SMALL ISOMORPHISMS BETWEEN FUNCTION SPACES

Kil-Woung Jun, Yang-Hi Lee and Dong-soo Shin

1. Introduction

For a locally compact Hausdorff set X, we denote by $C_{0}(X)$ the Banach space of all continuous complex valued functions defined on X which vanish at infinity, equipped with the usual sup-norm. In case X is compact, we write $C(X)$ instead of $C_{0}(X)$. A well-known Banach-Stone theorem states that the function spaces $C(X)$ and $C(Y)$ are linearly isometric if and only if X and Y are homeomorphic. D. Amir [1] and M. Cambern [3] independently generalized this theorem by proving that if $C_{0}(X)$ and $C_{0}(Y)$ are linearly isomorphic under an isomorphism T satisfying $\|T\|\left\|T^{-1}\right\|<2$, then X and Y must also be homeomorphic.

Amir-Cambern theorem has been generalized to the Banach spaces of continuous E - valued functions, this is: if T is a linear isomorphism from $C_{0}(X, E)$ onto $C_{0}(Y, E)$ such that $\|T\|\left\|T^{-1}\right\|<1+\epsilon$, where the Banach space E satisfies certain geometric conditions, then X and Y are homeomorphic $[2,4,5]$. In this paper we have a generalization of another version of the Banach-Stone theorem under some geometric assumptions on the Banach spaces.

2. Preliminaries

We use the standard Banach space terminology. For a Banach space E we denote by E_{1} the closed unit ball of E and by E^{*} the dual space. An extremely regular subspace A of $C_{0}(X)$ means a closed subspace such that if for any $x_{0} \in X$, any real number ϵ with $0<\epsilon<1$ and any neighborhood V of x_{0} there is a function $f \in A$ such that $1=\|f\|=f\left(x_{0}\right)$ and $|f(x)|<\epsilon$ for every $x \in X \backslash V$. Throughout

[^0]this paper, let A and B be extremely regular subspaces of $C_{0}(X)$ and $C_{0}(Y)$, respectively. Let E, F be Banach spaces. We define
\[

$$
\begin{aligned}
& \quad d_{B-M}(E, F) \\
& \quad=\inf \left\{\|T\|\left\|T^{-1}\right\|: T \text { is an isomorphism from } E \text { onto } F\right\} \\
& \lambda(E)=\inf \left\{\sup \left\{\left\|e_{1}+\lambda e_{2}\right\|:|\lambda|=1\right\}: e_{1}, e_{2} \in E,\left\|e_{1}\right\|=\left\|e_{2}\right\|=1\right\}
\end{aligned}
$$
\]

and

$$
\mu(E)=\sup \left\{\inf \left\{\left\|e_{1}+\lambda e_{2}\right\|:|\lambda|=1\right\}: e_{1}, e_{2} \in E,\left\|e_{1}\right\|=\left\|e_{2}\right\|=1\right\}
$$

We denote by $A \ddot{\otimes} E$ the complete injective tensor product of A and $E . C_{0}(X) \otimes \check{E}$ can be naturally identified with $C_{0}(X, E)$ and $C_{0}(X, E)$ as a subspace of $C_{0}\left(X \times E_{1}^{*}\right)$ or $C_{0}\left(X \otimes E_{1}^{*}\right)$, where E_{1}^{*} is taken with the weak ${ }^{*}$ topology. For an $f \in C_{0}(X, E)$ the obvious element of $C_{0}\left(X \times E_{1}^{*}\right)$ which corressponds to f is denoted by the same symbol and so

$$
e^{*}(f(x))=f\left(x, e^{*}\right) \text { for } x \in X, e^{*} \in E_{1}^{*}
$$

A net $\left(f_{\gamma}\right)_{\gamma \in \Gamma}$ in $A \check{\otimes} E$ (respectively A) peaks at a point $(x, e) \in X \times E_{1}$ (at $x \in X$) means that if $\left\|f_{\gamma}\right\| \rightarrow 1,\left\|f_{\gamma}(x)-e\right\| \rightarrow 0$ (respectively $\left.\left|f_{\gamma}(x)-1\right| \rightarrow 0\right)$ and $\left\|f_{\gamma}(\cdot)\right\| \rightarrow 0$ uniformly off any neighborhood of x.

For $F \in(A \check{\otimes} E)^{*}, \mu \sim F$ means that μ is a Borel measure on $X \times E_{1}^{*}$ which is a norm preserving extension of F to $C_{0}\left(X \times E_{1}^{*}\right)$.

The following propositions are seen in [5].
Proposition 2.1. Assume $\mu \sim F \in(A \check{\otimes} E)^{*}$. Then for any $x \in X$ there is an $e^{*} \in E^{*}$ such that $\left.\mu\right|_{\{x\} \times E_{1}^{*}} \sim \delta_{x} \otimes e^{*}$.

Proposition 2.2. Assume $F \in(A \check{\otimes} E)^{*}, \mu_{i} \sim F$ and $\left.\mu_{i}\right|_{\{x\} \times E_{i}^{*}} \sim$ $\delta_{x} \times e_{i}^{*}, \quad i=1,2$. Then $e_{1}^{*}=e_{2}^{*}$.

Proposition 2.3. Assume that $\mu \sim F$ and that X_{0} is a Borel subset of X. Then

$$
\operatorname{var}\left(\left.\mu\right|_{X_{0} \times E_{1}^{*}}\right)=\left\|\left.\mu\right|_{X_{0} \times E_{1}^{*}}\right\|
$$

where the norm is taken in $(A \check{\otimes} E)^{*}$.
Let $T: A \check{\otimes} E \rightarrow B \check{\otimes} F$ be a linear map such that $\|f\| \leq\|T f\|$ for $f \in A \check{\otimes} E$ and $\|T\|<1+\epsilon$. We fix $e \in \partial E_{1}$ and denote by T_{e} the map from A into $B \ddot{\otimes} F$ defined by $T_{e}(f)=T(f \otimes e)$ for $f \in A$. Evidently T_{e} is norm non-decreasing and $\left\|T_{e}\right\| \leq\|T\|$. Let M be such that

$$
\max \left(\frac{1-\epsilon+\|T\|}{2}, \frac{1+\epsilon}{\lambda(F)}\right)<M<1
$$

For any $x \in X$ we put

$$
\begin{gathered}
S_{x, e}=\left\{y \in Y: \exists f^{*} \in \partial F_{1}^{*}\left|T_{e}^{*}\left(\delta_{y} \otimes f^{*}\right)(\{x\})\right| \geq M\right\} \\
\tilde{S}_{x, e}=\left\{y \in Y: \exists f^{*} \in F_{1}^{*} \forall f \in A\left|f^{*}\left(T_{e}(f)(y)\right)-f(x)\right| \leq \epsilon\|f\|\right\} \\
S_{x}=\left\{y \in Y: \exists f^{*} \in \partial F_{1}^{*}\left\|\left.T^{*}\left(\delta_{y} \otimes f^{*}\right)\right|_{\{x\} \times E_{1}^{*}}\right\| \geq M\right\}
\end{gathered}
$$

For any sequence $\left(f_{n}\right)_{n=1}^{\infty}$ from A which peaks at x we put

$$
\begin{gathered}
A_{n, e}=\left\{y \otimes f^{*} \in Y \otimes F_{1}^{*}:\left|T_{e} f_{n}\left(y \otimes f^{*}\right)\right| \geq M\right\} \\
A_{\infty, e}=\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j, e} \\
A_{x, e}=\left\{y \in Y: \exists f^{*} \in F_{1}^{*} \exists\left(f_{n}\right)_{n=1}^{\infty} \subset A\right. \\
\\
\text { peaking at } \left.x \text { with } y \otimes f^{*} \in A_{\infty, e}\right\} .
\end{gathered}
$$

The following Lemmas 2.4 and 2.5 are seen in [5].
Lemma 2.4. $\forall_{x} \in X, A_{x, e} \neq \emptyset$.
Lemma 2.5. $\forall_{x} \in X, A_{x, e}=S_{x, e}$.
Lemma 2.6. If $x_{1} \neq x_{2} \in X$ then $S_{x_{1}, e_{1}} \cap S_{x_{1}, e_{2}}=\emptyset$ for any $e_{1}, e_{2} \in \partial E_{1}$.

Proof. Assume $S_{x_{1}, e_{1}} \cap S_{x_{1}, e_{2}}=\emptyset$. Then there are $y_{0} \in Y$ and sequences $\left(f_{n}^{1}\right)_{n=1}^{\infty},\left(f_{n}^{2}\right)_{n=1}^{\infty}$ in A peaking at x_{1} and x_{2}, respectively, such that

$$
\begin{equation*}
\left\|T\left(f_{n}^{i} \otimes e_{i}\right)\left(y_{0}\right)\right\| \geq M \text { for } n \in N, i=1,2 \tag{1}
\end{equation*}
$$

We have $\lim _{n}\left\|f_{n}^{1} \otimes e_{1}+\lambda f_{n}^{2} \otimes e_{2}\right\|=1$ for $|\lambda|=1$ and

$$
\begin{equation*}
\lim _{n} \sup \left\|T\left(f_{n}^{1} \otimes e_{1}\right)\left(y_{0}\right)+\lambda T\left(f_{n}^{2} \otimes e_{2}\right)\left(y_{0}\right)\right\| \leq\|T\|<1+\epsilon \tag{2}
\end{equation*}
$$

By (1) and (2) we get $\lambda(F) \leq(1+\epsilon) / M$, which contradicts the definition of M.

Lemma 2.7. For any $x \in X, S_{x}=U_{e \in \partial E_{1}} S_{x, e}$.
Proof. Choose $y \in S_{x}$. Then there is an $f^{*} \in \partial F_{1}^{*}$ such that $\| T^{*}\left(\delta_{y} \otimes\right.$ $\left.f^{*}\right)\left.\right|_{\{x\} \times E_{i}^{*}} \| \geq M$. By the Propositions 2.1 and 2.2 there is an $e^{*} \in$ E^{*} such that $\left\|\left.T^{*}\left(\delta_{y} \otimes f^{*}\right)\right|_{\{x\} \times E_{i}^{*}}\right\|=\left\|\delta_{x} \otimes e^{*}\right\| \geq M$ and there is an $e \in \partial E_{1}$ such that $e^{*}(e) \geq M$. Let $\left(f_{n}\right)_{n=1}^{\infty}$ in A be peaking at x such that $1=\left|f_{n}(x)\right|$. Then $\lim _{n}\left|T^{*}\left(\delta_{y} \otimes f^{*}\right)\left(f_{n} \otimes e\right)\right| \geq M$ and $\left|T_{e}^{*}\left(\delta_{y} \otimes f^{*}\right)(\{x\})\right| \geq M$. Therefore $y \in S_{x, e}$.

Conversely if $y \in S_{x, e}$ then there is an $f^{*} \in \partial F_{1}^{*}$ such that $\mid T_{e}^{*}\left(\delta_{y} \otimes\right.$ $\left.f^{*}\right)(\{x\}) \mid \geq M$. Since $\left\|\left.T^{*}\left(\delta_{y} \otimes f^{*}\right)\right|_{\{x\} \times E_{i}^{*}}\right\|=\left\|\delta_{x} \otimes e^{*}\right\|$, for any sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in A which is peaking at x we get

$$
\begin{aligned}
M & \leq \lim _{n}\left|T_{e}^{*}\left(\delta_{y} \otimes f^{*}\right)\left(f_{n}\right)\right| \\
& =\lim _{n}\left|T^{*}\left(\delta_{y} \otimes f^{*}\right)\left(f_{n} \otimes e\right)\right| \\
& =\lim _{n}\left\|\left(\delta_{x} \otimes e^{*}\right)\left(f_{n} \otimes e\right)\right\| \\
& =\left\|\left.T^{*}\left(\delta_{y} \otimes f^{*}\right)\right|_{\{x\} \times E_{i}^{*}}\right\| .
\end{aligned}
$$

Therefore $y \in S_{x}$. This completes the proof.
Lemma 2.8. If $x_{1} \neq x_{2} \in X$ then $S_{x_{1}} \cap S_{x_{2}}=\emptyset$.
Proof. Apply Lemma 2.6 and Lemma 2.7.
Lemma 2.9. For any $x \in X$ and $f \in A \ddot{\otimes} E$ which satisfy $\|f(x)\| \neq 0$, we have
(3) $\quad\|T f(x)\| \geq\|f(x)\|-\epsilon\|f\|, y \in S_{x, e}$, where $e=f(x) /\|f(x)\|$.

Proof. For any $x \in X$ and for $f \in A \ddot{\otimes} E$, let $e=f(x) /\|f(x)\|$ and $y \in S_{x, e} \subset S_{x}$ where $e=\frac{f(x)}{\|f(x)\|}$. Let $\left(f_{n}\right)_{n=1}^{\infty}$ in A be peaking at x such that $1=\left|f_{n}(x)\right|$ and let $f^{*} \in \partial F_{1}^{*}$ be given by the definition of $S_{x, e}$. This means

$$
\begin{aligned}
& T^{*}\left(\delta_{y} \otimes f^{*}\right) \sim \lambda \delta_{x} \otimes e^{*}+\Delta \mu \in C_{0}\left(X \times E_{1}^{*}\right)^{*}, \\
& \text { where }|\lambda| \geq M \text { and }|\Delta \mu|\left(\{x\} \times E_{1}^{*}\right)=0,\left\|e^{*}\right\|=1, \\
& T_{e}^{*}\left(\delta_{y} \otimes f^{*}\right) \sim \lambda \delta_{x}+\Delta \mu^{\prime} \in C_{0}(X)^{*}, \\
& \text { where }|\lambda| \geq M \text { and }\left|\Delta \mu^{\prime}\right|(\{x\})=0 .
\end{aligned}
$$

Multiplying f^{*} by a suitable scalar of modulus one we can assume that λ is a positive real number. Since $|\Delta \mu|\left(\{x\} \times E_{1}^{*}\right)=0$ we get that $\lim _{n}|\Delta \mu|\left(f_{n} \otimes\|f(x)\| e\right)=0$ and by Proposition 2.3 and the definition of M we get

$$
\begin{align*}
& \lim _{n}\left|f^{*}\left(T\left(f-f_{n} \otimes\|f(x)\| e\right)(y)\right)\right| \\
& \leq \lim _{n}\left|\lambda e^{*}\left(\left(f-f_{n} \otimes\|f(x)\| e\right)(x)\right)\right| \\
& \quad+\lim _{n}\left|\Delta \mu\left(f-f_{n} \otimes\|f(x)\| e\right)\right| \tag{4}\\
& \leq\|\Delta \mu\|\|f\|+\lim _{n}\left|\Delta \mu\left(f_{n} \otimes\|f(x)\| e\right)\right| \\
&=\|\Delta \mu\|\|f\| \\
& \leq(\|T\|-\lambda)\|f\| .
\end{align*}
$$

Since $\Delta \mu^{\prime}(\{x\})=0$, we know that $\lim _{n} \Delta \mu^{\prime}\left(f_{n}\right)=0$ and

$$
\begin{aligned}
& \lim _{n}\left|f^{*}\left(T\left(f_{n} \otimes\|f(x)\| e\right)(y)\right)-\|f(x)\|\right| \\
& =\lim _{n} \mid T_{e}^{*}\left(\delta_{y} \otimes f^{*}\right) \|\left(\left\|\left(f(x) \| f_{n}\right)-\right\| f(x) \| \mid\right. \\
& \leq \lim _{n}\left|\lambda\|f(x)\| f_{n}(x)-\|f(x)\|\right|+\lim _{n}\left|\Delta \mu^{\prime}\left(\|f(x)\| f_{n}\right)\right| \\
& =\lim _{n}\|f(x)\|\left|\lambda f_{n}(x)-1\right|+\lim _{n}\|f(x)\| \Delta \mu^{\prime}\left(f_{n}\right) \mid \\
& \leq(\|f(x)\| \mid \lambda-1) \mid .
\end{aligned}
$$

BY (4) and (5)

$$
\begin{aligned}
& \left|f^{*}(T f(y))-\|f(x)\|\right| \\
& \leq \lim _{n}\left|f^{*}\left(T\left(f-f_{n} \otimes\|f(x)\| e\right)(y)\right)\right| \\
& \quad+\lim _{n}\left|f^{*}\left(T\left(f_{n} \otimes\|f(x)\| e\right)(y)\right)-\|f(x)\|\right| \\
& \leq\|f\|(|\lambda-1|+\|T\|-\lambda) \\
& \leq\|f\|(\|T\|+(1-2 M)) \\
& =\|f\|(\|T\|-1+2(1-M)) \\
& \leq \epsilon\|f\| .
\end{aligned}
$$

Therefore $\|T f(y)\| \geq\|f(x)\|-\epsilon\|f\|$.

3. Results

Theorem 3.1. Let X be a locally compact metric space, Y a locally compact Hausdorff space and A, B extremely regular subspaces of $C_{0}(X)$ and $C_{0}(Y)$, respectively. Let E, F be Banach spaces and let $T: A \ddot{\otimes} E \rightarrow B \ddot{\otimes} F$ be a linear map such that $\|f\| \leq\|T f\|$ for $f \in A \ddot{\otimes} E$ and $\|T\|<1+\epsilon<\lambda(F)$. Then there is a subset Y_{0} of Y and a continuous surjective map $\phi: Y_{0} \rightarrow X$ such that for any $x \in X$ and $f \in A \check{\otimes} E$

$$
\begin{equation*}
\sup _{y \in \phi^{-1}(\{x\})}\|T f(y)\| \geq\|f(x)\|-\epsilon\|f\| . \tag{*}
\end{equation*}
$$

Proof. We define a function $\phi: \cup_{x \in X} S_{x} \subset Y \rightarrow X$ by $\phi(y)=x$ if $y \in S_{x}$. By Lemma 2.8ϕ is well defined, by Lemmas 2.4, 2.5 and 2.7ϕ is surjective and by Lemma 2.9ϕ satisfies ($*$). It remains to prove that ϕ is continuous. Assuming the contrary there are $x_{n} \in X, y_{n} \in Y$ and an open neighborhood V of x_{0} such that $y_{n} \in S_{x_{n}} \rightarrow y_{0}^{\in} S_{x_{0}}$ and $x_{n} \in$ $X \backslash \bar{V}$ for all $n \in N$. Fix $\delta>0$. Since $y_{0} \in S_{x_{0}}=\cup_{e \in \partial E_{1}} S_{x, e}$ there is an $f_{1} \in A$ and an $e_{0} \in \partial E_{1}$ such that $\left\|f_{1}\right\| \leq 1+\delta, f_{1}\left(x_{0}\right)=1,\left|f_{1}(x)\right| \leq \delta$ for $x \in X \backslash V$ and $\left\|T_{e_{0}} f_{1}\left(y_{0}\right)\right\|>M-\delta$. Next since $T_{e_{0}} f_{1}$ is norm continuous and $y_{n} \rightarrow y_{0}$ there is an $n_{0} \in N$ such that $\left\|T_{e_{0}} f_{1}\left(y_{n_{0}}\right)\right\|>$ $M-\delta$. Since $y_{n_{0}} \in S_{x_{n_{0}}}=\cup_{e \in \partial E_{1}} S_{x_{n_{0}}, e}$ there is an $f_{2} \in A$ and an $e_{n_{0}} \in \partial E_{1}$ such that $\left\|f_{2}\right\| \leq 1+\delta, f_{2}\left(x_{n_{0}}\right)=1,\left|f_{2}(x)\right| \leq \delta$ for $x \in V$ and $\left\|T_{e_{n_{0}}} f_{2}\left(y_{n_{0}}\right)\right\|>M-\delta$. We have

$$
\left\|T_{e_{0}} f_{1}\left(y_{n_{0}}\right)\right\|>M-\delta, \quad\left\|T_{e_{n_{0}}} f_{2}\left(y_{n_{0}}\right)\right\|>M-\delta
$$

and
$\left\|T_{e_{0}} f_{1}\left(y_{n_{0}}\right) \pm\right\| T_{e_{n_{0}}} f_{2}\left(y_{n_{0}}\right)\|\leq\| T\| \| f_{1} \otimes e_{0} \pm f_{2} \otimes e_{n_{0}} \| \leq(1+\epsilon)(1+2 \delta)$.
Hence, since δ is an arbitrary positive number we get $\lambda(F) \leq(1+\epsilon) / M$, which contradicts the definition of M and so ends the proof.

To prove Theorem 3.3 we need the following lemma, which is due to K.Jarosz [5].

Lemma 3.2. Let X, Y be locally compact spaces and E, F Banach spaces and $T: C_{0}(X, E) \rightarrow B \ddot{\otimes} F$ a linear map such that $\|f\| \leq$ $\|T f\|,\|T\|<1+\epsilon<4 /\left(2+\mu\left(F^{*}\right)\right)$. Then for any $e \in \partial E_{1}$, there is a subset \tilde{Y}_{e} of Y and a continuous surjective map $\phi_{e}: \tilde{Y}_{e} \rightarrow X$ such that

$$
\left|f_{y}^{*}(T(f \otimes e)(y))-f \circ \phi_{e}(y)\right| \leq \epsilon\|f\|, \quad f \in C_{0}(X)
$$

where $Y_{e} \ni y \rightarrow f_{y}^{*}$ is a map from Y_{e} into $\partial f_{1}^{*}, \tilde{Y}_{e}=\cup_{x \in X} \tilde{S}_{x, e}$ and $\phi_{e}(y)=x$ if $y \in \tilde{S}_{x, e}$.

Theorem 3.3. Let X be a locally compact space, Y a locally compact metric space, B an extremely regular subspace of $C_{0}(Y), E, F$ Banach spaces and $T: C_{0}(X, E) \rightarrow B \otimes ̈ F$ a surjective isomorphism such that $\|T\|<1+\epsilon<\min \left(\lambda(E), \frac{4}{2+\mu\left(F^{*}\right)}\right)$ and $\left\|T^{-1}\right\| \leq 1$. Then there is a homeomorphism ϕ from Y onto X.

Proof. We consider two possibilities:
(i) $\max (\operatorname{dim} E, \operatorname{dim} F)>1$,
(ii) $\operatorname{dim} E=\operatorname{dim} F=1$.

Assuming (i) we have $1+\epsilon<\min \left(\lambda(E), \frac{4}{2+\mu^{\left(F^{*}\right)}}\right) \leq \sqrt{2}$. By Lemma 3.2, if $e \in \partial E_{1}$ there is a surjective $\operatorname{map} \psi_{e}: \tilde{Y}_{e} \rightarrow X$ defined by $\psi_{e}(y)=x$ if $y \in \tilde{S}_{x, e}$ where $\tilde{Y}_{e}=\cup_{x \in X} \tilde{S}_{x, e}$. By Theorem 3.1 for $T^{\prime}=\|T\| T^{-1}$ in place of T, we get a subset X_{0} in X and a continuous $\operatorname{map} \phi: X_{0} \rightarrow Y$ such that $\phi(x)=y$ if $x \in S_{y}$. Since ϕ is continuous we can extend $\phi: X_{0} \rightarrow Y$ to $\bar{\phi}: \bar{X}_{0} \rightarrow Y$. Let $x \in X, e \in \partial E_{1}$ and let a net $\left(f_{\gamma}\right)$ in $C_{0}(X)$ be peaking at x with $1=\left\|f_{\gamma}(x)\right\|$. By Lemma 3.2, there is a $y_{0} \in \tilde{S}_{x, e}=\psi_{e}^{-1}(\{x\})$ such that

$$
\begin{equation*}
\left\|\left(T\left(f_{\gamma} \otimes e\right)\left(y_{0}\right)\right)\right\| \geq\left\|\left(f_{\gamma} \otimes e\right)(x)\right\|-\epsilon\left\|f_{\gamma} \otimes e\right\| \tag{6}
\end{equation*}
$$

By Lemma 2.9, for each γ there exists $x_{\gamma} \in S_{y_{0}}$ such that

$$
\begin{equation*}
\|T\|\left\|\left(f_{\gamma} \otimes e\right)\left(x_{\gamma}\right)\right\| \geq\left\|T\left(f_{\gamma} \otimes e\right)\left(y_{0}\right)\right\|-\epsilon\left\|T\left(f_{\gamma} \otimes e\right)\right\| \tag{7}
\end{equation*}
$$

By (6) and (7) we get

$$
\|T\|\left\|\left(f_{\gamma} \otimes e\right)\left(x_{\gamma}\right)\right\| \geq\left\|\left(f_{\gamma} \otimes e\right)(x)\right\|-\epsilon\left\|f_{\gamma} \otimes e\right\|-\epsilon\left\|T\left(f_{\gamma} \otimes e\right)\right\| .
$$

Since $\left\|f_{\gamma}\right\| \rightarrow 1$, we get $\lim _{\gamma}\|T\|\left\|\left(f_{\gamma} \otimes e\right)\left(x_{\gamma}\right)\right\| \geq 1-\epsilon(2+\epsilon)>1-$ $(\sqrt{2}-1)(\sqrt{2}+1)=0$. Hence we get $x_{\gamma} \rightarrow x$ and so $\psi_{e} \circ \bar{\phi}(x)=x$. Since
x is an arbitrary element of X, we have $X_{0}=X$ so $\psi_{e} \circ \phi(x)=I d_{X}(x)$. Therefore S_{y} is a one-point set for all y in Y. Therefore $\phi: X \rightarrow Y$ is bijective and $\psi_{e}: Y \rightarrow X$ is bijective. Since ψ_{e} is continuous by Lemma 3.2 and ϕ is continuous by Theorem 3.1, $\phi: X \rightarrow Y$ is a homeomorphism.

Assuming (ii) we have $\epsilon<1$ and by Lemma 3.2

$$
\begin{equation*}
|\epsilon(y) T(f)(y)-f \circ \phi(y)| \leq \epsilon\|f\| \text { for } f \in C_{0}(X) \tag{8}
\end{equation*}
$$

where $|\epsilon(y)| \leq 1$ for $y \in Y_{0}$. By the symmentry arguments and Theorem 3.1 we have also

$$
\begin{equation*}
\left|\epsilon^{\prime}(x)\|T\| T^{-1}(g)(x)-g \circ \psi(x)\right| \leq \epsilon\|g\| \text { for } g \in B \tag{9}
\end{equation*}
$$

where $\left|\epsilon^{\prime}(x)\right|=1$. Let x_{0}, y_{0}, x_{1} be such that $\phi\left(y_{0}\right)=x_{0}$ and $\psi\left(x_{1}\right)=$ y_{0}. By (8) and (9) we get

$$
\left|f\left(x_{0}\right)-\epsilon\left(y_{0}\right) \epsilon^{\prime}\left(x_{1}\right)\|T\| f\left(x_{1}\right)\right| \leq \epsilon\left(\|f\|+\mid \epsilon\left(y_{0}\right)\| \| f \|\right), \quad f \in C_{0}(X) .
$$

By the regularity of A we get $x_{0}=x_{1}$, and hence ϕ is a homemorphism.

References

1. D.Amir, On isomorphism of continuous function spaces, Israel J. Math. 3 (1965), 205-210.
2. E. Behrend and V.Schmidt-Bichler, M-struture and the Banach-Stone theorem, Studia Math. 69 (1980), 33-40.
3. M.Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062-1066.
4. K.Jarosz, Isometries between injective tensor products of Banach spaces, Pacific J. Math. 121 (1986), 383-395.
5. - - - - , Small isomorphisms of $C(X, E)$ spaces, Pacific J. Math. 138 (1989), 295-315.

Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
Department of Mathematics Education
Kongju National Teachers College
Kongju 314-729, Korea
Department of Mathematics
Mokwon University
Taejon 301-729, Korea

[^0]: Received July 10, 1992. Revised December 22, 1992.
 Supported by the KOSEF.

