e_i}$, the mass of [Q]. Let $X = (\Gamma_0^m g_0 \Gamma_0^m) \in \mathcal{E}_{00}^m$, $g_0 = \begin{pmatrix} p^{\delta} D_0^* & B_0 \\ 0 & D_0 \end{pmatrix} \in \mathcal{E}_0^m$. Then

$$X = \sum_{\substack{D \in \Omega \setminus \Omega D_0 \Omega \\ B \in B_X(D)/\text{mod } D}} \left(\Gamma_0^m \begin{pmatrix} p^{\delta} D^* & B \\ 0 & D \end{pmatrix} \right)$$

and hence from (2.3) and (2.4) follows

$$\varepsilon(Z,[Q])\big|_{k,\chi}X = \sum_{D,B} \chi(\det p^{\delta}D^{*})\varepsilon(Z,[Q])\big|_{k}\tilde{g}$$

where $\tilde{g} = (g, p^{-\delta m/4} | \det D|^{1/2}), g = \begin{pmatrix} p^{\delta} D^* & B \\ 0 & D \end{pmatrix}$, and the summation is over $D \in \Omega \backslash \Omega D_0 \Omega$, $B \in B_x(D) / \text{mod } D$. So from (2.1), (4.4), (4.5), (4.6), and (4.7) follows

$$\begin{split} &\varepsilon(Z,[Q])\big|_{k,\chi} X \\ &= \sum_{D,B} \chi(\det p^{\delta}D^*)(p^{\delta})^{mk/2 - < m>} (p^{-\delta m/4}|\det D|^{1/2})^{-2k} \varepsilon(g\langle Z\rangle,[Q]) \\ &= \mu^{-1} \chi(p^{\delta k}) p^{-2\delta < k>} \sum_{\substack{Q_0 \in [Q] \\ D,B}} e(Q_0(p^{\delta}Z[D^{-1}] + BD^{-1})) \\ &= \mu^{-1} \chi(p^{\delta k}) p^{-2\delta < k>} \sum_{\substack{Q_0,D \\ p^{\delta}Q_0[D^*] \in \mathcal{N}_m^+}} l_{\chi}(Q_0,D) e(p^{\delta}Q_0[D^*]Z). \end{split}$$

According to Theorem 4.2, $p^{\delta}Q_0[D^*] \in [Q]$. So we have

$$\varepsilon(Z,[Q])\big|_{k,\chi}X = \mu^{-1}\chi(p^{\delta k})p^{-2\delta < k} > \sum_{Q_1 \in [Q]} \left(\sum_{D} l_X(p^{\delta}Q_1[^tD],D) \right) e(Q_1Z).$$

But it is easy to check that $\sum_{D} l_x(p^{\delta}Q_1[^tD], D)$ is independent on $Q_1 \in [Q]$. This proves that $\theta^n(Z, [Q])$ is an eigenform of any Hecke operator $\hat{X} \in \hat{\mathcal{L}}_0^n(T)$. To prove (5.6), we apply Φ^n to (5.5) so that

$$\Phi^n(\theta^n(Z,[Q]))\big|_{k,\chi}\Psi^n(\hat{X})=\lambda(\hat{X},\chi)\Phi^n(\theta^n(Z,[Q]).$$

But $\Phi^n(\theta^n(Z, [Q])) = 1$ since Q is positive definite. Therefore, we have $\lambda(\hat{X}, \chi) = \Psi^n(\hat{X})$ and (5.6) follows immediately from the diagram (5.1).

References

- [A1] A. N. Andrianov, The Multiplicative Arithmetic of Siegel Modular Forms, Russian Math. Surveys 34 (1979), 75-148.
- [A2] _____, Quadratic Forms and Hecke Operators, Grundlehren Math. Wiss., vol. 286, Springer-Verlag, 1987.
- [F] E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, 1983.
- [K] M.-H. Kim, The Behavior of Theta-Series under Slash Operators, Comm. Korean Math. Soc. 2 (1987), 9-16.
- [KKO] M.-H. Kim, J. K. Koo, Y. Y. Oh, Hecke Operators and the Siegel Operator, J. Korean Math. Soc. 26 (1989), 323-334.
- [M] H. Maass, Siegel's Modular Forms and Dirichlet Series, Lecture Notes in Math., vol. 216, Springer-Verlag, 1971.
- [Og] A. Ogg, Modular Forms and Dirichlet Series, Benjamin, 1969.
- [O] O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren Math. Wiss., vol. 117, Springer-Verlag, 1963.
- [S] G. Shimura, On Certain Reciprocity Laws for Theta Functions and Modular Forms, Acta Math. 141 (1978), 35-71.
- [Si1] C. L. Siegel, Uber die analytische Theorie der quadratischen Formen, I, II, III, Ann. of Math. 36 (1935), 527-606, ibid., 37 (1936), 230-263, ibid., 38 (1937), 212-291.
- [Si2] _____, Lectures on Analytic Theory of Quadratic Forms, revised ed., IAS and Princeton Univ. Press, 1949.
- [Z] N. A. Zharkovskaya, The Siegel Operator and Hecke Operators, Functional Anal. Appl. 8 (1974), 113-120.
- [Zh1] V. G. Zhuravlev, Hecke Rings for a Covering of the Symplectic Groups, Math. USSR-Sb. 49 (1984), 379-399.
- [Zh2] ______, Expansions of Theta-Transformations of Siegel Modular Forms of Half Integral Weight and their Analytic Properties, Math. USSR-Sb. 51 (1985), 169-190.

Department of Mathematics Seoul National University, Seoul 151-742, Korea