
J. Korean Math. Soc. 30 (1993), No. 2, pp. 465--484

EMBEDDING BORDERED RIEMANN

SURFACES IN RIEMANNIAN MANIFOLDS

SEOK-KU Ko

o. Introduction

COO-embedded surlaces are called classical surfaces if they are view­
ed as Riemann surlaces whose conformal structure is given in the fol­
lowing natural way : the local coordinates are those which preserve
angles and orientation.

In his lectures, F. Klein emphasized that classical surlaces should be
viewed as Riemann surlaces, that is, as domains of analytic functions
and integrals. In 1882, Klein posed the question of whether every
Riemann surlace is conformally equivalent to a classical surface (see
Klein [7, p. 635)).

The first non-trivial result was obtained by Teichmiiller ([19)). He
deformed an embedded surlace by moving each point in the normal
direction and studied the dependence of the conformal structures of
the perturbed surlace on deformation parameters.

Around 1960, A. Garsia ([6)) proved that every compact Riemann
surlace can be conformally immersed in Euclidean 3-space R 3

• He
stated that he had found a realization of every compact Riemann sur­
face as a classical surlace although Klein required that classical surfaces
be embedded. Garsia's proof uses Teichmiiller's idea, results, and con­
structions inspired by Nash's embedding theorem and Brouwer's fixed
point theorem.

In 1970, Riiedy extended Garsia's result to open Riemann surfaces S
by applying Garsia's techniques to compact exhaustions of S ([16)) and
later he proved that every compact Riemann surface can be conformally
embedded in R3 ([17], (18)).
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In 1989, author apply Teichmiiller theory to prove that we can find
a conformally equivalent model surface in an orientable Riemannian
manifold M of dim M ~ 3 for every compact Riemann surface ([8]).

We here prove the extemion of the Embedding theorem for compact
Riemann surfaces (Ko fS}) to finite topological type Riemann surfaces
in orientable Riemannian manifolds.

1. The Main Results

Let M be an orientable Riemannian manifold of dim M ~ 3 and
let S be a closed Coo-embedded Riemann surface in M. We briefly
examine one method of constructing deformations of Sin M. For com­
putations of some facts, see Ko [8].

Let r : S ~ NS \ robe a nowhere vanishing smooth section (with
unit length) of the normal bundle NS of S in M. Let h : S -+ (-E, E)
be a Coo-function on S and call {h(x)r(x)} a normal vector field on
S.

Let M 1 be the subset of NS consisting of all pairs

(x, r) := (x, rr(x» for all x E S, where Irl < 2E.

Then M 1 contains the pair (x, h(x)r(x». Also let M 2 be the set of all
points

{y EM: y = exp rr(x),r E (-2E,2E), (x,r) E Md,
then M 2 is a Riemannian submanifold of M for E sufficiently small.
Again, for sufficiently small E, the map (3 : M 1 -+ M 2 , defined by the
exponential map (3(x,r) = exp rr(x), is a diffeomorphism.

By Nash's Embedding Theorem, there is a Coo-isometric embedding
j : M ~ R m for some sufficiently large m. This allows us to consider
S and M as subsets of R m.

Assume that S is the holomorphic universal covering of S. Let
X : S -+ MeRm be a local parametrization of S in the orientable
Riemannian manifold MeRm.

For X(z) E S, let

(1.1)
O:X(z) :(-2,2) -+ MC R m

t ~ (3(X(z), th(X(z») := exp th(X(z»r(X(z».
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Then ax(z)(t) is a Coo-curve for which ax(z)(O) = X(z) and

(1.2) ax(z)(l) = {:J(X(z), h(X(z))) = exp h(X(z))r(X(z)).

Let f'(X(z)) E Tx(z)Rm be a unit tangent vector in Rm to the
curve ax(z)(t) at the point X(z) E S. We then have

ax(z)(l) = X(z) + h(X(z))f'(X(z)) + O(h2(X(z))), Ih(X(z))1 < E.

This is precisely the statement that h(X(z)).f(X(z)) + O(h2(X(z))) is
the tangent vector in Rm to the curve ax(z)(t) at the point ax(z)(O) =
X(z).

Now, for any given sufficiently small E > 0, we define a normal
deformation of S.

DEFINITION 1.1. In the above notation, a surface Sh '-t M is called
an E-normal deformation of S '-t M if, for a given small € > 0, h is a
Coo_ real-valued function on S such that IIhlloo < € and Sh is defined
by the map:

(1.3)
Sh: S --+ M c R m

X(z) 1--+ ax(z)(l) = {:J(X(z),h(X(z)))

= X(z) +h(X(z))f'(X(z)) +O(h2
) E M.

The number IIhll oo is called the size of the deformation h.

We prove the Embedding Theorem for compact Riemann surfaces
in Ko [8].

THEOREM 1.1. Assume that S is a compact Riemann surface Coo_
embedded in the orientable Riemannian manifold M of dim. M ~ 3.
Let So be any Riemann surface structure on S. If there exists a nowhere
vanishing smooth section of the normal bundle NS ofS in M, then

(1) [Existence of normal deformations of S] There exists an
E = E(S) so that there is an embedded €-normal deformation
Sh of S, of the form given in (1.3).

(2) [Existence of Conformal Models] There exists an E-normal
deformation Sh of S which is conformally equivalent to the
given Riemann surface So.
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We will recall the idea of the proof as we needed in the proof of the
main results (Theorem 1.2) in this paper. The main result we want
to prove in this paper is

THEOREM 1.2. Theorem 1.1 is valid if S is a hyperbolic Riemann
surface, Coo-em-bedded in the orientable Riemannian manifold M of
dim M ~ 3, ofgenus 9 with m punctures and n boundary points and if
there exists a nowhere vanishing smooth section of the normal bundle
NS of S in M, where S is a compactiJication of S.

It can be shown that if dim M =1= 4, then there always exists a
nowhere vanishing section of the normal bundle NS of S in M if S
is compact. When dim M = 4, the nowhere vanishing section of the
normal bundle NS exists if there are no obstructions. In this case the
obstruction lies in the Euler class e(NS) of the normal bundle NS. That
is, if e(NS) = 0, then there is always such a section. For the proof see
Ko [8].

2. Embedding Bordered Riemann Surfaces in Riemannian
Manifolds

As usual, H is a upper half-plane and L denotes a lower half-plane.

2.1. Teichmiiller Space of Bordered Riemann Surfaces

We say that S is a Riemann surface of finite conformal type (g, m)
if S is a surface of genus 9 with m punctures. A Riemann surface S is
said to be of finite topological type (g, m, n) if S is biholomorphic to a
compact genus 9 surface S from which m points and ne> 0) hyperbolic
disks have been removed with 2g - 2 + m + n > O.

The surfaces of finite topological type have the finitely generated
fundamental group. Two surfaces with finitely generated fundamental
group are exactly quasiconformally equivalent if they are of the same
type.

In the following special cases, surfaces of the same type are always
conformallyequivalent;

a. (0, i, 0), i = 0,1,2,3 : i-components punctured sphere.
b. (0, i, 1), i = 0, 1 : i-components punctured disk.



Embedding Bordered Riemann Surfaces in Riemannian Manifolds 469

c. (0,0,2).
Therefore, for the above cases, the Theorem 1.2 is already proved.

Henceforth we omit the above cases. That is assume that 2g - 2 +m +
n > 0.

To define a Teichmiiller space for the Riemann surfaces of the type
(g, m, n), let SI be a topological oriented surface obtained from a closed
surface SI of genus 9 by removing m + n distinct points which we
divide into two sets consisting of m and n > °points repectively.
Form a pair (SI,h) consisting of SI and an orientation-preserving
quasiconformal mapping fl : S -+ SI' It is required that fl takes the
punctures of S into the first set of punctures of SI. The pair (SI, h)
is called a marked Riemann surface of the type (g,m,n). (SI,h) and
(S2, h) are conformally equivalent if and only if 12 0 fl- l is homotopic
to the conformal map of SI -+ S2. Then for the Riemann surface S of
the type (g,m,n), 2g - 2 + m + n > 0, we get

DEFINITION 2.1. The Teichmuller space 7#(S), which is called the
(reduced) Teichmuller space, is the set of all conformal equivalence
classes of marked surfaces (SI,fd of the type (g,m,n), where h
S -+ SI. We denote the equivalence class [(SI, h)] as [h].

REMARK. 7#(S) = 7(S) if the boundary of S = 0.
Given any Riemann surface S of type (g, m, n), we define the Te­

ichmiiller distance between rh], [12] E 7#(S) by

(2.1) d([h], [12]) = inf {~ log(supKh(z)) Ih ~ h 0 h -1 },
h 2 %

where Kh(z), the dilatation of h at z, is defined by

(2.2)

and ~ denotes the free homotopy.
Since the dilatation of a K -quasiconformal mapping is invariant

under conformal transformations, this distance is well defined.
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PROPOSITION 2.1. Tbe Teicbmiiller space 7#(S) of tbe Riemann
surface of the type (g, m, n), 29 - 2 + m + n > 0, is a complete metric
space under tbe Teicbmiiller metric.

Teichmiiller theorem for S of type (g, m, n), 2g - 2 + m + n > 0,
can be deduced from the theorem for finite conformal type (see Abikoff
[1]) applied to Sd which is a Riemann surface of type (2g + n - 1, 2m)
since we are doubling over the boundary curves. Indeed, any quasi­
conformal homeomorphism f : S ~ SI extends to a quasiconformal
homeomorphism fd : Sd ~ Sf of course, by reflection.

Let G be a nonelementary torsion-free (as usual, normalized) Fuch­
sian group (of the second kind but finitely generated) uniformizing S =
HjG; then Sd = njG, where n = HULU{discontinuity region on R}
is the full region of discontinuity for G. The complex dilatation of
fd E Lf is symmetric with respect to conjugation since fd (and its
lift to Q) has this symmetry.

We wish to find Teichmiiller mapping fT : S ~ SI in the homotopy
class of f with minimal K f. The double f~ : Sd ~ Sf will in fact then
be a Teichmiiller mapping between finite conformal type surfaces.

The requirements of the symmetry on the complex dilatation of
f~ implies that its dilatation is some Teichmuller-Beltrami form on
S d formed from a "symmetric "integt:ablt: quadratic tiiJferential w =
</>dz2 E Q(Sd). But we know that Q(Sd) = Q(n) corresponds to mero­
morphic quadratic differentials on Sd (which is not a two sheeted cov­
ering of Sd but a compact Riemann surface of genus (2g +n - 1)) with
at worst simple poles at the 2m distinguished points. The symmetric
element8 correspond to those </> which, when lifted to n, are real on
the discontinuity portions of the real axis. Thus we look at the real
subspace of symmetric integrable quadratic differentials:

Q8ym(n) == Q8ym(Sd) = {w E Q(n) : w is real on nn R},

and then [f] E 7(S) corresponds uniquely to a Teichmiiller-Beltrami
form p.f()., </» with w = </>dz2 E Q8ym(Sd) and 0 < ). < 1(). = 0 only
for the base point of 7#(S)). This becomes Teichmiiller theorem for S
of finite topological type and as before we get Teichmiiller homeomor­
phism
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where Q~ym(Sd) is the open unit ball in a Banach space Q8ym(sd). To
complete the arguments we only need to establish that Q8ym(Sd) is
(6g - 6 + 2m + 3n)-dimensional (over R). In fact, we have

LEMMA 2.1. Q(Q) is a (real) direct sum of the real subspaces
Q8 ym(Q) and iQ8 ym(Q). Here iQ8ym(Q) of course denotes those ele­
ments ofQ(Q) that take pure imaginary values on QnR. Note that mul­
tiplication by i is a (real-linear) isomorphism ofQ8ym(Q) on iQ8ym(Q).

Proof. Since G is a group of real Mobius transformations, one sees
that if <jJ E Q(Q), then <jJ(z) = t/J(z) is also in Q(O). Then <jJ(z) =
!(<jJ(z) + <jJ(z)) + !(<jJ(z) - <jJ(z)) gives the required direct sum decom­
position.

When Sd is of finite conformal type (2g + n - 1,2m), then Q(O) =
Q(Sd) has finite complex dimension 3(2g + n -1) - 3 +2m = 6g - 6 +
2m + 3n. By the lemma above the symmetric elements Q8ym(Sd) form
a real subspace of half the real dimension of Q(O)-we are therefore
done. Thus far we have shown

THEOREM 2.1. Suppose S is a Riemann surface offinite topological
type (g, m, n), where 2g-2+m+n > 0, n ~ 1. Then 7#(S) embeds as
the open unit ball Q~ym(Sd) in a normed linear vector space Q8ym(Sd)
of real dimensions 6g - 6+2m +3n. Furthermore, this 7#(S) contains

that of Sd, the two sheeted covering of the double Sd of S.

We can therefore define 7#(S) of a surface S of type (g, m, n), where
2g - 2 + m +n > 0, n ~ 1, identify them with Q~ym(S). Furthermore,

this 7#(S) contains that of Sd, the two sheeted covering of Sd of S.

2.2. The Continuity Lemma

Good estimates of the distance between two points in 7#(S) will
be crucial in our arguments. The following Lemma, due to Garsia
([6]), serves this purpose. In order to formulate it, we have to fix,
in the holomorphic universal covering space S of S, a fundamental
domain P for the covering group G. Assume that w E 7#(S) is a local
coordinate for a neighborhood of lids] in 7(S) provided IIwll ~ 2€ < 1.
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H fr,,; : 8 --+ 8r,,; is a quasiconformal map and (Jr,,;] E T#(8), then
we write [fr,,;] = w. Let fo : 8 --+ 8 0 be a homeomorphism so that
[fo] E T#(8). Assume that [fo] = Wo and denote by BE(wo) C T#(8)
the set of elements in 7#(8) with IIw - Wo 11 < t.

Define, for any w = q,r,,;(z)dz2 E 7#(8) \ {O}, a metric on 8 by

(2.3)

where
q,r,,;(Z)

wr,,;(z) = !IwIl1q,r,,;(z)I'

and,A2 is a smooth real-valued (1, I)-form. The metric (2.3) defines a
new conformal structure on 8, which will be denoted 8r,,; = (8, ds~).

Suppose we have two metrics dS~l and dS~2 on 8. Then the identity
map on 8 induces a quasiconformal mapping f between 8r,,;1 and 8r,,;2.
Let Wl and W2 be local coordinates on 8r..J1 and 8r,,;2 respectively. Then
we get dS~l = clldwll2 and dS~2 = C~ldw212. We claim the dilatation
of f in terms of these metrics may be written

where supremum and infimum are taken over all directions at wl.

LEMMA 2.2. (Garsia [6]) Ii[fr,,;] E BE(wo) and if there is a quasi­
conformal mapping X : 8r,,; --+ 8 w , whose dilatation K x satisfies

(1) K x ~ Ko, where Ko is a dilatation of the extremal quasicon­
formal map from 8r,,; to 8 w homotopic to the identity on 8,

(2) K x ~ 1 +6 except on A C P and
(3) areaA ~ 1],

then there is a constant b = b(Ko, 6,1]) so that

IIw' -wll ~ b(Ko,6, 1]).

Further, if Ko is bounded as (6,1]) --+ (0,0), then b(Ko,6,1]) --+ o.

Proof. See Garsia [6, p. 100 ff].
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2.3. The Deformation Function h for Bordered Surfaces

Let S be a subsurface of a compact Riemann surface in M, its
boundary consists of m isolated points Pi (i = 1,··, ,m) and n an­
alytic boundary curves 'Yj (j = 1"., ,n), where 2g - 2 +m + n > 0 so

that S= A.. Let So be any Riemann surface structure on S.
As in Section 2.1, we get the double Sd of S and construct a doubly

sheeted covering Sd of Sd and give fundamental domain P in A. to Sd.
Yet we make the following agreement, because of the homogeneity

of the Riemann surface, that through possible distinction we move m
distinguished points in one half of Sd into the other half so that one
half of Sd has 2m distinguished points and the other none. We may

then think that Sd originated from S d which is of type (2g + n - 1, 2m) :
the distinguished point Pi are linked on S d by curves and those curves
are mutually disjoint and disjoint from 'Yj so that each Pi is either
beginning or ending point. Two copies (Sd)i, i = 1,2, of Sd, are cut
along these curves and they are glued crosswise together along these
curves. Let A be the union of the curves on P which corresponds to
these cuts and 'Yj' Let 0' and 0 be open neighborhoods of A with the
following properties;

(a) 0 cO'.
(b) area 0' < t7J.
(c) P - 0 corresponds to the compact subdomain of Sd which

decomposes into 4 connected components (2 if n = 0), each of
them correspond to compactification SI of S.

To this SI, the compactification of S, we characterize € on SI. And
only on this SI, S will be deformed. We identify the surface SI with
the subdomain PI of P.

In the next chapter, we will construct a deformation function h on
PI. We will change h so that it vanishes in the set 0 n PI and stays
unchanged outside the set 0' n PI.

2.4. The Proof of the Theorem 1.2

Once we have got the deformation function h on PI, then we have
Sr. The natural structure of the deformed surface Sr will be trans-
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~

planted and it will be extended onto whole 8 d by means of anticonfor-
mal mapping of ~ onto itself and suitable transformation from G, the
cover group of ~ over 8 d , whereby all symmetric properties of Sd will__w

be transfered onto the deformed surface 8 d •__w

Because of the symmetry of the surface 8 d ,its module belongs to
the space 7#(8) ~ Q~ym(8d) ~ B 6g-6+2m+3n (open unit ball).

The existence of the families of deformations This only needs
a characterization of c: on 8 1, But it is an easy consequence of the
definition of exponential map and the property of the map fJ. This
only requires the existence of a nowhere vanishing section of the normal
bundle of 8 1 ,

The existence of the conformal model First denote Sd by R and

ij by Ra. Let, for convenience, 4>0: R ~ Ro be a homeomorphism such
that w~ = [4>0] E T(R) is a base point. We fix a map h : R XBE(W~) ~

(-c:, c:) so that h is a COO-function on R for each fixed w. Actually
this h has been extended from h on 8 1• Denote by [RW] = [(Rw ,4>W)]
the conformal equivalence class of the surface RW as a marked surface
(RW, 4>"'). We then define a map 3 of BE(W~) to 7(R) C T#(8), as
noted in the Theorem 2.1, by

3 :BE(W~) -t T(R) C 7#(8)
W ~ [4>W].

Here the surface RW is the c:-normal deformation of R defined by the
map

(2.4)
4>w:= Rh(o,w): R -t M c R m

X(z)~ ax(z)(l) = ,8(X(z), h(X(z)))

= X(z) + h(X(z),w)I'(X(z)) +O(h2
),

where X is a local coordinate for R. Then, as a result of Brouwer's
fixed point theorem, we will have proved the existence of the conformal
model if we can prove that, given [4>0] = w~ and c: > 0, for w in the



Embedding Bordered Riemann Surfaces in Riemannian Manifolds 475

closed ball BE(wti) c T(R), there is a family of deformations RW of R
depending on parameters w E BE(wti) so that the following is true.

LEMMA 2.3. [Dependence of RW on Parameters w] In the
above notation,

(1) =: : w 1---+ [</>W] is continuous in BE(wti)
(2) II[</>W] - [idwlll ~ E, VW E BE(wti), where idw R -+ R w is the

set-theoretic identity map.

Garsia's Continuity Lemma 2.2 implies that the family {RW
} satis­

fies property (1) if the coefficients of (d</>w)2 depend continuously on
(z,w) E ii x BE(wti). We give an explicit formula for the functions
h(. ,w) in Section 3.2; from the formulas it follows directly that this
property is satisfied (see Lemma 3.6).

To prove property (2), we let X = </>W 0 (idw)-1 : Rw -+ RW, then its
dilatation K x satisfies

(2.5)

where both the supremum and infimum are taken over all direction
and ds~ is defined in (2.3). The computation of K x is given in Lemma
3.6. The set A is the union of 0' and the extension of A in (3.14) to

whole of Sd via above process. We determine the constants 8, 7] in
Section 3.2 for SI. And extend them to whole Sd. Then use them to
get b(Ko, 8, 7]) ~ E in Garsia's Continuity Lemma 2.2. Then application
of Garsia's Continuity Lemma gives property (2).

By Lemma 2.2, the function =: satisfies the hypotheses of Brouwer's
fixed point theorem. Therefore there is a point Wl E B E(wti) so that

=:(Wl)=[</>Wl]=W~=[</>O], where </>0: R-+Ro,

i.e., for this Wl E BE(wti), the deformed surface RWl can be mapped
conformally onto Ro by a mapping homotopic to </>0 0 (</>W)-l.

Therefore we obtain the following conformal mapping g,
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"-"'''''1

that is, the proof of the existence of the surface 8 d for some W1 E
7#(8) in the neighborhood of wti. This mapping 9 induces a conformal
mapping 9 (see Ahlfors [3]),

Therefore the resulting surface 8""1 from 8 via deformation in the
direction of the normal is the desired conformal model of the given
surface 8 0 , This completes the proof of the theorem for the bordered
surfaces if we construct a deformation function h for compact surface
8 1 .

3. Deformation of a compact surface

Let 8 be a compact Riemann surface of genus 9 ~ 1. But procedure
actually needed here is that of a compact surface of 9 > 1 since we
will construct a deformation function on 8 1 which has a fundamental
domain P1 (different from a parallelogram) in .~ as in the previous
section. We use the same notations S, P, X and G as before. We
may assume that 8P has measure zero and P is compact in S since 8
is compact (see. Lehner[12,p. 203~205]). We may identify 7(8) with
Q1(8) which can be deduced from 7#(8) by letting m = n = O. We
will roughly sketch the procedure. Refer to Ko [8] for details.

3.1. The Metric ds~

The metric of the e-normal deformation 8k, defined by the map Sk
in equation (1.3), of 8 satisfies the equation.

(3.1)

Here we use the uniformizing variable Z E § for (dX)2 = ).2IdzI2. Let
X : 8"" -+ 8k be a mapping of 8"" onto 8k. Let ds~, given by (2.3), and
(dSk )2, be metrics for 8"" and 8 k respectively. We want to show that
the dilatJLtion K x of X satisfies the hypotheses of Garsia's Continuity
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Lemma 2.2. We derived an expression for K x in equation (2.5). It will
be helpful to split ds~ into the form given in (3.1). Let

(3.2) new) = {zlz E S, ~<p",,(z) f: o}.

The metric ds~ is smooth on the set new). Let

(3.3)

Then define the following real valued functions on n(w).

(3.4)
a~ := 2,,,,,(11'1',,,,1100 + ~'1'",,(z)) = 2,,,,,(lIwll + ~'1'",,(z)),

(3~ := 2,,,,,(11'1',,,,1100 - ~'1'",,(z)) = 2,,,,,(lIwll- ~'1'",,(z)).

On each connected component of new), choose continuous (real)
branches of a"", {3"" so that

Since dz2 = dx2 - dy2+2idxdy and dz2 = dx2 - dy2 - 2idxdy, we get

3.2. The Deformation Function h

To complete the Theorem 1.2, we need to describe a deformation
function h : S --+ (-E, E) which satisfies the following properties:

1. h is Coo.
2. IIhlloo < E.

3. (dh)2 is proportional to (a""dx + {3""dy)2 in view of equations
(3.1) and (3.6).
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We would like to define a function h satisfying condition 3 except on
a sufficiently small set. Condition 3 suggests that we express (dh)2 in
terms of a"" and (3"". In higher genera (g > 1), a"" and (3"" must be non­
constant functions of z. The definition of h will come as a solution of
a differential equation in which a"", (3"" and their derivatives appear as
coefficients. In order to get a Coo solution, we need a"", (3"" to be smooth
on all of P. Also they, together with their derivatives, must change as
little as possible. For h to be well-defined on S, it is convenient that it
be zero in a neighborhood of the edges of P but remains smooth.

But a"", (3"" are not yet defined on

N"" = {zlz E ~,S'4>",,(z) = O},

where 4>w(z) is the holomorphic function (since S is compact) of z used
to define ds~.

To define them on Nw, we need several lemmas.

3.2.1. Preparatory lemmas

We consider 4>",,(z) as a function of (z,w) E ~ x Ql(S), therefore we
denote it by 4>(z,w) and list its properties here:

(a) 4>(z,w) and 4>'(z,w) := 84>(z,w)/8z are real-analytic on ~ x
(Ql(S) \ {O}),

(b) For each fixed w E Ql(S) \ {O} ,4>(z,w) is holomorphic and
non-constant in ~.

LEMMA 3.1. Let K C ~ be compact and w E Ql(S) \ {O}. Then
the set

r(a,w) := {z E K 14>(z,w) = a},

varies continuously with w.

Proof. The set r(a, w) for fixed a and w is discrete in ~. For
fixed choice of global coordinate z in ~, w uniquely defines 4>w(z). Let
~ : Ql(S) -+ O(~) be defined by w 1---+ 4>w(z), then ~ is a linear
isomorphism. Therefore D~ is an isomorphism and this implies that
detD~ =I O. By the Implicit Function Theorem, each zero of the func­
tion 4>(z,w) - a varies continuously with w. Since K is compact,
there are only finitely many zeroes.
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LEMMA 3.2. Let K C Ll be compact and wE Ql(S) \ {O}, then the
set

N WJ n K := {z E K I~tPWJ(z) = O}

with Hausdoriftopology (given by d(A,B) = infxEA,yEBd(x,y), where
A and B are non-empty subsets of Ll) varies continuously with w.

Proof. The same argument as in the previous Lemma works with
~ tPWJ(z), In fact, this is a real-analytic version of the previous Lemma.

LEMMA 3.3. Let KC Ll and MC Ql(S) \ {O} be compact. Then
for every 'Tf > 0, there exists a 6> 0 such that if

is the tubular neighborhood ofN WJ ofwidth 8, then the area ofK nNWJ(8)
is < 'Tf, for each w E M.

Proof. As a neighborhood of a finite number of analytic curves,
KnNWJ(6) has area which tends to zero with 8. By outer measurability,
the required 8 exists.

LEMMA 3.4. Suppose K c Ll and M C Ql(S) \ {O} are compact.
Then for a given 6 > 0, there exists a finite number of real numbers
Xl!'" ,Xn such that if

then

u {ZIIZ-Zijl <8},

Proof. This can be obtained by combining the Lemma 3.2 and the
compactness of the sets K and M.

3.2.2. Auxiliary functions
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Suppose .,., < ! is a fixed number. Define a non-negative Coo function
p(z) by

{
0 on a neighborhood U1 of jj,. - P

p(z) = 1
outside a neighborhood U :) U1 ,

where
area(P nU) < .,.,/4.

And let r(x) be a Coo-function for x 2:: 0 so that 0 ~ T(X) ~ 1 and

{

0 for x < 1
r(x) = -

1 for.x 2:: 4.

By Lemma 3.3, for any compact MC Q1(S) \ {O}, we can choose a
6' > 0 such that

area (Nw(6') n P) < .,.,/4, for each wE M.

Let 6 = ~ min (6', distance (ap, jj,. - U1)).

By Lemma 3.4, there exist suitable real numbers Xl,··· ,Xn such
that

(3.7) Ui=lU(Xi,W,6) :) P n Nw, for all wE M.

For w E M fixed,

Then set

IT ( Iz - ziol2)Pq(z,w) := p(z) T 62 1 •

%ij Er<of

Analogously, we can construct a Coo function Pq' (z, w) in jj,. such
that

{
0 in neighborhood of (.J:::,. - P) U Nw

Pq'(z,w) =
1 if Pq(z,w) -I o.

3.2.3. Construction of h



(3.10)

(3.11)

Embedding Bordered Riemann Surfaces in Riemannian Manifolds 481

For ct(,ol and f3(,o1 as in equation (3.4), let

ct-(,oI = J.t,,' • ct(,ol and f3: = J.trt • fJ(,oI + 1 - J.t,,' for z E 6 \ N (,01

and
&(,01 = 0 and jJ(,oI = 1 for zEN(,01.

Let

a=-;:. b=(~-~)·;w
and for (x, y) and (x, Yo) E 6, set

y* = y - YD·

For each pair (Yo, w), the ordinary differential equation

(3.S) d:: (x,Yo,w) = a(x,y* +Yo,w), where y*(O'YO,w) = 0

has exactly one solution. Moreover y*(x,yo,w) is continuous in 6 x M
and it is differentiable in x and Yo The same is true for the function

(3.9) u*(x,Yo,w) = 1% b(t,yo + y*(t'YO,w),w)dt.

The mapping g: 6 x M -+ 6 x M, given by

g(x, Yo,w) =(x, Yo + y*(x, Yo,w ),w)

=(x, y(x, Yo,w),w),

is continuous in 6 x M and bijective, therefore it is a homeomorphism
by the invariance of domain. Then we have

LEMMA 3.5. The function

u = u* 0 g-1 : 6 x M -+ RI

is the solution of equation

Ou ou
Ox (x, y,w) + a(x, y,w) ay (x, y,w) = b(x, y,w),

u(O,y,w)=O for (O,y,w)E6xM.

and is Coo in x and Y for a fixed w E M.
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Proof. This can be found in Ko [8, p. 61-63].

From the preceeding arguments u is continuous and bounded on
l:::t. x M, that is, for some constant Uo,

lu(x,y,w)1 $ Uo for all (x,y,w) E l:::t. x M.

IT we let {] = eUo -u • (awdx + tiwdY) , then {] is closed in l:::t., hence it
is exact.

Therefore, there is a function k which is continuous on l:::t. x M and
it is differentiable in x and y such that

(] = dk(x, y,w).

As a final auxiliary function, we define a real-valued function v'1(x)
for "l < ! as follow.

(1) IV'1(x)1 $ 1,

{

X for "l - 1 $ x $ 1 - "l
(2) v'1(x) =

2 - x for 1 + "l $ x $ 3 - "l,
(3) v'1(x + 4) = v'1(x).

Let N M be a number depending on M and let € be the constant char­
acterized in Section 2.4. For

1
N> N M + -. maxzEPI'x(z)l,

€

let
(3.12)

h(x,y,w,N) = ~'x(X'Y)Il'1(x,y,w)eU(Z'YtW)-Uo . v'1(N. k(x,y,w)).

Then h is a COO-function on P and continuous in wE M. For w fixed,
we obtain

(3.13)

We still want to show the area of

(3.14) A = ((x,y)l(x,y) E P, 1l'1(x,y,w). v'1 2(N. k(x,y,w)) =1= I}
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can be made arbitrarily small.
For this, for some kM depending on M, we get

"1(3.15) area A < '2 + kM' "1.

Above computations are not so difficult. See Ko [9] for details.

3.3. Comparison of the Metrics (ds w )2 and ds~

Recall that the deformed surface SW := Sh(. ,w) is defined by

SW(x, y) = X(x, y) + h(x, yjW, N)f'(X(x, y» + r(h(x, y)2).

Then for K~, we will get

LEMMA 3.6. Assume that h(x, y,W, N) is given by (3.12) and that
supremum and innmum are taken over all directions at a point z. Then
the metric of the deformed sunace sw := Sh(. ,w), defined by the map
SW(x, y) as given above, satisfies the relations :

(1) (sup«dSWm )2j(dSW)2»)/ (inf«dSWm )2j(dSW?») ---t 1
as W m ---t w.

(2) K~ = (sup «dsw )2jds~»)/ (inf«ds w )2jds~»)

{
l+CI("1jN) onP-A

S 4'Yw + C2("1; N) on A

ifW E M, where the constant Cl can be made arbitrarily small
for each fixed 1] and for sufficiently large N. C2 is some con­
stant which is not necessarily small. The area of A is given by
(3.15).

Proof. See Ko [8, p. 71-73].
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