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ANALYTIC CLASSIFICATION OF PLANE

CURVE SINGULARITIES DEFINED BY

SOME HOMOGENEOUS POLYNOMIALS

CHUNGHYUK KANG

o. Introduction

Let V = {(z, y) : f(z, y) = O} be an analytic subvariety of a poly­
disc near the origin in C 2 where f is a homogeneous polynomical and
square-free. We know that any homogeneous polynomial with two vari­
ables which is square-free can be written as zn + an_1yzn-1 + ... +
alyn-l z + yn where al,'" ,an-l are constant by a suitable nonsin­
gular linear change of coordinates in C 2 • Here we assume that f has
the following form: (1) f = zn + aiyn-izi + ... + alyn-I z + yn (n 2:
5, n 2: 2i + 3). (2) either f = z3 + ay2z + y3 or f = Z4 + ay3z + y4.
If 9 = zn + bjyn-jzj + ... + blyn-l z + yn (n ~ 5, n ~ 2j + 3), then
in section 1 we show by the elementary method that f is analytically
equivalent to 9 if and only if there is a unit w with w n = 1 such that
bk = akw k for each k = 1,2,·.· , i = j. In section 2 we prove that
all homogeneous polynomials of degree three each of which is square­
free are analytically equivalent and that if f = z4 + ay3 z + y4 and
9 = Z4 + by3 Z + y4 where f and 9 are square-free, then f and 9 are ana­
lytically equivalent if and only if a4 = b4 • Moreover, we give examples
with which we understand the condition that n ~ 5 and n ~ 2i + 3.

1. Analytic classification of plane curve singularities de­
fined by f = zn + aiyn-izi + ... + alyn-I z + yn (n ~ 5, n ~ 2i + 3)

DEFINITION 1.1. Let V = {(z, y) : f(z, y) = O} and W = {(z, y) :
g(z, y) = O} be germs of analytic subvarieties of a polydisc near the
origin in C 2 where f, 9 are holomorphic and square-free near the origin
in C 2

• V and W are said to be analytically equivalent if there exists a
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germ at the origin of biholomorphisms "p : (Ub 0) -+ (U2 ,0) such that
"p(V) = Wand "p(0) = 0 where U1 and U2 are open subsets containing
the origin in C 2 • In this case we call !(z,y) and g(z,y) analytically
equivalent near the origin and denote this relation by f ~ g. Note by
[3] that ! ~ 9 if and only if f(Az + By, Cz + Dy) = ug(z, y) for uf:.O
and AD - BC f:. 0 whenever ! and 9 are homogeneous.

Before proving the main result, we need the following Lemma.

LEMMA 1.2. Recall the notation nCk = C:) = n(n -1) ... (n - k +
l)/k!. Then

nC1 n+lCl n+k-lCl
nC2 n+lC2 n+k-1C2

D=

nCk n+lC k n+k-lCk
nC1 nCO 0 0
nC2 nCl nCO 0

-
nCk-l nCk-2 nCk-3 nCO
nCk nCk-l nCk-2 nC1

o
o

= (_1)k(k-l)/2

nCO n+k-3C k-3 n+k-2C k-2 n+k-lCk- 1
nCI n+k-3Ck-2 n+k-2Ck-l n+k-I Ck

Proof See [4].

THEOREM 1.3. Let V = {(z,y): f = zn+aiYn-izi+.. .+aIyn-Iz +
yn = O} and W = {(z,y): 9 = zn+biyn-izi +... +b1yn-lz + yn = O}
be analytic subvarieties of a polydisc near the origin in C 2 where f
and 9 are homogeneous polynomials and square-free, and n 2:: 2i + 3,
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n ~ 2j + 3 and n ~ 5. Tben j ~ 9 if and only if tbere is a unit w witb
wn = 1 such tbat bk = akwk for k = 1,2,," ,i = j.

Proof. Assume that j ~ g. Then we know that j(Az + By, Cz +
Dy) = (Az+By)n+ai(Cz+Dy)n-i(Az+By)i+ai_l(Cz+Dy)n-i+l x
(Az+By)i-l +.. '+al(Cz+Dy)n-l(Az+By)+(Cz+Dy)n = ug(z, y)
for anonzero constant u where AD-BC i= O. Because n-(i+2) ~ i+1
and i and j may be viewed as same integers, coefficients of the following
monomials yzn-l,y2zn-2, ... ,yi+2z n-(i+2) in the polynomial j(Az +
By, Cz + Dy) are zero. Let us write down these coefficients in detail
as follows:

([1])

yzn-l : (7)An- 1B + ai L (n ~ i) C)Cn- i- kDkAi-1B1

k+I=1

+···+al L (n;l)C)cn-l-kDkAI-IBI+ (7)C n- 1D=O.
k+I=1

([2])

y2 zn-2: (;)An-2B2+ai L (n~i)C)cn-i-kDkAi-IBI
k+I:::::2

+···+al L (n;l)C)cn-l-kDkAI-IBI+ (;)Cn- 2D 2

k+I=2
= O.

([i + 2])

yi+2 z n-(i+2) : (i n 2)An-(i+2)Bi+2+ ai L (n ~ i) (~) x
+ k+l=i+2

cn-i-kDkAi-IBI+ ... +al ~ (n;1)C)cn-l-k D kA I- IB 1

k+l:::::o+2

+ C: 2) C n-(i+2) D i+2 = O.
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Considering 1, ai, ai-I,'" ,at, 1 as a nontrivial solution of the above
[i + 2]-homogeneous equations, then we get an (i + 2) X (i + 2) square
matrix ~ consisting of coefficients of 1, ai, ai-b'" ,ab 1 in these equa­
tions whose determinant I~I must be zero. Now write down the deter­
minant I~I :
o= I~I = l(apq)1 where

(i) a = '\"' <n-i-2+q) <i+2-q)cn-i-2+q-kD kA i+2-q-lB
'pq L..tk+l=p k I

with 1 ~ p ~ i + 2 and 2 ~ q ~ i + 1,
(ii) apl = <;)An-pBP and a p,i+2 = <;)Cn- pDP

with 1 ~ p ~ i + 2.
Then we claim that I~I = tAn-(i+2)B[Cn-(i+2) D]i+t(AD - BC)i+2C2

for some nonzero constant t. Note that .~j (n ~ i) (;) ~ e) for

a given nonnegative integer j. We know that each element in the first
column of ~ has An-(i+2)B as common factor. Now we are going to
prove that any elementary signed product from ~ has [Cn-(i+2)D]i+1

as common divisor. Consider the degree of C of each element in ~ as
follows:

(

0 n-(i+1)
o n-(i+2)

o n-(i+i+2)

n-2
n-3

n-(i+3)

n-1 )n-2

n-(~+2)
So the degree of C for each elementary signed product from ~ is greater
than or equal to the following number: n - (2i + 2) + n - (2i + 1) +
... + n - (i + 2) + 0 + 1 + ... +i = (i + 1)(n - i - 2). Similarly, we can
prove that the degree of D for each elementary signed product from ~

is greater than or equal to the integer (i + 1).
Now it is enough to prove that I~I/ {An-i-2B(cn-i-2D)i+l} =

t(AD - BC)i+2C2 for a nonzero constant t. To show this, divide each
element in the first column of ~ by A n-i-2B and each element in
the remaining columns of ~ by cn-i-2D. Let the matrix got in
this way from ~ be P = peA, B, C, D). Then it suffices to prove
that the determinant IPI = t(AD - BC)i+2C2. Note that each ele­
mentary signed product from IPI has the same degree (i + 2)(i + 1)
since n(i + 2) - (n - i - 1) - (n - i - 1)(i + 1) = (i + 2)(i + 1). Let
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Q(A, B) = P(A, B, A, B). Note that IQ(A, A)I = IP(A, A, A, A)I = 0
and IQ(A, -A)I = IP(A, -A, -A, A)I = 0 because any two column vec­
tors in Q(A,A) or 6(A,A,A,A) are same and any two column vectors
in Q(A, - A) or 6(A, - A, -A, A) are same up to a sign. Therefore
IQ(A, B)I = (A2 - B2)i+2C2Ql(A, B). But since the degree of each ele­
mentary signed product from Q(A, B) is always (i+2)(i +1), Ql(A, B)
must be a constant, say t. Therefore 161 = An-(i+2)B(cn-(i+2)D)i+1

[P1(A,B,C,D)]i+2 C2 where P1(A,B,C,D) is a homogeneous polyno­
mial of degree 2.

We claim that P1(A, B, C, D) = m(AD-BC) for a nonzero constant
m. Let P1(A,B,C,D) = 81A2+82AB+83AC+84AD+ssB2+86BC+
87BD + 8 SC2 +89CD + 81OD2.

First we want to prove that 81 = 8S = 8S = 810 = O. To prove
81 = 0, let ao = Max{a: CAOlBf:JC"ID6 is an any nonzero elementary
signed product from 6}. Considering each elementary signed product
from 6, we see easily that ao = n - 1 + i + (i - 1) + ... + 1 + 0 =
n -1 + i(i + 1)/2. But if P1(A, B, C, D) contains a nonzero term 81A2
in its expansion, the highest degree of A among all elementary signed
products from 6 would be an integer n - (i +2) + (i +2)( i + 1). Note
that n-(i+2)+(i+2)(i+1)-ao = n-(i+2)+(i+2)(i+1)-[n­
1 + i(i + 1)/2] = (i + l)(i + 2)/2 > 0 for i ~ O. So 81 = O. Similarly,
we can get 8S = 8S = 810 = O.

Next, we prove that 82 = 83 = 87 = 89 = O. To prove 83 = 0, let
ao = Max{a + 'Y : CAOIBf3C"ID 6 is an any nonzero elementary signed
product from 6}. If P1(A, B, C, D) contains a nonzero term 83AC in
its expansion, ao = n - (i +2) + (n - (i + 2))(i +1) + (i +2)(i + 1) =
(n - l)(i + 2). In fact, ao is equal to an integer (n - 1) + (n - 2) +
... + (n - i - 2) = (2n - i - 3)(i + 2)/2, looking at all elements in 6.
Note that (n - l)(i +2) - (2n - i - 3)(i + 2)/2 = (i + l)(i + 2)/2> 0
for i ~ O. So 83 = O. Similarly, we can get 82 = 87 = 89 = O.

Therefore P1(A, B, C, D) = 84AD + 86BC. Then 84 = -86 because
IP(A, B, A, B)I = t(A2 - B 2)i+2 C2 and IQ(A, A)I = IQ(A, -A)I = O.
Thus we proved that 161 = tAn-i-2B(cn-i-2D)i+l(AD - BC)i+2 C2
for some constant t.

To prove t i= 0, consider the term r Bd for a nonzero coefficient
r in 16(1, B, 1, 1)1 where 6 = 6(A, B, C, D) and d is the degree of
16(1, B, 1, 1)1 as a polynomial of B. To find rB d , write down elements
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of~ only whose degree of B is the maximum on each column as below:

* *

n_iCOBi

n_iClBi

n_iC2Bi

n_lCi_lBl

n_lCiBl

n_lCi+!Bl

nCiBO
nCi+!Bo
nCi+2Bo

Then we see that rBd is equal to

o o

(_l)i+3 nCi+2Bi+2+i(i+I)/2 0

n-iCO
n-iCl

n-i+lCO
n-i+lCl
n-i+lC2

nCi-l
nCi
n Ci+l

= (_1)i+3(_1)(i+l)i/2 nCi+2. nCi+! . B i+2+i(i+l)/2 by Lemma 1.2. But
from I~I = I~(A,B,C,D)I, 1~(l,B,l,l)1 is tB(l- B)i+2C2. Thus
tB( _B)i+2C2 = (_l)i+3( -1)(i+l)i/2nCi+2· nCi+lBi+2+i(i+l)/2, and so
t = nCi+2· nCi+!. Therefore we get I~(A,B,C,D)I= 0 if and only if
ABCD=O.

Claim that I~(A,B,C,D}I=Oifand only ofB = C =0 whenever
ai #- 0 for some i (2i + 3 ~ n). It is enough to consider the following
cases separately:

(a) C = 0 : It suffices to check the coefficient of yzn-l in the
expansion of f(Az +By, Cz +Dy). Then AB = 0 implies B = 0 since
AD-BC#-O.

(b) D = 0 : Check the coefficient of yi+2zn-(i-t2) in f( Az+By, C z +
Dy). Since 1::; i, AB = 0 implies A = 0 since AD - BC #- O. Looking
at the coefficient of yzn-l, then A = D = 0 implies cn-lBal =
O. Since AD - BC = -BC #- 0, al = o. Next, apply the result
A = D = al = 0 to the coefficient of y2z n-2. Trivially a2 = o.
Apply this technique in order to aa,··· , ai. Then we get easily that
al = a2 = ... = ai = o. So f(Az + By,Cz + Dy) = f(By,Cz) =
(By)n + (Cz)n = ug(z, y) = u(zn + biyizn-i + ... + b1yn-l z + yn) for
a nonzero constant u implies that Bn = cn = u and ak = bk = 0 for
1 ~ k ::; i (2i + 3 ::; n).
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(c) A = °:Since each element of the first column in the matrix is
zero if A = 0, as in the beginning of the proof, consider ai, ai-I,. .. ,ab1

as a nontrivial solution of the homogeneous equations [1], [2], ... ,[i+ 1]
assuming that A = 0. Then we get an (i + 1) x (i + 1) square matrix
Ai+2,l(A,B,C,D) consisting of coefficients of ai,ai-l,'" ,aI, 1 from
the equations [1], [2]"" ,[i + 1]. In fact, Ai+2,1(A, B, C,D) is called a
minor matrix of d by deleting the first column and the last row of d.
Then Ai+2,1(0,B,C,D) =

o

o
("~i)C"-iBi

(";:-i)C"-i-lDBi

o

("-~+l)C"-i+lBi-l

("-;+I)C"-iDBi-l

("-;+l)C"-i-l D2 B i - 1

(~)C"-1D

(." )C,,-i+lDi-l
.-1

(~)c"-iDi

t~I)C"-i-lDi+1

Then lA· (0 B C D)I - Bi(i+l)/2cn(i+l)-(i+2)(i+l)/2Di+l X1+2,1 , " -

° ° nCl

° n-i+lCO nCi-1
n-iCO n-i+lCl nCi
n:""iC1 n-i+lC2 nCi+l

= B i(i+l)/2cn(i+l)-(i+2)(i+l)/2D i+ l . ( -1)(i+l)i/2 nCi+l by Lemma 1.2.
Since IAi+2,1(0,B,C,D)1 = 0, A = °and AD - BC =I 0, D must be
zero. From coefficients of yzn-t,y2zn-2, ... ,yizn-i in the homoge-
neous equations [1], [2],··· ,[i], then we have BCal = BCa2 = ... =
BCai = °because A = D = 0. So we get al = a2 = ... = ai = 0.
Thus we have the same result as in the case (b).

(d) B = °:Since AD - BC #- 0, AD f:. 0. Just as in the case (c),
note that each element of the first column of L\. is zero if B = 0. So
by the similar method as in the case (c) it is enough to consider the
minor matrix Ai+2,l(A,B,C,D). Let us compute Ai+2,1(A,0,C,D).
Then Ai+2,l(A,0,C,D) = ({3pq) where
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with 1 :::; p, q :::; i + 1.
Then lA· (A 0 C D)I = Ai(i+l)/2D(i+1)(i+2)/2c(i+l)(n-i-1) x1+2,1 " ,

n-iC1 n-i+1C1 nC1

n-iC2 n-i+1C 2 nC2

n-iCi+1 n-i+1Ci+1 nCi+1

= nCi+lAi(i+l)/2D(i+1)(i+2)/2C(i+l)(n-i-1) by Lemma 1.2. So C = 0
because IAi+2,1 (A, 0, C, D) I = 0, B = 0 and AD - BC =1= o.

In the case of (a) and (d), that is, B = C = 0, by [3] !(Az+By, Cz+
Dy) = !(Az, Dy) = (Az)n + ai(Dy)n-i(Az)i + ... + a1(Dy)n-1 Az +
(Dy)n = ug(z,y) = u(zn + biyn-izi + ... + b1yn-1 z + yn) for some
nonzero constant u. Thus we get: An = u, Dn = u, Dn-kA kak =
uh(2k+3:::; n). Since (AID)n = 1, put w = AID. Also Dn-kAkak =
Ubk implies that (AID)kak = bk. Thus we get bk = akwk for k =
1,2,··· ,i (2i + 3:::; n).
In the case of (b) and (c), that is, A = D = 0, there is nothing to
prove.

Conversely, suppose that there exists a unit w with w n = 1 such that
bk = akwk for k = 1,2,··· ,i = j. Define the map 'ljJ by 'ljJ(z, y) =
(wz,y). Then !o'ljJ(z,y) = zn+aiyn-i(wz)i+ ... +a1yn-1(wz)+yn =
zn + biyn-izi + ... + b1yn-1z + yn = g(z,y). Thus the theorem is
proved.

COROLLARY 1.4. Let! and 9 be defined as in the Theorem 1.3. If
! >::::: 9 and !(Az + By, Cz + Dy) = ug(z, y) for some nonzero constant
u, then either B = C = 0, or A = D = 0 and ak = bk = 0 for
1 :::; k ::; i = j with n ~ 2i + 3.

2. Analytic classification of plane curve singularities de­
fined by z3 + ay2z + y3 or Z4 + ay3z + y4

THEOREM 2.1. Let V = {(z, y) : ! = z3 + ay2z + y3 = o} be
an analytic subvariety of a polydisc near the origin in C 2 where! is
square-free. Then any ! is analytically equivalent each other for any
numbera.
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Proof. We know that any homogeneous polynomial with two vari­
ables of degree three which is square-free can be written into f =
z3 + ay2 z + y3 by a nonsingular linear change of coordinate at the ori­
gin, and also this f can be transformed into u(z3 + o:yz2 + (3y2 z) =
uz(z2 + o:yz + (3y2) for a nonzero constant u by another linear change
of coordinates. Note that uz(z2 +o:yz + (3y2) = uz(z2 + 20:1YI Z+yn
by a linear change of coordinates and that this polynomial becomes
uz«l- 0:i)z2+ (Yl - O:l z )2) = UIZ1(Zr + yD for a nonzero constant Ul
where Zl = (1-o:n 1/2z, Y2 = YI-O:IZ and 0:1 f: 1. Thus f ~ z(z2+ y2).

THEOREM 2.2. Let V = {(z, y) : f = z4 + o:y3 z + y4 = O} and
W = {(z, y) : 9 = Z4 + (3y3 z + y4 = O} be analytic subvarieties of a
polydisc near the origin in C 2 where f and 9 are square-free. Then
f ~ 9 if and only if 0:4 = (34.

Proof. Assume that f ~ g. Then f(Az + By, Cz + Dy) = (Az +
By)4 +o:(Cz +Dy)3(Az + By) +(Cz + Dy)4 = (A4+o:AC3+ C4)Z4 +
(4A 3B+(3C2DA+C3B)0:+4C3D)yz3+(6A2 B 2+(3CD2A+3C2DB)o:
+6C2D 2)y2z2+(4AB3+(D3A+3CD2B)0:+4CD3)y3z+(B4+o:BD3+
D4 )y4 = u( Z4 + (3y3 Z+ y4) for a nonzero constant u by [3].

So we have

(1) A4 +AC30:+C4 =U

(2) 4A3B+(3C2DA+C3B)0:+4C3D=0

(3) 6A2B 2+ (3CD2A + 3C2DB)o: + 6C 2 D 2 = 0

(4) 4AB3+ (D 3A + 3CD2 B)o: + 4CD3 = u(3

(5) B4 +BD30:+D4 =u

Subtracting the equation (5) from the equation (1), we get

(6) (A4 - B4) + (AC3 - BD3)0: + C4 _ D4 = 0

Now consider the following two cases: (i) ABCDo: = 0 and (ii)
ABCDo: f: O.

(i) Let ABCDo: = O. Then A = 0, B = 0, C = 0, D = 0 or 0: = O.
(a) A = 0 : From equations (2) and (3), we get

C3 Bo: + 4C3D = 0,

3C2DBo: + 6C 2 D 2 = O.
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These two equations give 6C3D 2 = 0 and so D = 0 since AD-BC =1= o.
From (2), C3Bo: = 0 implies 0: = O. From (1) and (5), C4 = u = B4
and (4) implies fJ = o. Thus 0:

4 = fJ4 = o.
(b) D = 0: By (3), AB = 0 and so A = o. Then we get the same

result as in the case (a).
(c) C = 0 : By (2), AB = 0 and so B = o. By (1), (4) and (5),

A4 = D4 = u and D 3Ao: = ufJ. Thus Ao: = DfJ and so 0:
4 = fJ4.

(d) B = 0 : From (2) and (3), we get

3C2DAo: + 4C3D = 0,

3CD2Ao: +6C2D 2 = o.

These two equations give 2C3D 2 = 0 and so C = o. Then we get the
same result as in the case (c).

(e) 0: = 0: From (2) and (3), we get

o= 1:~:~2 :g:~21 = 24A
2
BC

2
D I~ ~ I·

So ABCD = o. Then we get the same result as in the case (a), (b),
(c) or (d).

(ii) Hereafter.we assume that ABCDo: f o.
Then from (2), (3) and (6) which are considered homogeneous equa­

tions, we get

4A3B 3C2DA+ C3B 4C3D
0= 6A2B 2 3CD2A + 3C2DB 6C2D 2

A4 _ B4 AC3 _ BD3 C4 _ D4

=6C(AD - BC)3(A2C3 - BD2(2AD + BC)).

Since ABCD =1= 0, 2AD + BC =1= O. So

(7) BC + 2AD = A 2C3j(BD2)

From (2) and (3), we get

C2(3AD + BC)o: = -4(A3B + C 3D) and

CD(AD + BC)o: = -2(A2B 2+ C2D2),
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which by eliminating a, give 0 = 2D(AD + BC)(A3B + C3D) ­
C(3AD+BC)(A2B2+C2D2) = (A2B(2AD+BC)-C3D2)(AD-BC).
Thus

(8) 2AD +BC = C3D2j(A2B)

(9)

From (2), (3) and (4) we are going to compute a as follows: Let

(

4A3B 3C2DA+ C3B 4C3D)
A= 6A2B2 3CD2A+3C2DB 6C2D2 ,andthen

4AB3 D3A+3CD2B 4CD3

(10)

(11)

Again, from (3), (4) and (5), we want to compute a as follows. Let

(

6A2B 2 3CD2A+3C2DB 6C2D2)
A' = 4AB3 D3A + 3CD2B 4CD3

B4 BD3 D4

Then IA'I =6B2D4(AD - BC)3 and so

6A2B2 0 6C2D2
1 3 (.l C 3

a = IA'I ~~B :p ~D

u
=D2(AD _ BC)3 . «AD + BC){3 - 4AC)

From (10) and (11), we get

-u{3A u
D(AD _ BC)2 = D2(AD _ BC)3 . «AD + BC){3 - 4AC)
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Thus

(12)
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4AC
f3 = 2AD+BC

Eliminating the first terms from the equations (2) and (3), we get
[6B(3C2 DA+C3B)-4A(3CD2A+3C2DB)]o:+24BC3D-24AC2D2 =
O. Simplifying the above, we have

4CD
(13) a = 2AD + BC

From (12) and (13), f3IA = -aiD. Since A 4 = D 4 by (9), we get
f34 = a 4.

Now, conversely, if a 4 = f34 =1= 0, then f(f3z, ay) = f34 z4+ a (a3y3)f3z
+a4y4 = p4(z4 + f3 y3z + y4) = f34 g(z,y). IT a = f3 = 0, then there is
nothing to prove.

COROLLARY 2.3. Let f and 9 be defined as in Theorem 2.2. H
f ~ 9 and f(Az + By, Cz + Dy) = ug(z, y) for a nonzero constant u,
then ABCD may not be zero.

Proof. It is enough to show that there is such an example with
ABCD =1= O. Let fez, y) = z4 - 4e1ri/4y3z + y4 and A = 1, B = e31ri/4,
C = e1ri/4 and D = 1. Then AD - BC =.2 =1= 0 and f(Az + By,Cz +
Dy) = 4(z4 +4e1ri/4y3z + y4) = 4g(z, y) by tedius computations. Note
that ABCD =1= O.

Finally we are going to give an example which is a help to understand
the condition for restriction on the degree of homgeneous polynomials
in Theorem 1.3 as follows:

Let V = {(z, y) : fez, y) = z5 + lOy3z2+5y4z +y5 = O}. By a linear
transformation T: (z, y) 1-+ (y, Z - y),

(J 0 T)(z, y) = fey, z - y)

= y5 + 10(z _ y)3y2 + 5(z _ y)4 y + (z _ y)5

=z5 _10y3z 2 + 15y4z _ 5y5.

By another linear transformation S : (z, y) 1-+ (z, _5-1/ 5y), f 0 Twill
be g(z, y) = z5 + 10. 5-3/5y3z 2+ 15 .5-4/5y4z + y5. Note that without
the condition in Theorem 1.3, f ~ g.
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