ANALYTIC CLASSIFICATION OF PLANE CURVE SINGULARITIES DEFINED BY SOME HOMOGENEOUS POLYNOMIALS

Chunghyuk Kang

0. Introduction

Let $V=\{(z, y): f(z, y)=0\}$ be an analytic subvariety of a polydisc near the origin in \mathbf{C}^{2} where f is a homogeneous polynomical and square-free. We know that any homogeneous polynomial with two variables which is square-free can be written as $z^{n}+a_{n-1} y z^{n-1}+\cdots+$ $a_{1} y^{n-1} z+y^{n}$ where a_{1}, \cdots, a_{n-1} are constant by a suitable nonsingular linear change of coordinates in \mathbf{C}^{2}. Here we assume that f has the following form : (1) $f=z^{n}+a_{i} y^{n-i} z^{i}+\cdots+a_{1} y^{n-1} z+y^{n}(n \geq$ $5, n \geq 2 i+3$). (2) either $f=z^{3}+a y^{2} z+y^{3}$ or $f=z^{4}+a y^{3} z+y^{4}$. If $g=z^{n}+b_{j} y^{n-j} z^{j}+\cdots+b_{1} y^{n-1} z+y^{n}(n \geq 5, n \geq 2 j+3)$, then in section 1 we show by the elementary method that f is analytically equivalent to g if and only if there is a unit ω with $\omega^{n}=1$ such that $b_{k}=a_{k} \omega^{k}$ for each $k=1,2, \cdots, i=j$. In section 2 we prove that all homogeneous polynomials of degree three each of which is squarefree are analytically equivalent and that if $f=z^{4}+a y^{3} z+y^{4}$ and $g=z^{4}+b y^{3} z+y^{4}$ where f and g are square-free, then f and g are analytically equivalent if and only if $a^{4}=b^{4}$. Moreover, we give examples with which we understand the condition that $n \geq 5$ and $n \geq 2 i+3$.

1. Analytic classification of plane curve singularities defined by $f=z^{n}+a_{i} y^{n-i} z^{i}+\cdots+a_{1} y^{n-1} z+y^{n}(n \geq 5, n \geq 2 i+3)$

Definition 1.1. Let $V=\{(z, y): f(z, y)=0\}$ and $W=\{(z, y)$: $g(z, y)=0\}$ be germs of analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f, g are holomorphic and square-free near the origin in $\mathbf{C}^{2} . V$ and W are said to be analytically equivalent if there exists a

[^0]germ at the origin of biholomorphisms $\psi:\left(U_{1}, 0\right) \rightarrow\left(U_{2}, 0\right)$ such that $\psi(V)=W$ and $\psi(O)=O$ where U_{1} and U_{2} are open subsets containing the origin in \mathbf{C}^{2}. In this case we call $f(z, y)$ and $g(z, y)$ analytically equivalent near the origin and denote this relation by $f \approx g$. Note by [3] that $f \approx g$ if and only if $f(A z+B y, C z+D y)=u g(z, y)$ for $u \neq 0$ and $A D-B C \neq 0$ whenever f and g are homogeneous.

Before proving the main result, we need the following Lemma.
Lemma 1.2. Recall the notation ${ }_{n} C_{k}=\binom{n}{k}=n(n-1) \cdots(n-k+$ 1)/k!. Then

$$
\begin{aligned}
& D=\left|\begin{array}{llll}
n C_{1} & { }_{n+1} C_{1} & \cdots & { }^{n+k-1} C_{1} \\
{ }_{n} C_{2} & { }_{n+1} C_{2} & \cdots & n+k-1 \\
\vdots & \vdots & & \vdots \\
{ }_{n} C_{k} & { }_{n+1} C_{k} & \cdots & { }_{n+k-1} C_{k}
\end{array}\right| \\
& =\left|\begin{array}{lllll}
{ }_{n} C_{1} & { }_{n} C_{0} & 0 & \cdots & 0 \\
{ }_{n} C_{2} & { }_{n} C_{1} & { }_{n} C_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
{ }_{n} C_{k-1} & { }_{n} C_{k-2} & { }_{n} C_{k-3} & \cdots & { }_{n} C_{0} \\
{ }_{n} C_{k} & { }_{n} C_{k-1} & { }_{n} C_{k-2} & \cdots & { }_{n} C_{1}
\end{array}\right| \\
& =(-1)^{k(k-1) / 2}\left|\begin{array}{lllll}
0 & \cdots & 0 & { }^{n+k-2} C_{0} & { }^{n+k-1} C_{1} \\
0 & \cdots & n+k-3 C_{0} & { }_{n+k-2} C_{1} & n+k-1 C_{2} \\
\vdots & & \vdots & \vdots & \vdots \\
{ }_{n} C_{0} & \cdots & n+k-3 & C_{k-3} & n+k-2 C_{k-2} \\
{ }_{n} C_{1} & \cdots & n+k-1 C_{k-1} \\
n+k-3 C_{k-2} & { }_{n+k-2} C_{k-1} & n+k-1 C_{k}
\end{array}\right| \\
& ={ }_{n+k-1} C_{k} .
\end{aligned}
$$

Proof. See [4].
Theorem 1.3. Let $V=\left\{(z, y): f=z^{n}+a_{i} y^{n-i} z^{i}+\cdots+a_{1} y^{n-1} z+\right.$ $\left.y^{n}=0\right\}$ and $W=\left\{(z, y): g=z^{n}+b_{j} y^{n-j^{j}}+\cdots+b_{1} y^{n-1} z+y^{n}=0\right\}$ be analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f and g are homogeneous polynomials and square-free, and $n \geq 2 i+3$,
$n \geq 2 j+3$ and $n \geq 5$. Then $f \approx g$ if and only if there is a unit ω with $\omega^{n}=1$ such that $b_{k}=a_{k} \omega^{k}$ for $k=1,2, \cdots, i=j$.

Proof. Assume that $f \approx g$. Then we know that $f(A z+B y, C z+$ $D y)=(A z+B y)^{n}+a_{i}(C z+D y)^{n-i}(A z+B y)^{i}+a_{i-1}(C z+D y)^{n-i+1} \times$ $(A z+B y)^{i-1}+\cdots+a_{1}(C z+D y)^{n-1}(A z+B y)+(C z+D y)^{n}=u g(z, y)$ for a nonzero constant u where $A D-B C \neq 0$. Because $n-(i+2) \geq i+1$ and i and j may be viewed as same integers, coefficients of the following monomials $y z^{n-1}, y^{2} z^{n-2}, \cdots, y^{i+2} z^{n-(i+2)}$ in the polynomial $f(A z+$ $B y, C z+D y)$ are zero. Let us write down these coefficients in detail as follows :

$$
\begin{align*}
& y z^{n-1}:\binom{n}{1} A^{n-1} B+a_{i} \sum_{k+l=1}\binom{n-i}{k}\binom{i}{l} C^{n-i-k} D^{k} A^{i-l} B^{l} \tag{1}\\
& +\cdots+a_{1} \sum_{k+l=1}\binom{n-1}{k}\binom{1}{l} C^{n-1-k} D^{k} A^{1-l} B^{l}+\binom{n}{1} C^{n-1} D=0
\end{align*}
$$

([2])

$$
\begin{aligned}
& y^{2} z^{n-2}:\binom{n}{2} A^{n-2} B^{2}+a_{i} \sum_{k+l=2}\binom{n-i}{k}\binom{i}{l} C^{n-i-k} D^{k} A^{i-l} B^{l} \\
& +\cdots+a_{1} \sum_{k+l=2}\binom{n-1}{k}\binom{1}{l} C^{n-1-k} D^{k} A^{1-l} B^{l}+\binom{n}{2} C^{n-2} D^{2} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& ([i+2]) \\
& y^{i+2} z^{n-(i+2)}:\binom{n}{i+2} A^{n-(i+2)} B^{i+2}+a_{i} \sum_{k+l=i+2}\binom{n-i}{k}\binom{i}{l} \times \\
& C^{n-i-k} D^{k} A^{i-l} B^{l}+\cdots+a_{1} \sum_{k+l=i+2}\binom{n-1}{k}\binom{1}{l} C^{n-1-k} D^{k} A^{1-l} B^{l} \\
& +\binom{n}{i+2} C^{n-(i+2)} D^{i+2}=0
\end{aligned}
$$

Considering $1, a_{i}, a_{i-1}, \cdots, a_{1}, 1$ as a nontrivial solution of the above $[i+2]$-homogeneous equations, then we get an $(i+2) \times(i+2)$ square matrix Δ consisting of coefficients of $1, a_{i}, a_{i-1}, \cdots, a_{1}, 1$ in these equations whose determinant $|\Delta|$ must be zero. Now write down the determinant $|\Delta|$:
$0=|\Delta|=\left|\left(\alpha_{p q}\right)\right|$ where
(i) $\alpha_{p q}=\sum_{k+l=p}\binom{n-i-2+q}{k}\binom{i+2-q}{l} C^{n-i-2+q-k} D^{k} A^{i+2-q-l} B^{l}$ with $1 \leq p \leq i+2$ and $2 \leq q \leq i+1$,
(ii) $\alpha_{p 1}=\binom{n}{p} A^{n-p} B^{p}$ and $\alpha_{p, i+2}=\binom{n}{p} C^{n-p} D^{p}$ with $1 \leq p \leq i+2$.
Then we claim that $|\Delta|=t A^{n-(i+2)} B\left[C^{n-(i+2)} D\right]^{i+1}(A D-B C)^{i+2} C_{2}$ for some nonzero constant t. Note that $\sum_{k+l=j}\binom{n-i}{k}\binom{i}{l}=\binom{n}{j}$ for a given nonnegative integer j. We know that each element in the first column of Δ has $A^{n-(i+2)} B$ as common factor. Now we are going to prove that any elementary signed product from Δ has $\left[C^{n-(i+2)} D\right]^{i+1}$ as common divisor. Consider the degree of C of each element in Δ as follows :

$$
\left(\begin{array}{ccccc}
0 & n-(i+1) & \ldots & n-2 & n-1 \\
0 & n-(i+2) & \ldots & n-3 & n-2 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & n-(i+i+2) & \ldots & n-(i+3) & n-(i+2)
\end{array}\right)
$$

So the degree of C for each elementary signed product from Δ is greater than or equal to the following number : $n-(2 i+2)+n-(2 i+1)+$ $\cdots+n-(i+2)+0+1+\cdots+i=(i+1)(n-i-2)$. Similarly, we can prove that the degree of D for each elementary signed product from Δ is greater than or equal to the integer $(i+1)$.

Now it is enough to prove that $|\Delta| /\left\{A^{n-i-2} B\left(C^{n-i-2} D\right)^{i+1}\right\}=$ $t(A D-B C)^{i+2} C_{2}$ for a nonzero constant t. To show this, divide each element in the first column of Δ by $A^{n-i-2} B$ and each element in the remaining columns of Δ by $C^{n-i-2} D$. Let the matrix got in this way from Δ be $P=P(A, B, C, D)$. Then it suffices to prove that the determinant $|P|=t(A D-B C)^{i+2 C_{2}}$. Note that each elementary signed product from $|P|$ has the same degree $(i+2)(i+1)$ since $n(i+2)-(n-i-1)-(n-i-1)(i+1)=(i+2)(i+1)$. Let
$Q(A, B)=P(A, B, A, B)$. Note that $|Q(A, A)|=|P(A, A, A, A)|=0$ and $|Q(A,-A)|=|P(A,-A,-A, A)|=0$ because any two column vectors in $Q(A, A)$ or $\Delta(A, A, A, A)$ are same and any two column vectors in $Q(A,-A)$ or $\Delta(A,-A,-A, A)$ are same up to a sign. Therefore $|Q(A, B)|=\left(A^{2}-B^{2}\right)^{i+2} C_{2} Q_{1}(A, B)$. But since the degree of each elementary signed product from $Q(A, B)$ is always $(i+2)(i+1), Q_{1}(A, B)$ must be a constant, say t. Therefore $|\Delta|=A^{n-(i+2)} B\left(C^{n-(i+2)} D\right)^{i+1}$ $\left[P_{1}(A, B, C, D)\right]^{i+2} C_{2}$ where $P_{1}(A, B, C, D)$ is a homogeneous polynomial of degree 2.

We claim that $P_{1}(A, B, C, D)=m(A D-B C)$ for a nonzero constant m Let $P_{1}(A, B, C, D)=s_{1} A^{2}+s_{2} A B+s_{3} A C+s_{4} A D+s_{5} B^{2}+s_{6} B C+$ $s_{7} B D+s_{8} C^{2}+s_{9} C D+s_{10} D^{2}$.

First we want to prove that $s_{1}=s_{5}=s_{8}=s_{10}=0$. To prove $s_{1}=0$, let $\alpha_{0}=\operatorname{Max}\left\{\alpha: c A^{\alpha} B^{\beta} C^{\gamma} D^{\delta}\right.$ is an any nonzero elementary signed product from $\Delta\}$. Considering each elementary signed product from Δ, we see easily that $\alpha_{0}=n-1+i+(i-1)+\cdots+1+0=$ $n-1+i(i+1) / 2$. But if $P_{1}(A, B, C, D)$ contains a nonzero term $s_{1} A^{2}$ in its expansion, the highest degree of A among all elementary signed products from Δ would be an integer $n-(i+2)+(i+2)(i+1)$. Note that $n-(i+2)+(i+2)(i+1)-\alpha_{0}=n-(i+2)+(i+2)(i+1)-[n-$ $1+i(i+1) / 2]=(i+1)(i+2) / 2>0$ for $i \geq 0$. So $s_{1}=0$. Similarly, we can get $s_{5}=s_{8}=s_{10}=0$.

Next, we prove that $s_{2}=s_{3}=s_{7}=s_{9}=0$. To prove $s_{3}=0$, let $a_{0}=\operatorname{Max}\left\{\alpha+\gamma: c A^{\alpha} B^{\beta} C^{\gamma} D^{\delta}\right.$ is an any nonzero elementary signed product from Δ \}. If $P_{1}(A, B, C, D)$ contains a nonzero term $s_{3} A C$ in its expansion, $a_{0}=n-(i+2)+(n-(i+2))(i+1)+(i+2)(i+1)=$ $(n-1)(i+2)$. In fact, a_{0} is equal to an integer $(n-1)+(n-2)+$ $\cdots+(n-i-2)=(2 n-i-3)(i+2) / 2$, looking at all elements in Δ. Note that $(n-1)(i+2)-(2 n-i-3)(i+2) / 2=(i+1)(i+2) / 2>0$ for $i \geq 0$. So $s_{3}=0$. Similarly, we can get $s_{2}=s_{7}=s_{9}=0$.

Therefore $P_{1}(A, B, C, D)=s_{4} A D+s_{6} B C$. Then $s_{4}=-s_{6}$ because $|P(A, B, A, B)|=t\left(A^{2}-B^{2}\right)^{i+2} C_{2}$ and $|Q(A, A)|=|Q(A,-A)|=0$. Thus we proved that $|\Delta|=t A^{n-i-2} B\left(C^{n-i-2} D\right)^{i+1}(A D-B C)^{i+2} C_{2}$ for some constant t.

To prove $t \neq 0$, consider the term $r B^{d}$ for a nonzero coefficient r in $|\Delta(1, B, 1,1)|$ where $\Delta=\Delta(A, B, C, D)$ and d is the degree of $|\Delta(1, B, 1,1)|$ as a polynomial of B. To find $r B^{d}$, write down elements
of Δ only whose degree of B is the maximum on each column as below:

$$
\left(\begin{array}{ccccc}
* & * & \cdots & { }_{n-1} C_{0} B^{1} & { }_{n} C_{1} B^{0} \\
\vdots & \vdots & & \vdots & \vdots \\
* & { }_{n-i} C_{0} B^{i} & \cdots & { }_{n-1} C_{i-1} B^{1} & { }_{n} C_{i} B^{0} \\
* & { }_{n-i} C_{1} B^{i} & \cdots & { }_{n-1} C_{i} B^{1} & { }_{n} C_{i+1} B^{0} \\
{ }_{n} C_{i+2} B^{i+2} & { }_{n-i} C_{2} B^{i} & \cdots & { }_{n-1} C_{i+1} B^{1} & { }_{n} C_{i+2} B^{0}
\end{array}\right)
$$

Then we see that $r B^{d}$ is equal to

$$
(-1)^{i+3}{ }_{n} C_{i+2} B^{i+2+i(i+1) / 2}\left|\begin{array}{llll}
0 & 0 & \cdots & { }_{n} C_{1} \\
\vdots & \vdots & & \vdots \\
0 & & n-i+1 \\
C_{0} & \cdots & { }_{n} C_{i-1} \\
n-i C_{0} & { }_{n-i+1} C_{1} & \cdots & { }_{n} C_{i} \\
n-i C_{1} & n-i+1 C_{2} & \cdots & { }_{n} C_{i+1}
\end{array}\right|
$$

$=(-1)^{i+3}(-1)^{(i+1) i / 2}{ }_{n} C_{i+2} \cdot{ }_{n} C_{i+1} \cdot B^{i+2+i(i+1) / 2}$ by Lemma 1.2. But from $|\Delta|=|\Delta(A, B, C, D)|,|\Delta(1, B, 1,1)|$ is $t B(1-B)^{i+2} C_{2}$. Thus $t B(-B)^{i+2 C_{2}}=(-1)^{i+3}(-1)^{(i+1) i / 2}{ }_{n} C_{i+2} \cdot{ }_{n} C_{i+1} B^{i+2+i(i+1) / 2}$, and so $t={ }_{n} C_{i+2} \cdot{ }_{n} C_{i+1}$. Therefore we get $|\Delta(A, B, C, D)|=0$ if and only if $A B C D=0$.

Claim that $|\Delta(A, B, C, D)|=0$ if and only of $B=C=0$ whenever $a_{i} \neq 0$ for some $i(2 i+3 \leq n)$. It is enough to consider the following cases separately:
(a) $C=0$: It suffices to check the coefficient of $y z^{n-1}$ in the expansion of $f(A z+B y, C z+D y)$. Then $A B=0$ implies $B=0$ since $A D-B C \neq 0$.
(b) $D=0$: Check the coefficient of $y^{i+2} z^{n-(i+2)}$ in $f(A z+B y, C z+$ $D y$). Since $l \leq i, A B=0$ implies $A=0$ since $A D-B C \neq 0$. Looking at the coefficient of $y z^{n-1}$, then $A=D=0$ implies $C^{n-1} B a_{1}=$ 0 . Since $A D-B C=-B C \neq 0, a_{1}=0$. Next, apply the result $A=D=a_{1}=0$ to the coefficient of $y^{2} z^{n-2}$. Trivially $a_{2}=0$. Apply this technique in order to a_{3}, \cdots, a_{i}. Then we get easily that $a_{1}=a_{2}=\cdots=a_{i}=0$. So $f(A z+B y, C z+D y)=f(B y, C z)=$ $(B y)^{n}+(C z)^{n}=u g(z, y)=u\left(z^{n}+b_{i} y^{i} z^{n-i}+\cdots+b_{1} y^{n-1} z+y^{n}\right)$ for a nonzero constant u implies that $B^{n}=C^{n}=u$ and $a_{k}=b_{k}=0$ for $1 \leq k \leq i(2 i+3 \leq n)$.
(c) $A=0$: Since each element of the first column in the matrix is zero if $A=0$, as in the beginning of the proof, consider $a_{i}, a_{i-1}, \cdots, a_{1}, 1$ as a nontrivial solution of the homogeneous equations [1], [2], $\cdots,[i+1]$ assuming that $A=0$. Then we get an $(i+1) \times(i+1)$ square matrix $A_{i+2,1}(A, B, C, D)$ consisting of coefficients of $a_{i}, a_{i-1}, \cdots, a_{1}, 1$ from the equations [1], $[2], \cdots,[i+1]$. In fact, $A_{i+2,1}(A, B, C, D)$ is called a minor matrix of Δ by deleting the first column and the last row of Δ. Then $A_{i+2,1}(0, B, C, D)=$

$$
\left(\begin{array}{cccc}
0 & 0 & \cdots & \binom{n}{1} C^{n-1} D \\
\vdots & \vdots & & \vdots \\
0 & \left(\begin{array}{c}
n-i+1
\end{array}\right) C^{n-i+1} B^{i-1} & \cdots & \binom{n}{i-1} C^{n-i+1} D^{i-1} \\
\binom{n-i}{0} C^{n-i} B^{i} & \left.\begin{array}{c}
n-i+1 \\
\left(\begin{array}{c}
n-i
\end{array}\right) C^{n-i} D B^{i-1} \\
1
\end{array}\right) C^{n-i-1} D B^{i} & \cdots & \binom{n-1+1}{i} C^{n-i} D^{i} \\
\left(\begin{array}{c}
n-i-1 \\
2
\end{array} B^{i-1}\right. & \cdots & \binom{n}{i+1} C^{n-i-1} D^{i+1}
\end{array}\right)
$$

Then $\left|A_{i+2,1}(0, B, C, D)\right|=B^{i(i+1) / 2} C^{n(i+1)-(i+2)(i+1) / 2} D^{i+1} \times$

$$
\left|\begin{array}{llll}
0 & 0 & \cdots & { }_{n} C_{1} \\
\vdots & \vdots & & \vdots \\
0 & & { }_{n-i+1} C_{0} & \cdots \\
{ }_{n} C_{i-1} \\
{ }_{n-i} C_{0} & { }_{n-i+1} C_{1} & \cdots & { }_{n} C_{i} \\
n-i & C_{1} & { }_{n-i+1} C_{2} & \cdots
\end{array}{ }_{n} C_{i+1}\right| l
$$

$=B^{i(i+1) / 2} C^{n(i+1)-(i+2)(i+1) / 2} D^{i+1} \cdot(-1)^{(i+1) i / 2}{ }_{n} C_{i+1}$ by Lemma 1.2. Since $\left|A_{i+2,1}(0, B, C, D)\right|=0, A=0$ and $A D-B C \neq 0, D$ must be zero. From coefficients of $y z^{n-1}, y^{2} z^{n-2}, \cdots, y^{i} z^{n-i}$ in the homogeneous equations [1], [2], $\cdots,[i]$, then we have $B C a_{1}=B C a_{2}=\cdots=$ $B C a_{i}=0$ because $A=D=0$. So we get $a_{1}=a_{2}=\cdots=a_{i}=0$. Thus we have the same result as in the case (b).
(d) $B=0$: Since $A D-B C \neq 0, A D \neq 0$. Just as in the case (c), note that each element of the first column of Δ is zero if $B=0$. So by the similar method as in the case (c) it is enough to consider the minor matrix $A_{i+2,1}(A, B, C, D)$. Let us compute $A_{i+2,1}(A, 0, C, D)$. Then $A_{i+2,1}(A, 0, C, D)=\left(\beta_{p q}\right)$ where

$$
\beta_{p q}=\binom{n-i+q-1}{p} C^{n-i+p+q-1} D^{p} A^{i-(q-1)}
$$

with $1 \leq p, q \leq i+1$.
Then $\left|A_{i+2,1}(A, 0, C, D)\right|=A^{i(i+1) / 2} D^{(i+1)(i+2) / 2} C^{(i+1)(n-i-1)} \times$

$$
\left|\begin{array}{llll}
n-i C_{1} & { }_{n-i+1} C_{1} & \cdots & { }_{n} C_{1} \\
n-i C_{2} & { }_{n-i+1} C_{2} & \cdots & { }_{n} C_{2} \\
\vdots & & & \\
{ }_{n-i} C_{i+1} & & { }_{n-i+1} C_{i+1} & \cdots
\end{array}{ }_{n} C_{i+1}\right|
$$

$={ }_{n} C_{i+1} A^{i(i+1) / 2} D^{(i+1)(i+2) / 2} C^{(i+1)(n-i-1)}$ by Lemma 1.2. So $C=0$ because $\left|A_{i+2,1}(A, 0, C, D)\right|=0, B=0$ and $A D-B C \neq 0$.

In the case of (a) and (d), that is, $B=C=0$, by [3] $f(A z+B y, C z+$ $D y)=f(A z, D y)=(A z)^{n}+a_{i}(D y)^{n-i}(A z)^{i}+\cdots+a_{1}(D y)^{n-1} A z+$ $(D y)^{n}=u g(z, y)=u\left(z^{n}+b_{i} y^{n-i} z^{i}+\cdots+b_{1} y^{n-1} z+y^{n}\right)$ for some nonzero constant u. Thus we get : $A^{n}=u, D^{n}=u, D^{n-k} A^{k} a_{k}=$ $u b_{k}(2 k+3 \leq n)$. Since $(A / D)^{n}=1$, put $\omega=A / D$. Also $D^{n-k} A^{k} a_{k}=$ $u b_{k}$ implies that $(A / D)^{k} a_{k}=b_{k}$. Thus we get $b_{k}=a_{k} \omega^{k}$ for $k=$ $1,2, \cdots, i(2 i+3 \leq n)$.
In the case of (b) and (c), that is, $A=D=0$, there is nothing to prove.

Conversely, suppose that there exists a unit ω with $\omega^{n}=1$ such that $b_{k}=a_{k} \omega^{k}$ for $k=1,2, \cdots, i=j$. Define the map ψ by $\psi(z, y)=$ $(\omega z, y)$. Then $f \circ \psi(z, y)=z^{n}+a_{i} y^{n-i}(\omega z)^{i}+\cdots+a_{1} y^{n-1}(\omega z)+y^{n}=$ $z^{n}+b_{i} y^{n-i} z^{i}+\cdots+b_{1} y^{n-1} z+y^{n}=g(z, y)$. Thus the theorem is proved.

Corollary 1.4. Let f and g be defined as in the Theorem 1.3. If $f \approx g$ and $f(A z+B y, C z+D y)=u g(z, y)$ for some nonzero constant u, then either $B=C=0$, or $A=D=0$ and $a_{k}=b_{k}=0$ for $1 \leq k \leq i=j$ with $n \geq 2 i+3$.
2. Analytic classification of plane curve singularities defined by $z^{3}+a y^{2} z+y^{3}$ or $z^{4}+a y^{3} z+y^{4}$

Theorem 2.1. Let $V=\left\{(z, y): f=z^{3}+a y^{2} z+y^{3}=0\right\}$ be an analytic subvariety of a polydisc near the origin in \mathbf{C}^{2} where f is square-free. Then any f is analytically equivalent each other for any number a.

Proof. We know that any homogeneous polynomial with two variables of degree three which is square-free can be written into $f=$ $z^{3}+a y^{2} z+y^{3}$ by a nonsingular linear change of coordinate at the origin, and also this f can be transformed into $u\left(z^{3}+\alpha y z^{2}+\beta y^{2} z\right)=$ $u z\left(z^{2}+\alpha y z+\beta y^{2}\right)$ for a nonzero constant u by another linear change of coordinates. Note that $u z\left(z^{2}+\alpha y z+\beta y^{2}\right)=u z\left(z^{2}+2 \alpha_{1} y_{1} z+y_{1}^{2}\right)$ by a linear change of coordinates and that this polynomial becomes $u z\left(\left(1-\alpha_{1}^{2}\right) z^{2}+\left(y_{1}-\alpha_{1} z\right)^{2}\right)=u_{1} z_{1}\left(z_{1}^{2}+y_{2}^{2}\right)$ for a nonzero constant u_{1} where $z_{1}=\left(1-\alpha_{1}^{2}\right)^{1 / 2} z, y_{2}=y_{1}-\alpha_{1} z$ and $\alpha_{1} \neq 1$. Thus $f \approx z\left(z^{2}+y^{2}\right)$.

Theorem 2.2. Let $V=\left\{(z, y): f=z^{4}+\alpha y^{3} z+y^{4}=0\right\}$ and $W=\left\{(z, y): g=z^{4}+\beta y^{3} z+y^{4}=0\right\}$ be analytic subvarieties of a polydisc near the origin in \mathbf{C}^{2} where f and g are square-free. Then $f \approx g$ if and only if $\alpha^{4}=\beta^{4}$.

Proof. Assume that $f \approx g$. Then $f(A z+B y, C z+D y)=(A z+$ $B y)^{4}+\alpha(C z+D y)^{3}(A z+B y)+(C z+D y)^{4}=\left(A^{4}+\alpha A C^{3}+C^{4}\right) z^{4}+$ $\left(4 A^{3} B+\left(3 C^{2} D A+C^{3} B\right) \alpha+4 C^{3} D\right) y z^{3}+\left(6 A^{2} B^{2}+\left(3 C D^{2} A+3 C^{2} D B\right) \alpha\right.$ $\left.+6 C^{2} D^{2}\right) y^{2} z^{2}+\left(4 A B^{3}+\left(D^{3} A+3 C D^{2} B\right) \alpha+4 C D^{3}\right) y^{3} z+\left(B^{4}+\alpha B D^{3}+\right.$ $\left.D^{4}\right) y^{4}=u\left(z^{4}+\beta y^{3} z+y^{4}\right)$ for a nonzero constant u by [3].

So we have

$$
\begin{gather*}
A^{4}+A C^{3} \alpha+C^{4}=u \tag{1}\\
4 A^{3} B+\left(3 C^{2} D A+C^{3} B\right) \alpha+4 C^{3} D=0 \tag{2}\\
6 A^{2} B^{2}+\left(3 C D^{2} A+3 C^{2} D B\right) \alpha+6 C^{2} D^{2}=0 \tag{3}\\
4 A B^{3}+\left(D^{3} A+3 C D^{2} B\right) \alpha+4 C D^{3}=u \beta \tag{4}\\
B^{4}+B D^{3} \alpha+D^{4}=u \tag{5}
\end{gather*}
$$

Subtracting the equation (5) from the equation (1), we get

$$
\begin{equation*}
\left(A^{4}-B^{4}\right)+\left(A C^{3}-B D^{3}\right) \alpha+C^{4}-D^{4}=0 \tag{6}
\end{equation*}
$$

Now consider the following two cases : (i) $A B C D \alpha=0$ and (ii) $A B C D \alpha \neq 0$.
(i) Let $A B C D \alpha=0$. Then $A=0, B=0, C=0, D=0$ or $\alpha=0$.
(a) $A=0$: From equations (2) and (3), we get

$$
\begin{gathered}
C^{3} B \alpha+4 C^{3} D=0 \\
3 C^{2} D B \alpha+6 C^{2} D^{2}=0
\end{gathered}
$$

These two equations give $6 C^{3} D^{2}=0$ and so $D=0$ since $A D-B C \neq 0$. From (2), $C^{3} B \alpha=0$ implies $\alpha=0$. From (1) and (5), $C^{4}=u=B^{4}$ and (4) implies $\beta=0$. Thus $\alpha^{4}=\beta^{4}=0$.
(b) $D=0: B y$ (3), $A B=0$ and so $A=0$. Then we get the same result as in the case (a).
(c) $C=0$: By (2), $A B=0$ and so $B=0$. By (1), (4) and (5), $A^{4}=D^{4}=u$ and $D^{3} A \alpha=u \beta$. Thus $A \alpha=D \beta$ and so $\alpha^{4}=\beta^{4}$.
(d) $B=0:$ From (2) and (3), we get

$$
\begin{gathered}
3 C^{2} D A \alpha+4 C^{3} D=0 \\
3 C D^{2} A \alpha+6 C^{2} D^{2}=0
\end{gathered}
$$

These two equations give $2 C^{3} D^{2}=0$ and so $C=0$. Then we get the same result as in the case (c).
(e) $\alpha=0:$ From (2) and (3), we get

$$
0=\left|\begin{array}{ll}
4 A^{3} B & 4 C^{3} D \\
6 A^{2} B^{2} & 6 C^{2} D^{2}
\end{array}\right|=24 A^{2} B C^{2} D\left|\begin{array}{ll}
A & C \\
B & D
\end{array}\right| .
$$

So $A B C D=0$. Then we get the same result as in the case (a), (b), (c) or (d).
(ii) Hereafter we assume that $A B C D \alpha \neq 0$.

Then from (2), (3) and (6) which are considered homogeneous equations, we get

$$
\begin{aligned}
0 & =\left|\begin{array}{lll}
4 A^{3} B & 3 C^{2} D A+C^{3} B & 4 C^{3} D \\
6 A^{2} B^{2} & 3 C D^{2} A+3 C^{2} D B & 6 C^{2} D^{2} \\
A^{4}-B^{4} & A C^{3}-B D^{3} & C^{4}-D^{4}
\end{array}\right| \\
& =6 C(A D-B C)^{3}\left(A^{2} C^{3}-B D^{2}(2 A D+B C)\right) .
\end{aligned}
$$

Since $A B C D \neq 0,2 A D+B C \neq 0$. So

$$
\begin{equation*}
B C+2 A D=A^{2} C^{3} /\left(B D^{2}\right) \tag{7}
\end{equation*}
$$

From (2) and (3), we get

$$
\begin{aligned}
& C^{2}(3 A D+B C) \alpha=-4\left(A^{3} B+C^{3} D\right) \text { and } \\
& C D(A D+B C) \alpha=-2\left(A^{2} B^{2}+C^{2} D^{2}\right)
\end{aligned}
$$

which by eliminating α, give $0=2 D(A D+B C)\left(A^{3} B+C^{3} D\right)-$ $C(3 A D+B C)\left(A^{2} B^{2}+C^{2} D^{2}\right)=\left(A^{2} B(2 A D+B C)-C^{3} D^{2}\right)(A D-B C)$. Thus

$$
\begin{equation*}
2 A D+B C=C^{3} D^{2} /\left(A^{2} B\right) \tag{8}
\end{equation*}
$$

From (7) and (8), $A^{2} C^{3} /(B D)^{2}=C^{3} D^{2} /\left(A^{2} B\right)$ and so we get

$$
\begin{equation*}
A^{4}=D^{4} \tag{9}
\end{equation*}
$$

From (2), (3) and (4) we are going to compute α as follows : Let

$$
\begin{gathered}
\Delta=\left(\begin{array}{ccc}
4 A^{3} B & 3 C^{2} D A+C^{3} B & 4 C^{3} D \\
6 A^{2} B^{2} & 3 C D^{2} A+3 C^{2} D B & 6 C^{2} D^{2} \\
4 A B^{3} & D^{3} A+3 C D^{2} B & 4 C D^{3}
\end{array}\right), \text { and then } \\
|\Delta|=24 A B C^{2} D^{2}(A D-B C)^{3}
\end{gathered}
$$

$$
\alpha=\frac{1}{|\Delta|}\left|\begin{array}{lll}
4 A^{3} B & 0 & 4 C^{3} D \tag{10}\\
6 A^{2} B^{2} & 0 & 6 C^{2} D^{2} \\
4 A B^{3} & u \beta & 4 C D^{3}
\end{array}\right|=\frac{-u \beta A}{D(A D-B C)^{2}}
$$

Again, from (3), (4) and (5), we want to compute α as follows. Let

$$
\Delta^{\prime}=\left(\begin{array}{ccc}
6 A^{2} B^{2} & 3 C D^{2} A+3 C^{2} D B & 6 C^{2} D^{2} \\
4 A B^{3} & D^{3} A+3 C D^{2} B & 4 C D^{3} \\
B^{4} & B D^{3} & D^{4}
\end{array}\right)
$$

Then $\left|\Delta^{\prime}\right|=6 B^{2} D^{4}(A D-B C)^{3}$ and so

$$
\begin{align*}
\alpha & =\frac{1}{\left|\Delta^{\prime}\right|}\left|\begin{array}{lll}
6 A^{2} B^{2} & 0 & 6 C^{2} D^{2} \\
4 A B^{3} & u \beta & 4 C D^{3} \\
B^{4} & u & D^{4}
\end{array}\right| \tag{11}\\
& =\frac{u}{D^{2}(A D-B C)^{3}} \cdot((A D+B C) \beta-4 A C)
\end{align*}
$$

From (10) and (11), we get

$$
\frac{-u \beta A}{D(A D-B C)^{2}}=\frac{u}{D^{2}(A D-B C)^{3}} \cdot((A D+B C) \beta-4 A C)
$$

Thus

$$
\begin{equation*}
\beta=\frac{4 A C}{2 A D+B C} \tag{12}
\end{equation*}
$$

Eliminating the first terms from the equations (2) and (3), we get $\left[6 B\left(3 C^{2} D A+C^{3} B\right)-4 A\left(3 C D^{2} A+3 C^{2} D B\right)\right] \alpha+24 B C^{3} D-24 A C^{2} D^{2}=$ 0 . Simplifying the above, we have

$$
\begin{equation*}
\alpha=-\frac{4 C D}{2 A D+B C} \tag{13}
\end{equation*}
$$

From (12) and (13), $\beta / A=-\alpha / D$. Since $A^{4}=D^{4}$ by (9), we get $\beta^{4}=\alpha^{4}$ 。

Now, conversely, if $\alpha^{4}=\beta^{4} \neq 0$, then $f(\beta z, \alpha y)=\beta^{4} z^{4}+\alpha\left(\alpha^{3} y^{3}\right) \beta z$ $+\alpha^{4} y^{4}=\beta^{4}\left(z^{4}+\beta y^{3} z+y^{4}\right)=\beta^{4} g(z, y)$. If $\alpha=\beta=0$, then there is nothing to prove.

Corollary 2.3. Let f and g be defined as in Theorem 2.2. If $f \approx g$ and $f(A z+B y, C z+D y)=u g(z, y)$ for a nonzero constant u, then $A B C D$ may not be zero.

Proof. It is enough to show that there is such an example with $A B C D \neq 0$. Let $f(z, y)=z^{4}-4 e^{\pi i / 4} y^{3} z+y^{4}$ and $A=1, B=e^{3 \pi i / 4}$, $C=e^{\pi i / 4}$ and $D=1$. Then $A D-B C=2 \neq 0$ and $f(A z+B y, C z+$ $D y)=4\left(z^{4}+4 e^{\pi i / 4} y^{3} z+y^{4}\right)=4 g(z, y)$ by tedius computations. Note that $A B C D \neq 0$.

Finally we are going to give an example which is a help to understand the condition for restriction on the degree of homgeneous polynomials in Theorem 1.3 as follows:

Let $V=\left\{(z, y): f(z, y)=z^{5}+10 y^{3} z^{2}+5 y^{4} z+y^{5}=0\right\}$. By a linear transformation $T:(z, y) \mapsto(y, z-y)$,

$$
\begin{aligned}
(f \circ T)(z, y) & =f(y, z-y) \\
& =y^{5}+10(z-y)^{3} y^{2}+5(z-y)^{4} y+(z-y)^{5} \\
& =z^{5}-10 y^{3} z^{2}+15 y^{4} z-5 y^{5}
\end{aligned}
$$

By another linear transformation $S:(z, y) \mapsto\left(z,-5^{-1 / 5} y\right), f \circ T$ will be $g(z, y)=z^{5}+10 \cdot 5^{-3 / 5} y^{3} z^{2}+15 \cdot 5^{-4 / 5} y^{4} z+y^{5}$. Note that without the condition in Theorem 1.3, $f \approx g$.

References

1. E. Brieskorn and H. Knörrer, Plane algebraic curves, English edition, Birkhäuser, 1986.
2. Mather, J and Yau, S.S.-T., Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69(1982), 243-251.
3. Yau, S.S.-T., Milnor algebras and equivalence relations among holomorphic functions, Bulletin A.M.S. 9, Sept., 1983, 235-239.
4. C. Kang, On the type of plane curve singularities analytically equivalent to the equation $z^{n}+y^{k}=0$ with $\operatorname{gcd}(n, k)=1$, J. KMS. 29, 1992, 281-295.

Department of Mathematics, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea

[^0]: Received June 12, 1992. Revised January 21, 1993.
 Supported in part by the Korean Ministry of Education, 1990.

