ANALYTIC CLASSIFICATION OF PLANE CURVE SINGULARITIES DEFINED BY SOME HOMOGENEOUS POLYNOMIALS

CHUNGHYUK KANG

0. Introduction

Let $V = \{(z, y) : f(z, y) = 0\}$ be an analytic subvariety of a polydisc near the origin in \mathbf{C}^2 where f is a homogeneous polynomical and square-free. We know that any homogeneous polynomial with two variables which is square-free can be written as $z^n + a_{n-1}yz^{n-1} + \cdots +$ $a_1y^{n-1}z + y^n$ where a_1, \dots, a_{n-1} are constant by a suitable nonsingular linear change of coordinates in \mathbb{C}^2 . Here we assume that f has the following form : (1) $f = z^n + a_i y^{n-i} z^i + \cdots + a_1 y^{n-1} z + y^n$ $(n \ge 1)$ 5, $n \ge 2i+3$). (2) either $f = z^3 + ay^2z + y^3$ or $f = z^4 + ay^3z + y^4$. If $g = z^n + b_j y^{n-j} z^j + \dots + b_1 y^{n-1} z + y^n$ $(n \ge 5, n \ge 2j+3)$, then in section 1 we show by the elementary method that f is analytically equivalent to g if and only if there is a unit ω with $\omega^n = 1$ such that $b_k = a_k \omega^k$ for each $k = 1, 2, \cdots, i = j$. In section 2 we prove that all homogeneous polynomials of degree three each of which is squarefree are analytically equivalent and that if $f = z^4 + ay^3z + y^4$ and $g = z^4 + by^3 z + y^4$ where f and g are square-free, then f and g are analytically equivalent if and only if $a^4 = b^4$. Moreover, we give examples with which we understand the condition that $n \ge 5$ and $n \ge 2i + 3$.

1. Analytic classification of plane curve singularities defined by $f = z^n + a_i y^{n-i} z^i + \cdots + a_1 y^{n-1} z + y^n \ (n \ge 5, n \ge 2i+3)$

DEFINITION 1.1. Let $V = \{(z, y) : f(z, y) = 0\}$ and $W = \{(z, y) : g(z, y) = 0\}$ be germs of analytic subvarieties of a polydisc near the origin in \mathbb{C}^2 where f, g are holomorphic and square-free near the origin in \mathbb{C}^2 . V and W are said to be analytically equivalent if there exists a

Received June 12, 1992. Revised January 21, 1993.

Supported in part by the Korean Ministry of Education, 1990.

Chunghyuk Kang

germ at the origin of biholomorphisms $\psi : (U_1, 0) \to (U_2, 0)$ such that $\psi(V) = W$ and $\psi(O) = O$ where U_1 and U_2 are open subsets containing the origin in \mathbb{C}^2 . In this case we call f(z, y) and g(z, y) analytically equivalent near the origin and denote this relation by $f \approx g$. Note by [3] that $f \approx g$ if and only if f(Az + By, Cz + Dy) = ug(z, y) for $u \neq 0$ and $AD - BC \neq 0$ whenever f and g are homogeneous.

Before proving the main result, we need the following Lemma.

LEMMA 1.2. Recall the notation ${}_{n}C_{k} = {n \choose k} = n(n-1)\cdots(n-k+1)/k!$. Then

$$D = \begin{vmatrix} nC_1 & n+1C_1 & \dots & n+k-1C_1 \\ nC_2 & n+1C_2 & \dots & n+k-1C_2 \\ \vdots & \vdots & & \vdots \\ nC_k & n+1C_k & \dots & n+k-1C_k \end{vmatrix}$$
$$= \begin{vmatrix} nC_1 & nC_0 & 0 & \dots & 0 \\ nC_2 & nC_1 & nC_0 & \dots & 0 \\ nC_2 & nC_1 & nC_0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ nC_{k-1} & nC_{k-2} & nC_{k-3} & \dots & nC_0 \\ nC_k & nC_{k-1} & nC_{k-2} & \dots & nC_1 \end{vmatrix}$$

$$= (-1)^{k(k-1)/2} \begin{vmatrix} 0 & \dots & 0 & n+k-2C_0 & n+k-1C_1 \\ 0 & \dots & n+k-3C_0 & n+k-2C_1 & n+k-1C_2 \\ \vdots & \vdots & \vdots & \vdots \\ nC_0 & \dots & n+k-3C_{k-3} & n+k-2C_{k-2} & n+k-1C_{k-1} \\ nC_1 & \dots & n+k-3C_{k-2} & n+k-2C_{k-1} & n+k-1C_k \end{vmatrix}$$

Proof. See [4].

THEOREM 1.3. Let $V = \{(z,y) : f = z^n + a_i y^{n-i} z^i + \dots + a_1 y^{n-1} z + y^n = 0\}$ and $W = \{(z,y) : g = z^n + b_j y^{n-j} z^j + \dots + b_1 y^{n-1} z + y^n = 0\}$ be analytic subvarieties of a polydisc near the origin in \mathbb{C}^2 where f and g are homogeneous polynomials and square-free, and $n \ge 2i + 3$,

$$n \ge 2j+3$$
 and $n \ge 5$. Then $f \approx g$ if and only if there is a unit ω with $\omega^n = 1$ such that $b_k = a_k \omega^k$ for $k = 1, 2, \dots, i = j$.

Proof. Assume that $f \approx g$. Then we know that $f(Az + By, Cz + Dy) = (Az+By)^n + a_i(Cz+Dy)^{n-i}(Az+By)^i + a_{i-1}(Cz+Dy)^{n-i+1} \times (Az+By)^{i-1} + \dots + a_1(Cz+Dy)^{n-1}(Az+By) + (Cz+Dy)^n = ug(z,y)$ for a nonzero constant u where $AD-BC \neq 0$. Because $n-(i+2) \geq i+1$ and i and j may be viewed as same integers, coefficients of the following monomials $yz^{n-1}, y^2z^{n-2}, \dots, y^{i+2}z^{n-(i+2)}$ in the polynomial f(Az + By, Cz + Dy) are zero. Let us write down these coefficients in detail as follows :

$$yz^{n-1}: \binom{n}{1}A^{n-1}B + a_i \sum_{k+l=1} \binom{n-i}{k}\binom{i}{l}C^{n-i-k}D^kA^{i-l}B^l + \cdots + a_1 \sum_{k+l=1} \binom{n-1}{k}\binom{1}{l}C^{n-1-k}D^kA^{1-l}B^l + \binom{n}{1}C^{n-1}D = 0.$$

$$([2]) y^{2}z^{n-2}: \binom{n}{2}A^{n-2}B^{2} + a_{i}\sum_{k+l=2}\binom{n-i}{k}\binom{i}{l}C^{n-i-k}D^{k}A^{i-l}B^{l} + \dots + a_{1}\sum_{k+l=2}\binom{n-1}{k}\binom{1}{l}C^{n-1-k}D^{k}A^{1-l}B^{l} + \binom{n}{2}C^{n-2}D^{2} = 0.$$

$$([i+2]) y^{i+2}z^{n-(i+2)} : {\binom{n}{i+2}}A^{n-(i+2)}B^{i+2} + a_i \sum_{k+l=i+2} {\binom{n-i}{k}}{\binom{i}{l}} \times C^{n-i-k}D^kA^{i-l}B^l + \dots + a_1 \sum_{k+l=i+2} {\binom{n-1}{k}}{\binom{1}{l}}C^{n-1-k}D^kA^{1-l}B^l + {\binom{n}{i+2}}C^{n-(i+2)}D^{i+2} = 0.$$

Considering $1, a_i, a_{i-1}, \dots, a_1, 1$ as a nontrivial solution of the above [i+2]-homogeneous equations, then we get an $(i+2) \times (i+2)$ square matrix Δ consisting of coefficients of $1, a_i, a_{i-1}, \dots, a_1, 1$ in these equations whose determinant $|\Delta|$ must be zero. Now write down the determinant $|\Delta|$:

$$0 = |\Delta| = |(\alpha_{pq})|$$
 where

(i) $\alpha_{pq} = \sum_{\substack{k+l=p \ k}} {n-i-2+q \choose k} {i+2-q \choose l} C^{n-i-2+q-k} D^k A^{i+2-q-l} B^l$ with $1 \le p \le i+2$ and $2 \le q \le i+1$,

(ii)
$$\alpha_{p1} = {n \choose p} A^{n-p} B^p$$
 and $\alpha_{p,i+2} = {n \choose p} C^{n-p} D^p$
with $1 \le p \le i+2$.

Then we claim that $|\Delta| = tA^{n-(i+2)}B[C^{n-(i+2)}D]^{i+1}(AD - BC)^{i+2C_2}$ for some nonzero constant t. Note that $\sum_{k+l=j} \binom{n-i}{k}\binom{i}{l} = \binom{n}{j}$ for

a given nonnegative integer j. We know that each element in the first column of Δ has $A^{n-(i+2)}B$ as common factor. Now we are going to prove that any elementary signed product from Δ has $[C^{n-(i+2)}D]^{i+1}$ as common divisor. Consider the degree of C of each element in Δ as follows :

$$\begin{pmatrix} 0 & n-(i+1) & \dots & n-2 & n-1 \\ 0 & n-(i+2) & \dots & n-3 & n-2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & n-(i+i+2) & \dots & n-(i+3) & n-(i+2) \end{pmatrix}$$

So the degree of C for each elementary signed product from Δ is greater than or equal to the following number : $n - (2i + 2) + n - (2i + 1) + \cdots + n - (i + 2) + 0 + 1 + \cdots + i = (i + 1)(n - i - 2)$. Similarly, we can prove that the degree of D for each elementary signed product from Δ is greater than or equal to the integer (i + 1).

Now it is enough to prove that $|\Delta|/\{A^{n-i-2}B(C^{n-i-2}D)^{i+1}\} = t(AD - BC)^{i+2C_2}$ for a nonzero constant t. To show this, divide each element in the first column of Δ by $A^{n-i-2}B$ and each element in the remaining columns of Δ by $C^{n-i-2}D$. Let the matrix got in this way from Δ be P = P(A, B, C, D). Then it suffices to prove that the determinant $|P| = t(AD - BC)^{i+2C_2}$. Note that each elementary signed product from |P| has the same degree (i+2)(i+1) since n(i+2) - (n-i-1) - (n-i-1)(i+1) = (i+2)(i+1). Let

Q(A, B) = P(A, B, A, B). Note that |Q(A, A)| = |P(A, A, A, A)| = 0and |Q(A, -A)| = |P(A, -A, -A, A)| = 0 because any two column vectors in Q(A, A) or $\Delta(A, A, A, A)$ are same and any two column vectors in Q(A, -A) or $\Delta(A, -A, -A, A)$ are same up to a sign. Therefore $|Q(A, B)| = (A^2 - B^2)^{i+2C_2}Q_1(A, B)$. But since the degree of each elementary signed product from Q(A, B) is always $(i+2)(i+1), Q_1(A, B)$ must be a constant, say t. Therefore $|\Delta| = A^{n-(i+2)}B(C^{n-(i+2)}D)^{i+1}$ $[P_1(A, B, C, D)]^{i+2C_2}$ where $P_1(A, B, C, D)$ is a homogeneous polynomial of degree 2.

We claim that $P_1(A, B, C, D) = m(AD-BC)$ for a nonzero constant m. Let $P_1(A, B, C, D) = s_1A^2 + s_2AB + s_3AC + s_4AD + s_5B^2 + s_6BC + s_7BD + s_8C^2 + s_9CD + s_{10}D^2$.

First we want to prove that $s_1 = s_5 = s_8 = s_{10} = 0$. To prove $s_1 = 0$, let $\alpha_0 = \text{Max}\{\alpha : cA^{\alpha}B^{\beta}C^{\gamma}D^{\delta} \text{ is an any nonzero elementary signed product from }\Delta\}$. Considering each elementary signed product from Δ , we see easily that $\alpha_0 = n - 1 + i + (i - 1) + \dots + 1 + 0 = n - 1 + i(i + 1)/2$. But if $P_1(A, B, C, D)$ contains a nonzero term s_1A^2 in its expansion, the highest degree of A among all elementary signed products from Δ would be an integer n - (i + 2) + (i + 2)(i + 1). Note that $n - (i + 2) + (i + 2)(i + 1) - \alpha_0 = n - (i + 2) + (i + 2)(i + 1) - [n - 1 + i(i + 1)/2] = (i + 1)(i + 2)/2 > 0$ for $i \ge 0$. So $s_1 = 0$. Similarly, we can get $s_5 = s_8 = s_{10} = 0$.

Next, we prove that $s_2 = s_3 = s_7 = s_9 = 0$. To prove $s_3 = 0$, let $a_0 = \operatorname{Max}\{\alpha + \gamma : cA^{\alpha}B^{\beta}C^{\gamma}D^{\delta} \text{ is an any nonzero elementary signed}$ product from Δ }. If $P_1(A, B, C, D)$ contains a nonzero term s_3AC in its expansion, $a_0 = n - (i+2) + (n - (i+2))(i+1) + (i+2)(i+1) = (n-1)(i+2)$. In fact, a_0 is equal to an integer $(n-1) + (n-2) + \cdots + (n-i-2) = (2n-i-3)(i+2)/2$, looking at all elements in Δ . Note that (n-1)(i+2) - (2n-i-3)(i+2)/2 = (i+1)(i+2)/2 > 0 for $i \geq 0$. So $s_3 = 0$. Similarly, we can get $s_2 = s_7 = s_9 = 0$.

Therefore $P_1(A, B, C, D) = s_4AD + s_6BC$. Then $s_4 = -s_6$ because $|P(A, B, A, B)| = t(A^2 - B^2)^{i+2C_2}$ and |Q(A, A)| = |Q(A, -A)| = 0. Thus we proved that $|\Delta| = tA^{n-i-2}B(C^{n-i-2}D)^{i+1}(AD - BC)^{i+2C_2}$ for some constant t.

To prove $t \neq 0$, consider the term rB^d for a nonzero coefficient r in $|\Delta(1, B, 1, 1)|$ where $\Delta = \Delta(A, B, C, D)$ and d is the degree of $|\Delta(1, B, 1, 1)|$ as a polynomial of B. To find rB^d , write down elements

of Δ only whose degree of B is the maximum on each column as below:

$$\begin{pmatrix} * & * & \cdots & {}_{n-1}C_0B^1 & {}_{n}C_1B^0 \\ \vdots & \vdots & \vdots & \vdots \\ * & {}_{n-i}C_0B^i & \cdots & {}_{n-1}C_{i-1}B^1 & {}_{n}C_iB^0 \\ * & {}_{n-i}C_1B^i & \cdots & {}_{n-1}C_iB^1 & {}_{n}C_{i+1}B^0 \\ {}_{n}C_{i+2}B^{i+2} & {}_{n-i}C_2B^i & \cdots & {}_{n-1}C_{i+1}B^1 & {}_{n}C_{i+2}B^0 \end{pmatrix}$$

Then we see that rB^d is equal to

$$(-1)^{i+3} {}_{n}C_{i+2}B^{i+2+i(i+1)/2} \begin{vmatrix} 0 & 0 & \dots & {}_{n}C_{1} \\ \vdots & \vdots & & \vdots \\ 0 & {}_{n-i+1}C_{0} & \dots & {}_{n}C_{i-1} \\ {}_{n-i}C_{0} & {}_{n-i+1}C_{1} & \dots & {}_{n}C_{i} \\ {}_{n-i}C_{1} & {}_{n-i+1}C_{2} & \dots & {}_{n}C_{i+1} \end{vmatrix}$$

 $= (-1)^{i+3} (-1)^{(i+1)i/2} {}_{n}C_{i+2} \cdot {}_{n}C_{i+1} \cdot B^{i+2+i(i+1)/2}$ by Lemma 1.2. But from $|\Delta| = |\Delta(A, B, C, D)|$, $|\Delta(1, B, 1, 1)|$ is $tB(1 - B)^{i+2}C_2$. Thus $tB(-B)^{i+2}C_2 = (-1)^{i+3} (-1)^{(i+1)i/2} {}_{n}C_{i+2} \cdot {}_{n}C_{i+1}B^{i+2+i(i+1)/2}$, and so $t = {}_{n}C_{i+2} \cdot {}_{n}C_{i+1}$. Therefore we get $|\Delta(A, B, C, D)| = 0$ if and only if ABCD = 0.

Claim that $|\Delta(A, B, C, D)| = 0$ if and only of B = C = 0 whenever $a_i \neq 0$ for some $i \ (2i + 3 \leq n)$. It is enough to consider the following cases separately:

(a) C = 0: It suffices to check the coefficient of yz^{n-1} in the expansion of f(Az + By, Cz + Dy). Then AB = 0 implies B = 0 since $AD - BC \neq 0$.

(b) D = 0: Check the coefficient of $y^{i+2}z^{n-(i+2)}$ in f(Az+By, Cz+Dy). Since $l \leq i$, AB = 0 implies A = 0 since $AD - BC \neq 0$. Looking at the coefficient of yz^{n-1} , then A = D = 0 implies $C^{n-1}Ba_1 = 0$. Since $AD - BC = -BC \neq 0$, $a_1 = 0$. Next, apply the result $A = D = a_1 = 0$ to the coefficient of y^2z^{n-2} . Trivially $a_2 = 0$. Apply this technique in order to a_3, \dots, a_i . Then we get easily that $a_1 = a_2 = \dots = a_i = 0$. So $f(Az + By, Cz + Dy) = f(By, Cz) = (By)^n + (Cz)^n = ug(z, y) = u(z^n + b_iy^iz^{n-i} + \dots + b_1y^{n-1}z + y^n)$ for a nonzero constant u implies that $B^n = C^n = u$ and $a_k = b_k = 0$ for $1 \leq k \leq i$ $(2i+3 \leq n)$.

(c) A = 0: Since each element of the first column in the matrix is zero if A = 0, as in the beginning of the proof, consider $a_i, a_{i-1}, \dots, a_1, 1$ as a nontrivial solution of the homogeneous equations $[1], [2], \dots, [i+1]$ assuming that A = 0. Then we get an $(i + 1) \times (i + 1)$ square matrix $A_{i+2,1}(A, B, C, D)$ consisting of coefficients of $a_i, a_{i-1}, \dots, a_1, 1$ from the equations $[1], [2], \dots, [i+1]$. In fact, $A_{i+2,1}(A, B, C, D)$ is called a minor matrix of Δ by deleting the first column and the last row of Δ . Then $A_{i+2,1}(0, B, C, D) =$

$$\begin{pmatrix} 0 & 0 & \dots & \binom{n}{1}C^{n-1}D \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \binom{n-i+1}{0}C^{n-i+1}B^{i-1} & \dots & \binom{n}{i-1}C^{n-i+1}D^{i-1} \\ \binom{n-i}{0}C^{n-i}B^{i} & \binom{n-i+1}{1}C^{n-i}DB^{i-1} & \dots & \binom{n}{i}C^{n-i}D^{i} \\ \binom{n-i}{1}C^{n-i-1}DB^{i} & \binom{n-i+1}{2}C^{n-i-1}D^{2}B^{i-1} & \dots & \binom{n}{i+1}C^{n-i-1}D^{i+1} \end{pmatrix}$$

Then $|A_{i+2,1}(0,B,C,D)| = B^{i(i+1)/2} C^{n(i+1)-(i+2)(i+1)/2} D^{i+1} \times$

0	0	•••	$_{n}C_{1}$
: 0			:
	$n-i+1C_0$	•••	$_{n}C_{i-1}$
$n-iC_0$	$\sum_{n-i+1}^{n-i+1}C_1$	•••	${}_{n}C_{i}$
$ _{n-i}C_1$	$n-i+1C_2$	• • •	$_{n}C_{i+1}$

 $= B^{i(i+1)/2}C^{n(i+1)-(i+2)(i+1)/2}D^{i+1} \cdot (-1)^{(i+1)i/2}{}_{n}C_{i+1}$ by Lemma 1.2. Since $|A_{i+2,1}(0, B, C, D)| = 0$, A = 0 and $AD - BC \neq 0$, D must be zero. From coefficients of $yz^{n-1}, y^{2}z^{n-2}, \cdots, y^{i}z^{n-i}$ in the homogeneous equations [1], [2], \cdots , [i], then we have $BCa_{1} = BCa_{2} = \cdots = BCa_{i} = 0$ because A = D = 0. So we get $a_{1} = a_{2} = \cdots = a_{i} = 0$. Thus we have the same result as in the case (b).

(d) B = 0: Since $AD - BC \neq 0$, $AD \neq 0$. Just as in the case (c), note that each element of the first column of Δ is zero if B = 0. So by the similar method as in the case (c) it is enough to consider the minor matrix $A_{i+2,1}(A, B, C, D)$. Let us compute $A_{i+2,1}(A, 0, C, D)$. Then $A_{i+2,1}(A, 0, C, D) = (\beta_{pq})$ where

$$\beta_{pq} = \binom{n-i+q-1}{p} C^{n-i+p+q-1} D^p A^{i-(q-1)}$$

with $1 \le p, q \le i + 1$. Then $|A_{i+2,1}(A, 0, C, D)| = A^{i(i+1)/2} D^{(i+1)(i+2)/2} C^{(i+1)(n-i-1)} \times$

$$\begin{vmatrix} n-iC_1 & n-i+1C_1 & \dots & nC_1 \\ n-iC_2 & n-i+1C_2 & \dots & nC_2 \\ \vdots \\ n-iC_{i+1} & n-i+1C_{i+1} & \dots & nC_{i+1} \end{vmatrix}$$

 $= {}_{n}C_{i+1}A^{i(i+1)/2}D^{(i+1)(i+2)/2}C^{(i+1)(n-i-1)}$ by Lemma 1.2. So C = 0 because $|A_{i+2,1}(A, 0, C, D)| = 0$, B = 0 and $AD - BC \neq 0$.

In the case of (a) and (d), that is, B = C = 0, by [3] $f(Az+By, Cz+Dy) = f(Az, Dy) = (Az)^n + a_i(Dy)^{n-i}(Az)^i + \cdots + a_1(Dy)^{n-1}Az + (Dy)^n = ug(z, y) = u(z^n + b_iy^{n-i}z^i + \cdots + b_1y^{n-1}z + y^n)$ for some nonzero constant u. Thus we get : $A^n = u$, $D^n = u$, $D^{n-k}A^ka_k = ub_k(2k+3 \le n)$. Since $(A/D)^n = 1$, put $\omega = A/D$. Also $D^{n-k}A^ka_k = ub_k$ implies that $(A/D)^ka_k = b_k$. Thus we get $b_k = a_k\omega^k$ for $k = 1, 2, \cdots, i$ $(2i+3 \le n)$.

In the case of (b) and (c), that is, A = D = 0, there is nothing to prove.

Conversely, suppose that there exists a unit ω with $\omega^n = 1$ such that $b_k = a_k \omega^k$ for $k = 1, 2, \dots, i = j$. Define the map ψ by $\psi(z, y) = (\omega z, y)$. Then $f \circ \psi(z, y) = z^n + a_i y^{n-i} (\omega z)^i + \dots + a_1 y^{n-1} (\omega z) + y^n = z^n + b_i y^{n-i} z^i + \dots + b_1 y^{n-1} z + y^n = g(z, y)$. Thus the theorem is proved.

COROLLARY 1.4. Let f and g be defined as in the Theorem 1.3. If $f \approx g$ and f(Az + By, Cz + Dy) = ug(z, y) for some nonzero constant u, then either B = C = 0, or A = D = 0 and $a_k = b_k = 0$ for $1 \leq k \leq i = j$ with $n \geq 2i + 3$.

2. Analytic classification of plane curve singularities defined by $z^3 + ay^2z + y^3$ or $z^4 + ay^3z + y^4$

THEOREM 2.1. Let $V = \{(z, y) : f = z^3 + ay^2z + y^3 = 0\}$ be an analytic subvariety of a polydisc near the origin in \mathbb{C}^2 where f is square-free. Then any f is analytically equivalent each other for any number a.

Proof. We know that any homogeneous polynomial with two variables of degree three which is square-free can be written into $f = z^3 + ay^2z + y^3$ by a nonsingular linear change of coordinate at the origin, and also this f can be transformed into $u(z^3 + \alpha yz^2 + \beta y^2z) = uz(z^2 + \alpha yz + \beta y^2)$ for a nonzero constant u by another linear change of coordinates. Note that $uz(z^2 + \alpha yz + \beta y^2) = uz(z^2 + 2\alpha_1y_1z + y_1^2)$ by a linear change of coordinates and that this polynomial becomes $uz((1 - \alpha_1^2)z^2 + (y_1 - \alpha_1z)^2) = u_1z_1(z_1^2 + y_2^2)$ for a nonzero constant u_1 where $z_1 = (1 - \alpha_1^2)^{1/2}z$, $y_2 = y_1 - \alpha_1 z$ and $\alpha_1 \neq 1$. Thus $f \approx z(z^2 + y^2)$.

THEOREM 2.2. Let $V = \{(z,y) : f = z^4 + \alpha y^3 z + y^4 = 0\}$ and $W = \{(z,y) : g = z^4 + \beta y^3 z + y^4 = 0\}$ be analytic subvarieties of a polydisc near the origin in \mathbb{C}^2 where f and g are square-free. Then $f \approx g$ if and only if $\alpha^4 = \beta^4$.

Proof. Assume that $f \approx g$. Then $f(Az + By, Cz + Dy) = (Az + By)^4 + \alpha(Cz + Dy)^3(Az + By) + (Cz + Dy)^4 = (A^4 + \alpha AC^3 + C^4)z^4 + (4A^3B + (3C^2DA + C^3B)\alpha + 4C^3D)yz^3 + (6A^2B^2 + (3CD^2A + 3C^2DB)\alpha + 6C^2D^2)y^2z^2 + (4AB^3 + (D^3A + 3CD^2B)\alpha + 4CD^3)y^3z + (B^4 + \alpha BD^3 + D^4)y^4 = u(z^4 + \beta y^3z + y^4)$ for a nonzero constant u by [3]. So we have

$$A^4 + AC^3\alpha + C^4 = u$$

(2)
$$4A^{3}B + (3C^{2}DA + C^{3}B)\alpha + 4C^{3}D = 0$$

(3)
$$6A^2B^2 + (3CD^2A + 3C^2DB)\alpha + 6C^2D^2 = 0$$

(4)
$$4AB^{3} + (D^{3}A + 3CD^{2}B)\alpha + 4CD^{3} = u\beta$$

$$B^4 + BD^3\alpha + D^4 = u$$

Subtracting the equation (5) from the equation (1), we get

(6)
$$(A^4 - B^4) + (AC^3 - BD^3)\alpha + C^4 - D^4 = 0$$

Now consider the following two cases : (i) $ABCD\alpha = 0$ and (ii) $ABCD\alpha \neq 0$.

(i) Let $ABCD\alpha = 0$. Then A = 0, B = 0, C = 0, D = 0 or $\alpha = 0$. (a) A = 0: From equations (2) and (3), we get

$$C^3 B\alpha + 4C^3 D = 0,$$

$$3C^2 D B\alpha + 6C^2 D^2 = 0$$

Chunghyuk Kang

These two equations give $6C^3D^2 = 0$ and so D = 0 since $AD - BC \neq 0$. From (2), $C^3B\alpha = 0$ implies $\alpha = 0$. From (1) and (5), $C^4 = u = B^4$ and (4) implies $\beta = 0$. Thus $\alpha^4 = \beta^4 = 0$.

(b) D = 0: By (3), AB = 0 and so A = 0. Then we get the same result as in the case (a).

(c) C = 0: By (2), AB = 0 and so B = 0. By (1), (4) and (5), $A^4 = D^4 = u$ and $D^3A\alpha = u\beta$. Thus $A\alpha = D\beta$ and so $\alpha^4 = \beta^4$. (d) B = 0: From (2) and (3), we get

$$3C^2DA\alpha + 4C^3D = 0,$$

$$3CD^2A\alpha + 6C^2D^2 = 0.$$

These two equations give $2C^3D^2 = 0$ and so C = 0. Then we get the same result as in the case (c).

(e) $\alpha = 0$: From (2) and (3), we get

$$0 = \begin{vmatrix} 4A^{3}B & 4C^{3}D \\ 6A^{2}B^{2} & 6C^{2}D^{2} \end{vmatrix} = 24A^{2}BC^{2}D \begin{vmatrix} A & C \\ B & D \end{vmatrix}.$$

So ABCD = 0. Then we get the same result as in the case (a), (b), (c) or (d).

(ii) Hereafter we assume that $ABCD\alpha \neq 0$.

Then from (2), (3) and (6) which are considered homogeneous equations, we get

$$0 = \begin{vmatrix} 4A^{3}B & 3C^{2}DA + C^{3}B & 4C^{3}D \\ 6A^{2}B^{2} & 3CD^{2}A + 3C^{2}DB & 6C^{2}D^{2} \\ A^{4} - B^{4} & AC^{3} - BD^{3} & C^{4} - D^{4} \end{vmatrix}$$
$$= 6C(AD - BC)^{3}(A^{2}C^{3} - BD^{2}(2AD + BC))$$

Since $ABCD \neq 0$, $2AD + BC \neq 0$. So

$$BC + 2AD = A^2C^3/(BD^2)$$

From (2) and (3), we get

$$C^{2}(3AD + BC)\alpha = -4(A^{3}B + C^{3}D)$$
 and
 $CD(AD + BC)\alpha = -2(A^{2}B^{2} + C^{2}D^{2}),$

which by eliminating α , give $0 = 2D(AD + BC)(A^3B + C^3D) - C(3AD + BC)(A^2B^2 + C^2D^2) = (A^2B(2AD + BC) - C^3D^2)(AD - BC)$. Thus

(8)
$$2AD + BC = C^3 D^2 / (A^2 B)$$

From (7) and (8), $A^2C^3/(BD)^2 = C^3D^2/(A^2B)$ and so we get

$$A^4 = D^4$$

From (2), (3) and (4) we are going to compute α as follows : Let

$$\Delta = \begin{pmatrix} 4A^{3}B & 3C^{2}DA + C^{3}B & 4C^{3}D \\ 6A^{2}B^{2} & 3CD^{2}A + 3C^{2}DB & 6C^{2}D^{2} \\ 4AB^{3} & D^{3}A + 3CD^{2}B & 4CD^{3} \end{pmatrix}, \text{ and then}$$
$$|\Delta| = 24ABC^{2}D^{2}(AD - BC)^{3}.$$

(10)
$$\alpha = \frac{1}{|\Delta|} \begin{vmatrix} 4A^3B & 0 & 4C^3D \\ 6A^2B^2 & 0 & 6C^2D^2 \\ 4AB^3 & u\beta & 4CD^3 \end{vmatrix} = \frac{-u\beta A}{D(AD - BC)^2}$$

Again, from (3), (4) and (5), we want to compute α as follows. Let

$$\Delta' = \begin{pmatrix} 6A^2B^2 & 3CD^2A + 3C^2DB & 6C^2D^2 \\ 4AB^3 & D^3A + 3CD^2B & 4CD^3 \\ B^4 & BD^3 & D^4 \end{pmatrix}$$

Then $|\Delta'| = 6B^2D^4(AD - BC)^3$ and so

(11)
$$\alpha = \frac{1}{|\Delta'|} \begin{vmatrix} 6A^2B^2 & 0 & 6C^2D^2 \\ 4AB^3 & u\beta & 4CD^3 \\ B^4 & u & D^4 \end{vmatrix}$$
$$= \frac{u}{D^2(AD - BC)^3} \cdot ((AD + BC)\beta - 4AC)$$

From (10) and (11), we get

$$\frac{-u\beta A}{D(AD-BC)^2} = \frac{u}{D^2(AD-BC)^3} \cdot ((AD+BC)\beta - 4AC)$$

Thus

(12)
$$\beta = \frac{4AC}{2AD + BC}$$

Eliminating the first terms from the equations (2) and (3), we get $[6B(3C^2DA+C^3B)-4A(3CD^2A+3C^2DB)]\alpha+24BC^3D-24AC^2D^2 = 0$. Simplifying the above, we have

(13)
$$\alpha = -\frac{4CD}{2AD + BC}$$

From (12) and (13), $\beta/A = -\alpha/D$. Since $A^4 = D^4$ by (9), we get $\beta^4 = \alpha^4$.

Now, conversely, if $\alpha^4 = \beta^4 \neq 0$, then $f(\beta z, \alpha y) = \beta^4 z^4 + \alpha (\alpha^3 y^3) \beta z + \alpha^4 y^4 = \beta^4 (z^4 + \beta y^3 z + y^4) = \beta^4 g(z, y)$. If $\alpha = \beta = 0$, then there is nothing to prove.

COROLLARY 2.3. Let f and g be defined as in Theorem 2.2. If $f \approx g$ and f(Az + By, Cz + Dy) = ug(z, y) for a nonzero constant u, then ABCD may not be zero.

Proof. It is enough to show that there is such an example with $ABCD \neq 0$. Let $f(z, y) = z^4 - 4e^{\pi i/4}y^3z + y^4$ and A = 1, $B = e^{3\pi i/4}$, $C = e^{\pi i/4}$ and D = 1. Then $AD - BC = 2 \neq 0$ and $f(Az + By, Cz + Dy) = 4(z^4 + 4e^{\pi i/4}y^3z + y^4) = 4g(z, y)$ by tedius computations. Note that $ABCD \neq 0$.

Finally we are going to give an example which is a help to understand the condition for restriction on the degree of homgeneous polynomials in Theorem 1.3 as follows :

Let $V = \{(z, y) : f(z, y) = z^5 + 10y^3z^2 + 5y^4z + y^5 = 0\}$. By a linear transformation $T : (z, y) \mapsto (y, z - y)$,

$$(f \circ T)(z, y) = f(y, z - y)$$

= $y^5 + 10(z - y)^3 y^2 + 5(z - y)^4 y + (z - y)^5$
= $z^5 - 10y^3 z^2 + 15y^4 z - 5y^5$.

By another linear transformation $S:(z,y) \mapsto (z,-5^{-1/5}y), f \circ T$ will be $g(z,y) = z^5 + 10 \cdot 5^{-3/5}y^3z^2 + 15 \cdot 5^{-4/5}y^4z + y^5$. Note that without the condition in Theorem 1.3, $f \approx g$.

References

- 1. E. Brieskorn and H. Knörrer, *Plane algebraic curves*, English edition, Birkhäuser, 1986.
- 2. Mather, J and Yau, S.S.-T., Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69(1982), 243-251.
- 3. Yau, S.S.-T., Milnor algebras and equivalence relations among holomorphic functions, Bulletin A.M.S. 9, Sept., 1983, 235-239.
- 4. C. Kang, On the type of plane curve singularities analytically equivalent to the equation $z^n + y^k = 0$ with gcd(n, k) = 1, J. KMS. 29, 1992, 281-295.

Department of Mathematics, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea