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SMALL ISOMORPHISMS
BETWEEN FUNCTION SPACES

KIiL-WOUNG JUN, YANG-HI LEE AND DONG-SO0O SHIN

1. Introduction

For a locally compact Hausdorff set X, we denote by Co(X) the
Banach space of all continuous complex valued functions defined on
X which vanish at infinity, equipped with the usual sup-norm. In
case X is compact, we write C(X) instead of Cp(X). A well-known
Banach-Stone theorem states that the function spaces C(X) and C(Y)
are linearly isometric if and only if X and Y are homeomorphic. D.
Amir [1] and M. Cambern [3] independently generalized this theorem
by proving that if Co(X) and Co(Y") are linearly isomorphic under an
isomorphism T satisfying ||T||||T!|| < 2, then X and Y must also be
homeomorphic.

Amir-Cambern theorem has been generalized to the Banach spaces
of continuous E- valued functions, this is: if T is a linear isomorphism
from Co(X, E) onto Co(Y, E) such that |T||||T71|| < 1 + ¢, where the
Banach space E satisfies certain geometric conditions, then X and ¥
are homeomorphic [2,4,5]. In this paper we have a generalization of
another version of the Banach-Stone theorem under some geometric
assumptions on the Banach spaces.

2. Preliminaries

We use the standard Banach space terminology. For a Banach space
E we denote by FE; the closed unit ball of E and by E* the dual
space. An extremely regular subspace A of Co(X) means a closed
subspace such that if for any z¢ € X, any real number e with 0 < e < 1
and any neighborhood V of zy there is a function f € A such that
1 = |Ifll = f(zo) and |f(z)] < € for every 2 € X\V. Throughout
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this paper, let A and B be extremely regular subspaces of Cy(X) and
Co(Y), respectively. Let E, F' be Banach spaces. We define

dp_m(E,F)
= inf {||[T|J|77}|| : Tis an isomorphism from E onto F'},

ME) = inf{sup{|le; + Aez|| : |A| = 1} : €1, €2 € E, ||ea]] = |lez|| = 1}

and
u(E) = sup{inf{lles + Aezl| : [\ =1} : €1, €2 € E, |lea|| = |le2]| = 1}-

We denote by AQF the complete injective tensor product of A and
E. Co(X)QE can be naturally identified with Cy(X, E) and Co(X, E)
as a subspace of Co(X X ET) or Co(X ® E}), where E} is taken with
the weak * topology. For an f € Cy(X, E) the obvious element of
Co(X x E}) which corressponds to f is denoted by the same symbol
and so

e*(f(z)) = f(z,e*) for z € X, e* € E7.

A net (fy)ver in AQF (respectively A) peaks at a point (z,e) € X X E;
(at z € X) means that if ||f,]] — 1,||f+(z) — e]]| — O (respectively
|f+(z) — 1] — 0) and ||£,(-)]| — O uniformly off any neighborhood of z.

For F € (AQFE)*, p ~ F means that p is a Borel measure on X x E}
which is a norm preserving extension of F' to Co(X x EY).

The following propositions are seen in [5].

PROPOSITION 2.1. Assume p ~ F € (ARE)*. Then for any z € X
there is an e* € E* such that ﬂl{z}xE; ~ b, ®e*.

PROPOSITION 2.2. Assume F € (AQE)*, p; ~ F and pil|(z)xE; ~
0z x e, t=1,2. Then el = €3.

PROPOSITION 2.3. Assume that u ~ F and that X, is a Borel
subset of X. Then

var(plx,xBy) = |1l x0xEx |l;
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where the norm is taken in (AQE)*.

Let T : AQE — BQ®F be a linear map such that || f|| < ||Tf]| for
f € A®RF and ||T|| <1+ ¢. We fix e € OE; and denote by 7. the map
from A into BRF defined by T.(f) = T(f ® €) for f € A. Evidently
T, is norm non-decreasing and ||T,|| < ||T}|. Let M be such that

max 1—e+||T)| 1+e
2 T MF)

)<M<1.

For any = € X we put
Sze={y €Y :3f* € OFT|T; (6, ® f*)({z}| = M},
S:e={y €Y :3f" € Fy ¥f € AIf (T(Hw)) - f(2)] < ellf},
S:={y€Y :3f* €F7||T"(6y ® f*){z}xE: | Z M}
For any sequence ()32, from A which peaks at = we put
Ane={yQfT €Y QF :|T.fuly® f7)l 2 M},

— N oo .
Aoo,e - nn=1 U]=n AJ,C’

Ame={y €Y :3f cF; Jf)2, C A
peaking at z with y ® f* € Ao e}
The following Lemmas 2.4 and 2.5 are seen in [5].
LEMMA 24. V. € X, A, . #0.
LEMMA 2.5. V. € X, A; .= S;..

LEMMA 2.6. If 2, # 2 € X then S;, ¢, N Sz,,e, = § for any
€1,€3 € aEl

Proof. Assume S; ., NS; ., = 0. Then there are yp € Y and
sequences (f1)%,,(f2)%; in A peaking at z; and z,, respectively,
such that

(1) IT(fr ® ei)Xyo)ll 2 M for n € N, i =1,2.
We have lim,, ||l ® e; + Af2®ez]| =1 for |A| =1 and
(2)  lLimsup |IT(f, ® ex)(vo) + AT(f2 ® e2)(wo)ll S |ITl < 1+e

By (1) and (2) we get A(F) < (1 + €)/M, which contradicts the defini-
tion of M.
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LEMMA 2.7. Forany £ € X, S; = UecaE, Ss,e-

Proof. Choosey € S,. Then thereis an f* € FY such that ||T*(6,Q®
f*)l{z}xE;" > M. By the Propositions 2.1 and 2.2 there is an e* €
E* such that [|T*(é6y ® f*)|(z}xE:ll = 6= ® €*|| = M and there is
an ¢ € OF; such that e*(e) > M. Let (fr)32,; in A be peaking at
z such that 1 = |fa(z)|. Then lim, [T*(éy ® f*}fr ® )| > M and
|T2(8y ® f*)({x})| = M. Therefore y € S; .

Conversely if y € S; . then there is an f* € OFY} such that [T (6, ®
F)Y{z}l = M. Since ||T*(8y ® f*)(zyxe:ll = 16z ® €*||, for any se-
quence (f,)32, in A which is peaking at z we get

M <Xim [T2(6, ® £)(£)
= lim [T*(6, ® *)(fa ® )|
—lim (8 © <*)(fa ® 0|
= IT*(6y ® M=y l-
Therefore y € S;. This completes the proof.

LEMMA 2.8. Ifzy # 22 € X then S;, NS, =0.

Proof. Apply Lemma 2.6 and Lemma 2.7.

LEMMA 2.9. Foranyz € X and f € AQF which satlsfy ||f(:z:)|| #0,

we have

@) MTH@N 2 M@ ~ ellfll, y € Sa,e, where e = f(z)/[| f(2)]-

Proof. For any z € X and for f € AQE, let e = f(z)/||f(z)]| and
Yy €Sz C S, wheree= ﬁ% Let ()32, in A be peaking at z such
that 1 = |fu(x)| and let f* € GF} be given by the definition of S .
This means

T*(6y ® f*) ~ A6 @ e* + Ap € Co(X x EY)*,

where|A| > M and |Au|({z} x ET) =0, [le*]| =1,
T2(6,® %) ~ A6 + A’ € Co(X)",

where |\| > M and |Ap'|({z}) = 0.
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Multiplying f* by a suitable scalar of modulus one we can assume
that X is a positive real number. Since |Au|({z} x E}) = 0 we get that
lim, |Ap|(fo ® || f(z)]le) = 0 and by Proposition 2.3 and the definition
of M we get

Lm [f*(T(f - fa ® | f(2)lle)¥))]
<Lm Ae*((f = fa @ | f(2)lle)(=))]

(4) +lim [Au(f - fa ® [I£(2)le)]
<IAulllfIl +lim |Ap(fa © I f(2)]e)]
=llAullifl
(I - VI

Since Au'({z}) = 0, we know that lim, Au'(f,) = 0 and

lim |*(T(fa ® I £()lle)(w)) ~ £ ()]l
= Lm T2 (8, ® F)I(I(F @)1 fx) — 15
(5)  <HEmIF@)Ifa(2) ~ IF@I + lim A (@)l fa)]
= im | f(2)[1Afa(2) — 11 + im | (=) [ A (£2)]
< (I @A - 1)L
BY (4) and (5)
F*(TF@) - 1@
< m |f*(T(f = fa ® [ £(@)e)W))
+1im | F(T(fa ® | f@)€))) - IF @I
< IAICA = 1)+ 171 = 2)
< IAICITY + (1 ~ 20))
= IFICITI — 1 +2(1 - M)
< el fll

Therefore [|Tf(y)}} > I|F(z)]| — €l fl-
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3. Results

THEOREM 3.1. Let X be a locally compact metric space, Y a lo-
cally compact Hausdorff space and A, B extremely regular subspaces
of Co(X) and C(Y), respectively. Let E,F be Banach spaces and
let T : AQE — BQF be a linear map such that |f|| < ||Tf|| for
f € AQE and ||T|| < 1+ € < A(F). Then there is a subset Yy of Y and
a continuous surjective map ¢ : Yo — X such that for any ¢ € X and
f € ARE

™ sup ||Tf()Il = lIF @) = €l fII-
y€s~({z})

Proof. We define a function ¢ : UzexS, CY — X by ¢(y) =z if
y € S;. By Lemma 2.8 ¢ is well defined, by Lemmas 2.4, 2.5 and 2.7 ¢
is surjective and by Lemma 2.9 ¢ satisfies (*). It remains to prove that
¢ is continuous. Assuming the contrary there are z, € X,y, €Y and
an open neighborhood V of zg such that y, € S, — y§ Sz, and z, €
X\V for all n € N. Fix § > 0. Since yp € S, = Ueeor, Sz, there is an
f] € A and an ey € JF; such that "flll <1 +6, fl(il,'o) =1, lfl(:l,')l <é
for z € X\V and ||T., fi(yo)l} > M — 6. Next since T, f; is norm
‘continuous and y, — yg there is an ng € N such that ||Te, f1(¥no )}l >
M — §. Since yp, € .S'Ino = UeeaElsz,,o,e there is an f2 € A and an
en, € OF; such that ||foll < 1+ 6, fa(zn,) = 1, |fo(z)| < bforz €V
and ||Te, fo(yn, )il > M — 6. We have

Teo filyn)ll > M =6, || T, fo(yn | > M -6

and

N Teo f1Yno ) £ N Ten, F2(ymo Ml S HTH 1@ 0 £ F2@en || < (1+€)(14-26).

no

Hence, since § is an arbitrary positive number we get A(F) < (14¢€)/M,
which contradicts the definition of M and so ends the proof.

To prove Theorem 3.3 we need the following lemma, which is due
to K.Jarosz [5].
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LEMMA 3.2. Let X,Y be locally compact spaces and E, F Banach
spaces and T : Co(X,E) — BQF a linear map such that ||f]] <
HTFL T < 14+ € < 4/(2 + p(F*)). Then for any e € OF,, there
is a subset Y, of Y and a continuous surjective map ¢, : Y, —» X such
that

|f5(T(f @ e)y)) — fode(y)l <ellfll, f € Co(X),
where Y. > y — f; is a map from Y, into aff‘,?e = U,exgz,e and
de(y)=zx ify € 5',,&.

THEOREM 3.3. Let X be a locally compact space, Y a locally com-
pact metric space, B an extremely regular subspace of Co(Y'), E, F
Banach spaces and T : Co(X,E) — BQF a surjective isomorphism
such that ||T|| < 1+¢€ < min(/\(E),#(F_)) and ||T7}|| < 1. Then
there is a homeomorphism ¢ from Y onto X.

Proof. We consider two possibilities:

(i) max(dimFE, dimF)> 1,

(Ii) dimE = dimF = 1.

Assuming (i) we have 1+¢ < min (MNE), z3547+y) < V2. By Lemma
3.2, if e € OFE, there is a surjective map . : Y. — X defined by
Yely) =z ify € S’,,e where ¥, = Uzexgz,e- By Theorem 3.1 for
T' = |T|T7? in place of T, we get a subset X, in X and a continuous
map ¢ : Xo — Y such that ¢(z) = y if £ € S,. Since ¢ is continuous
we can extend ¢ : Xo = Y to ¢: Xg — Y. Let z € X, e € OE,; and let
a net (f,) in Co(X) be peaking at = with 1 = || f,(z)||. By Lemma 3.2,

there is a yo € Sz o = %1 ({z}) such that
(6) I(T(f+ @ e)(wo)ll 2 lI(fy ® e)(@)Il — €ll f+ B ell.
By Lemma 2.9, for each « there exists z € Sy, such that
@ TS @ )=l 2 IT(f+ ® e)(wo)ll — €llT(f+ ® ).
By (6) and (7) we get
TNy ® ezl 2 I(f ® e)()]| — ell f @ ell — el| T(fy ® e)l-

Since |[f4]] = 1, we get lim, [[T|i(fy @ eXz )| 2 1 - €(2+€) > 1 -
(v2-1)(v2+1) = 0. Hence we get £, — z and so 1.0 @(z) = z. Since
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z is an arbitrary element of X, we have Xy = X so Y. o ¢(z) = Idx(z).
Therefore S, is a one-point set for all y in Y. Therefore ¢ : X — Y
is bijective and ¥, : Y — X is bijective. Since 1, is continuous by
Lemma 3.2 and ¢ is continuous by Theorem 3.1, ¢ : X — Y is a
homeomorphism.

Assuming (ii) we have € < 1 and by Lemma 3.2

(8) le(W)T(fNy) — £ o 6(y)| < el £l for f € Co(X),

where |e(y)| < 1 for y € Yp. By the symmentry arguments and Theorem
3.1 we have also

(9) €'(@ITIT(g)(z) — g0 ¥(z)| < ellg]| for g € B,

where |¢/(z)| = 1. Let z¢,y0, %1 be such that ¢(yo) = z¢ and ¥(z1) =
Yo- By (8) and (9) we get

[f(z0) — e(wo)e' ()IT f(z1)] < e(lfll + le(y)ITFN), f € Co(X).
By the regularity of A we get zo = z,, and hence ¢ is a homemorphism.
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