J. Korean Math. Soc. 30 (1993), No. 2, pp. 457-464

SMALL ISOMORPHISMS BETWEEN FUNCTION SPACES

KIL-WOUNG JUN, YANG-HI LEE AND DONG-SOO SHIN

1. Introduction

For a locally compact Hausdorff set X, we denote by $C_0(X)$ the Banach space of all continuous complex valued functions defined on X which vanish at infinity, equipped with the usual sup-norm. In case X is compact, we write C(X) instead of $C_0(X)$. A well-known Banach-Stone theorem states that the function spaces C(X) and C(Y)are linearly isometric if and only if X and Y are homeomorphic. D. Amir [1] and M. Cambern [3] independently generalized this theorem by proving that if $C_0(X)$ and $C_0(Y)$ are linearly isomorphic under an isomorphism T satisfying $||T|| ||T^{-1}|| < 2$, then X and Y must also be homeomorphic.

Amir-Cambern theorem has been generalized to the Banach spaces of continuous E- valued functions, this is: if T is a linear isomorphism from $C_0(X, E)$ onto $C_0(Y, E)$ such that $||T|| ||T^{-1}|| < 1 + \epsilon$, where the Banach space E satisfies certain geometric conditions, then X and Yare homeomorphic [2,4,5]. In this paper we have a generalization of another version of the Banach-Stone theorem under some geometric assumptions on the Banach spaces.

2. Preliminaries

We use the standard Banach space terminology. For a Banach space E we denote by E_1 the closed unit ball of E and by E^* the dual space. An extremely regular subspace A of $C_0(X)$ means a closed subspace such that if for any $x_0 \in X$, any real number ϵ with $0 < \epsilon < 1$ and any neighborhood V of x_0 there is a function $f \in A$ such that $1 = ||f|| = f(x_0)$ and $|f(x)| < \epsilon$ for every $x \in X \setminus V$. Throughout

Received July 10, 1992. Revised December 22, 1992. Supported by the KOSEF.

this paper, let A and B be extremely regular subspaces of $C_0(X)$ and $C_0(Y)$, respectively. Let E, F be Banach spaces. We define

$$\begin{split} d_{B-M}(E,F) &= \inf\{\|T\| \| T^{-1}\| : T \text{ is an isomorphism from } E \text{ onto } F \}, \\ \lambda(E) &= \inf\{\sup\{\|e_1 + \lambda e_2\| : |\lambda| = 1\} : e_1, e_2 \in E, \|e_1\| = \|e_2\| = 1\} \\ \text{and} \end{split}$$

$$\mu(E) = \sup\{\inf\{\|e_1 + \lambda e_2\| : |\lambda| = 1\} : e_1, e_2 \in E, \|e_1\| = \|e_2\| = 1\}.$$

We denote by $A \otimes E$ the complete injective tensor product of A and E. $C_0(X) \otimes E$ can be naturally identified with $C_0(X, E)$ and $C_0(X, E)$ as a subspace of $C_0(X \times E_1^*)$ or $C_0(X \otimes E_1^*)$, where E_1^* is taken with the weak * topology. For an $f \in C_0(X, E)$ the obvious element of $C_0(X \times E_1^*)$ which corresponds to f is denoted by the same symbol and so

$$e^*(f(x)) = f(x, e^*)$$
 for $x \in X, e^* \in E_1^*$.

A net $(f_{\gamma})_{\gamma \in \Gamma}$ in $A \otimes E$ (respectively A) peaks at a point $(x, e) \in X \times E_1$ (at $x \in X$) means that if $||f_{\gamma}|| \to 1$, $||f_{\gamma}(x) - e|| \to 0$ (respectively $|f_{\gamma}(x) - 1| \to 0$) and $||f_{\gamma}(\cdot)|| \to 0$ uniformly off any neighborhood of x.

For $F \in (A \otimes E)^*$, $\mu \sim F$ means that μ is a Borel measure on $X \times E_1^*$ which is a norm preserving extension of F to $C_0(X \times E_1^*)$.

The following propositions are seen in [5].

PROPOSITION 2.1. Assume $\mu \sim F \in (A \otimes E)^*$. Then for any $x \in X$ there is an $e^* \in E^*$ such that $\mu|_{\{x\} \times E_1^*} \sim \delta_x \otimes e^*$.

PROPOSITION 2.2. Assume $F \in (A \otimes E)^*$, $\mu_i \sim F$ and $\mu_i|_{\{x\} \times E_1^*} \sim \delta_x \times e_i^*$, i = 1, 2. Then $e_1^* = e_2^*$.

PROPOSITION 2.3. Assume that $\mu \sim F$ and that X_0 is a Borel subset of X. Then

$$var(\mu|_{X_0 \times E_1^*}) = \|\mu|_{X_0 \times E_1^*}\|,$$

where the norm is taken in $(A \otimes E)^*$.

Let $T: A \otimes E \to B \otimes F$ be a linear map such that $||f|| \leq ||Tf||$ for $f \in A \otimes E$ and $||T|| < 1 + \epsilon$. We fix $e \in \partial E_1$ and denote by T_e the map from A into $B \otimes F$ defined by $T_e(f) = T(f \otimes e)$ for $f \in A$. Evidently T_e is norm non-decreasing and $||T_e|| \leq ||T||$. Let M be such that

$$\max\left(rac{1-\epsilon+\|T\|}{2}, rac{1+\epsilon}{\lambda(F)}
ight) < M < 1.$$

For any $x \in X$ we put

$$S_{x,e} = \{ y \in Y : \exists f^* \in \partial F_1^* | T_e^*(\delta_y \otimes f^*)(\{x\}) | \ge M \},$$

$$\tilde{S}_{x,e} = \{ y \in Y : \exists f^* \in F_1^* \ \forall f \in A | f^*(T_e(f)(y)) - f(x) | \le \epsilon ||f|| \},$$

$$S_x = \{ y \in Y : \exists f^* \in \partial F_1^* ||T^*(\delta_y \otimes f^*)|_{\{x\} \times E_1^*} || \ge M \}.$$

For any sequence $(f_n)_{n=1}^{\infty}$ from A which peaks at x we put

$$A_{n,e} = \{ y \otimes f^* \in Y \otimes F_1^* : |T_e f_n(y \otimes f^*)| \ge M \},$$
$$A_{\infty,e} = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_{j,e},$$

$$A_{x,e} = \{ y \in Y : \exists f^* \in F_1^* \exists (f_n)_{n=1}^{\infty} \subset A$$

peaking at x with $y \otimes f^* \in A_{\infty,e} \}$.

The following Lemmas 2.4 and 2.5 are seen in [5].

LEMMA 2.4. $\forall_x \in X, A_{x,e} \neq \emptyset$.

LEMMA 2.5. $\forall_x \in X, A_{x,e} = S_{x,e}$.

LEMMA 2.6. If $x_1 \neq x_2 \in X$ then $S_{x_1,e_1} \cap S_{x_1,e_2} = \emptyset$ for any $e_1, e_2 \in \partial E_1$.

Proof. Assume $S_{x_1,e_1} \cap S_{x_1,e_2} = \emptyset$. Then there are $y_0 \in Y$ and sequences $(f_n^1)_{n=1}^{\infty}, (f_n^2)_{n=1}^{\infty}$ in A peaking at x_1 and x_2 , respectively, such that

(1)
$$||T(f_n^i \otimes e_i)(y_0)|| \ge M \text{ for } n \in N, \ i = 1, 2.$$

We have $\lim_{n} \|f_{n}^{1} \otimes e_{1} + \lambda f_{n}^{2} \otimes e_{2}\| = 1$ for $|\lambda| = 1$ and

(2) $\lim_{n} \sup \left\| T(f_n^1 \otimes e_1)(y_0) + \lambda T(f_n^2 \otimes e_2)(y_0) \right\| \le \|T\| < 1 + \epsilon.$

By (1) and (2) we get $\lambda(F) \leq (1+\epsilon)/M$, which contradicts the definition of M.

LEMMA 2.7. For any $x \in X$, $S_x = \bigcup_{e \in \partial E_1} S_{x,e}$.

Proof. Choose $y \in S_x$. Then there is an $f^* \in \partial F_1^*$ such that $||T^*(\delta_y \otimes f^*)|_{\{x\} \times E_1^*}|| \ge M$. By the Propositions 2.1 and 2.2 there is an $e^* \in E^*$ such that $||T^*(\delta_y \otimes f^*)|_{\{x\} \times E_1^*}|| = ||\delta_x \otimes e^*|| \ge M$ and there is an $e \in \partial E_1$ such that $e^*(e) \ge M$. Let $(f_n)_{n=1}^{\infty}$ in A be peaking at x such that $1 = |f_n(x)|$. Then $\lim_n |T^*(\delta_y \otimes f^*)(f_n \otimes e)| \ge M$ and $|T_e^*(\delta_y \otimes f^*)(\{x\})| \ge M$. Therefore $y \in S_{x,e}$.

Conversely if $y \in S_{x,e}$ then there is an $f^* \in \partial F_1^*$ such that $|T_e^*(\delta_y \otimes f^*)(\{x\})| \geq M$. Since $||T^*(\delta_y \otimes f^*)|_{\{x\} \times E_1^*}|| = ||\delta_x \otimes e^*||$, for any sequence $(f_n)_{n=1}^{\infty}$ in A which is peaking at x we get

$$M \leq \lim_{n} |T_{e}^{*}(\delta_{y} \otimes f^{*})(f_{n})|$$

=
$$\lim_{n} |T^{*}(\delta_{y} \otimes f^{*})(f_{n} \otimes e)|$$

=
$$\lim_{n} ||(\delta_{x} \otimes e^{*})(f_{n} \otimes e)||$$

=
$$||T^{*}(\delta_{y} \otimes f^{*})|_{\{x\} \times E_{1}^{*}}||.$$

Therefore $y \in S_x$. This completes the proof.

LEMMA 2.8. If $x_1 \neq x_2 \in X$ then $S_{x_1} \cap S_{x_2} = \emptyset$.

Proof. Apply Lemma 2.6 and Lemma 2.7.

LEMMA 2.9. For any $x \in X$ and $f \in A \otimes E$ which satisfy $||f(x)|| \neq 0$, we have

(3) $||Tf(x)|| \ge ||f(x)|| - \epsilon ||f||, y \in S_{x,e}$, where e = f(x)/||f(x)||.

Proof. For any $x \in X$ and for $f \in A \otimes E$, let e = f(x)/||f(x)|| and $y \in S_{x,e} \subset S_x$ where $e = \frac{f(x)}{||f(x)||}$. Let $(f_n)_{n=1}^{\infty}$ in A be peaking at x such that $1 = |f_n(x)|$ and let $f^* \in \partial F_1^*$ be given by the definition of $S_{x,e}$. This means

$$T^*(\delta_y \otimes f^*) \sim \lambda \delta_x \otimes e^* + \Delta \mu \in C_0(X \times E_1^*)^*,$$

where $|\lambda| \ge M$ and $|\Delta \mu|(\{x\} \times E_1^*) = 0$, $||e^*|| = 1$,
 $T^*_e(\delta_y \otimes f^*) \sim \lambda \delta_x + \Delta \mu' \in C_0(X)^*,$
where $|\lambda| \ge M$ and $|\Delta \mu'|(\{x\}) = 0$.

460

Multiplying f^* by a suitable scalar of modulus one we can assume that λ is a positive real number. Since $|\Delta \mu|(\{x\} \times E_1^*) = 0$ we get that $\lim_n |\Delta \mu|(f_n \otimes ||f(x)||e) = 0$ and by Proposition 2.3 and the definition of M we get

(4)

$$\begin{split} \lim_{n} |f^{*}(T(f - f_{n} \otimes ||f(x)||e)(y))| \\ \leq \lim_{n} |\lambda e^{*}((f - f_{n} \otimes ||f(x)||e)(x))| \\ + \lim_{n} |\Delta \mu(f - f_{n} \otimes ||f(x)||e)| \\ \leq ||\Delta \mu|| ||f|| + \lim_{n} |\Delta \mu(f_{n} \otimes ||f(x)||e)| \\ = ||\Delta \mu|| ||f|| \\ \leq (||T|| - \lambda)||f||. \end{split}$$

Since $\Delta \mu'(\{x\}) = 0$, we know that $\lim_{n} \Delta \mu'(f_n) = 0$ and

$$\lim_{n} |f^{*}(T(f_{n} \otimes ||f(x)||e)(y)) - ||f(x)|||$$

=
$$\lim_{n} |T^{*}_{e}(\delta_{y} \otimes f^{*})||(||(f(x)||f_{n}) - ||f(x)|||$$

(5)
$$\leq \lim_{n} |\lambda| |f(x)| |f_{n}(x) - ||f(x)|| + \lim_{n} |\Delta \mu'(||f(x)||f_{n})|$$
$$= \lim_{n} ||f(x)|| |\lambda f_{n}(x) - 1| + \lim_{n} ||f(x)|| |\Delta \mu'(f_{n})|$$
$$\leq (||f(x)|| |\lambda - 1)|.$$

BY (4) and (5)

$$|f^{*}(Tf(y)) - ||f(x)|||$$

$$\leq \lim_{n} |f^{*}(T(f - f_{n} \otimes ||f(x)||e)(y))|$$

$$+ \lim_{n} |f^{*}(T(f_{n} \otimes ||f(x)||e)(y)) - ||f(x)|||$$

$$\leq ||f||(|\lambda - 1| + ||T|| - \lambda)$$

$$\leq ||f||(||T|| + (1 - 2M)))$$

$$= ||f||(||T|| - 1 + 2(1 - M))$$

$$\leq \epsilon ||f||.$$

Therefore $||Tf(y)|| \ge ||f(x)|| - \epsilon ||f||$.

3. Results

THEOREM 3.1. Let X be a locally compact metric space, Y a locally compact Hausdorff space and A, B extremely regular subspaces of $C_0(X)$ and $C_0(Y)$, respectively. Let E, F be Banach spaces and let $T : A \otimes E \to B \otimes F$ be a linear map such that $||f|| \leq ||Tf||$ for $f \in A \otimes E$ and $||T|| < 1 + \epsilon < \lambda(F)$. Then there is a subset Y_0 of Y and a continuous surjective map $\phi : Y_0 \to X$ such that for any $x \in X$ and $f \in A \otimes E$

(*)
$$\sup_{y \in \phi^{-1}(\{x\})} ||Tf(y)|| \ge ||f(x)|| - \epsilon ||f||.$$

Proof. We define a function $\phi: \bigcup_{x\in X}S_x \subset Y \to X$ by $\phi(y) = x$ if $y \in S_x$. By Lemma 2.8 ϕ is well defined, by Lemmas 2.4, 2.5 and 2.7 ϕ is surjective and by Lemma 2.9 ϕ satisfies (*). It remains to prove that ϕ is continuous. Assuming the contrary there are $x_n \in X, y_n \in Y$ and an open neighborhood V of x_0 such that $y_n \in S_{x_n} \to y_0^{\in}S_{x_0}$ and $x_n \in X \setminus \overline{V}$ for all $n \in N$. Fix $\delta > 0$. Since $y_0 \in S_{x_0} = \bigcup_{e \in \partial E_1} S_{x,e}$ there is an $f_1 \in A$ and an $e_0 \in \partial E_1$ such that $||f_1|| \leq 1 + \delta, f_1(x_0) = 1, |f_1(x)| \leq \delta$ for $x \in X \setminus V$ and $||T_{e_0}f_1(y_0)|| > M - \delta$. Next since $T_{e_0}f_1$ is norm continuous and $y_n \to y_0$ there is an $n_0 \in N$ such that $||T_{e_0}f_1(y_{n_0})|| > M - \delta$. Since $y_{n_0} \in S_{x_{n_0}} = \bigcup_{e \in \partial E_1} S_{x_{n_0},e}$ there is an $f_2 \in A$ and an $e_{n_0} \in \partial E_1$ such that $||f_2|| \leq 1 + \delta, f_2(x_{n_0}) = 1, |f_2(x)| \leq \delta$ for $x \in V$ and $||T_{e_{n_0}}f_2(y_{n_0})|| > M - \delta$. We have

$$\|T_{e_0}f_1(y_{n_0})\| > M - \delta, \ \|T_{e_{n_0}}f_2(y_{n_0})\| > M - \delta$$

 and

$$||T_{e_0}f_1(y_{n_0}) \pm ||T_{e_{n_0}}f_2(y_{n_0})|| \le ||T|| ||f_1 \otimes e_0 \pm f_2 \otimes e_{n_0}|| \le (1+\epsilon)(1+2\delta)$$

Hence, since δ is an arbitrary positive number we get $\lambda(F) \leq (1+\epsilon)/M$, which contradicts the definition of M and so ends the proof.

To prove Theorem 3.3 we need the following lemma, which is due to K.Jarosz [5].

462

LEMMA 3.2. Let X, Y be locally compact spaces and E, F Banach spaces and T : $C_0(X, E) \to B \otimes F$ a linear map such that $||f|| \leq ||Tf||, ||T|| < 1 + \epsilon < 4/(2 + \mu(F^*))$. Then for any $e \in \partial E_1$, there is a subset \tilde{Y}_e of Y and a continuous surjective map $\phi_e : \tilde{Y}_e \to X$ such that

$$|f_y^*(T(f\otimes e)(y)) - f \circ \phi_e(y)| \le \epsilon ||f||, \quad f \in C_0(X),$$

where $Y_e \ni y \to f_y^*$ is a map from Y_e into $\partial f_1^*, \tilde{Y}_e = \bigcup_{x \in X} \tilde{S}_{x,e}$ and $\phi_e(y) = x$ if $y \in \tilde{S}_{x,e}$.

THEOREM 3.3. Let X be a locally compact space, Y a locally compact metric space, B an extremely regular subspace of $C_0(Y)$, E, F Banach spaces and $T: C_0(X, E) \to B \otimes F$ a surjective isomorphism such that $||T|| < 1 + \epsilon < \min(\lambda(E), \frac{4}{2+\mu(F^*)})$ and $||T^{-1}|| \leq 1$. Then there is a homeomorphism ϕ from Y onto X.

Proof. We consider two possibilities:

(i) $\max(\dim E, \dim F) > 1$,

(Ii) $\dim E = \dim F = 1$.

Assuming (i) we have $1+\epsilon < \min(\lambda(E), \frac{4}{2+\mu(F^*)}) \le \sqrt{2}$. By Lemma 3.2, if $e \in \partial E_1$ there is a surjective map $\psi_e : \tilde{Y}_e \to X$ defined by $\psi_e(y) = x$ if $y \in \tilde{S}_{x,e}$ where $\tilde{Y}_e = \bigcup_{x \in X} \tilde{S}_{x,e}$. By Theorem 3.1 for $T' = ||T||T^{-1}$ in place of T, we get a subset X_0 in X and a continuous map $\phi : X_0 \to Y$ such that $\phi(x) = y$ if $x \in S_y$. Since ϕ is continuous we can extend $\phi : X_0 \to Y$ to $\overline{\phi} : \overline{X}_0 \to Y$. Let $x \in X, e \in \partial E_1$ and let a net (f_{γ}) in $C_0(X)$ be peaking at x with $1 = ||f_{\gamma}(x)||$. By Lemma 3.2, there is a $y_0 \in \tilde{S}_{x,e} = \psi_e^{-1}(\{x\})$ such that

(6)
$$\|(T(f_{\gamma} \otimes e)(y_0))\| \ge \|(f_{\gamma} \otimes e)(x)\| - \epsilon \|f_{\gamma} \otimes e\|.$$

By Lemma 2.9, for each γ there exists $x_{\gamma} \in S_{y_0}$ such that

(7) $||T||||(f_{\gamma} \otimes e)(x_{\gamma})|| \geq ||T(f_{\gamma} \otimes e)(y_0)|| - \epsilon ||T(f_{\gamma} \otimes e)||.$

By (6) and (7) we get

 $||T||||(f_{\gamma} \otimes e)(x_{\gamma})|| \geq ||(f_{\gamma} \otimes e)(x)|| - \epsilon ||f_{\gamma} \otimes e|| - \epsilon ||T(f_{\gamma} \otimes e)||.$

Since $||f_{\gamma}|| \to 1$, we get $\lim_{\gamma} ||T|| ||(f_{\gamma} \otimes e)(x_{\gamma})|| \ge 1 - \epsilon(2+\epsilon) > 1 - (\sqrt{2}-1)(\sqrt{2}+1) = 0$. Hence we get $x_{\gamma} \to x$ and so $\psi_e \circ \overline{\phi}(x) = x$. Since

x is an arbitrary element of X, we have $X_0 = X$ so $\psi_e \circ \phi(x) = Id_X(x)$. Therefore S_y is a one-point set for all y in Y. Therefore $\phi : X \to Y$ is bijective and $\psi_e : Y \to X$ is bijective. Since ψ_e is continuous by Lemma 3.2 and ϕ is continuous by Theorem 3.1, $\phi : X \to Y$ is a homeomorphism.

Assuming (ii) we have $\epsilon < 1$ and by Lemma 3.2

(8)
$$|\epsilon(y)T(f)(y) - f \circ \phi(y)| \le \epsilon ||f|| \text{ for } f \in C_0(X),$$

where $|\epsilon(y)| \leq 1$ for $y \in Y_0$. By the symmetry arguments and Theorem 3.1 we have also

(9)
$$|\epsilon'(x)||T||T^{-1}(g)(x) - g \circ \psi(x)| \leq \epsilon ||g|| \text{ for } g \in B,$$

where $|\epsilon'(x)| = 1$. Let x_0, y_0, x_1 be such that $\phi(y_0) = x_0$ and $\psi(x_1) = y_0$. By (8) and (9) we get

$$|f(x_0) - \epsilon(y_0)\epsilon'(x_1)||T||f(x_1)| \le \epsilon(||f|| + |\epsilon(y_0)|||Tf||), \quad f \in C_0(X).$$

By the regularity of A we get $x_0 = x_1$, and hence ϕ is a homemorphism.

References

- 1. D.Amir, On isomorphism of continuous function spaces, Israel J. Math. 3 (1965), 205-210.
- 2. E. Behrend and V.Schmidt-Bichler, M-struture and the Banach-Stone theorem, Studia Math. 69 (1980), 33-40.
- 3. M.Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062-1066.
- 4. K.Jarosz, Isometries between injective tensor products of Banach spaces, Pacific J. Math. 121 (1986), 383-395.
- ----, Small isomorphisms of C(X, E) spaces, Pacific J. Math. 138 (1989), 295-315.

Department of Mathematics Chungnam National University Taejon 305-764, Korea

Department of Mathematics Education Kongju National Teachers College Kongju 314-729, Korea

Department of Mathematics Mokwon University Taejon 301-729, Korea

464