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ANALYTIC CLASSIFICATION OF PLANE
CURVE SINGULARITIES DEFINED BY
SOME HOMOGENEOUS POLYNOMIALS

CHUNGHYUK KANG

0. Introduction

Let V = {(z,y) : f(z,y) = 0} be an analytic subvariety of a poly-
disc near the origin in C? where f is a homogeneous polynomical and
square-free. We know that any homogeneous polynomial with two vari-
ables which is square-free can be written as 2™ + a,_;yz" "} + --- +
a;y™ 1z + y™ where ay,--- ,a,_; are constant by a suitable nonsin-
gular linear change of coordinates in C2. Here we assume that f has
the following form : (1) f = z" + a;y™ 2 +--- + ay" "z + y" (n >
5, n > 2+ 3). (2) either f = 2 + ay?z + y® or f = 2* + ay®z + y*.
fg=2z"+by" Iz + ... + by 2 +y" (n > 5, n > 2j + 3), then
in section 1 we show by the elementary method that f is analytically
equivalent to ¢ if and only if there is a unit w with w™ = 1 such that
bk = ayw* for each k = 1,2,--- ,i = j. In section 2 we prove that
all homogeneous polynomials of degree three each of which is square-
free are analytically equivalent and that if f = 2* + ay®z + y* and
g = z* +by3z+y* where f and ¢ are square-free, then f and g are ana-
lytically equivalent if and only if a* = b*. Moreover, we give examples
with which we understand the condition that n > 5 and n > 2z + 3.

1. Analytic classification of plane curve singularities de-
fined by f=2"+ay" i+ -+ ary"lz+y" (n>5, n > 2 +3)

DEFINITION 1.1. Let V = {(2,y) : f(z,y) =0} and W = {(z,y) :
9(z,y) = 0} be germs of analytic subvarieties of a polydisc near the
origin in C? where f, g are holomorphic and square-free near the origin
in C2. V and W are said to be analytically equivalent if there exists a
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germ at the origin of biholomorphisms 9 : (U1,0) — (Us,0) such that
P(V) = W and ¥(0) = O where U; and U, are open subsets containing
the origin in C2. In this case we call f(z,y) and ¢(z,y) analytically
equivalent near the origin and denote this relation by f =~ g. Note by
[3] that f = g if and only if f(Az + By,Cz + Dy) = ug(z,y) for u # 0
and AD — BC # 0 whenever f and ¢ are homogeneous.

Before proving the main result, we need the following Lemma.

LEMMA 1.2. Recall the notation ,Cr = (}) =n(n—1)---(n —k +
1)/%!. Then

2C1 a+1C1 ... agk-1Ch
D nC2 n—l—lCZ e ntk-—1 C2
2Ck 2+1Ck ... n42-1Ck
nCI nCO 0 0
nC2 nCI nCO 0
an—l an—2 an—3 v nCO
nCk nCrk-1 2Crk—2 ... xCi
0 ... 0 n-Hc-—ZCO n+k—1 Cl
0 ... n4k-3Co nt+k—2C1 nt+k-1C2
— (_l)k(k—l)/z . . . .
2Co ... n+8-3Ck—3 n+k—2Ck=2 n+k-1Ck—1
2C1 oo n4k-3Ck—2 n4k—2Ck—1 n4r-1Ck

= n+k—1Ck-

Proof. See [4].

THEOREM 1.3. LetV = {(z,y) : f = 2" +a;y™ *2i+-- -+ayy™ 12+
y"=0}and W = {(z,y): g = 2"+ bjy" i +-- -+ biy" 1z +y" = 0}
be analytic subvarieties of a polydisc near the origin in C? where f
and g are homogeneous polynomials and square-free, and n > 2i + 3,
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n2>2j+3 andn > 5. Then f = g if and only if there is a unit w with
w™ =1 such that by = agw* fork =1,2,.-. i =j.

Proof. Assume that f =~ g. Then we know that f(Az+ By, Cz +
Dy) = (Az+By)"+ai(Cz+Dy)""*(Az+By)'+a,1(Cz+Dy)" "1 x
(Az+By)" ' +---+a1(Cz+Dy)""'(Az+ By)+(Cz+ Dy)" = ug(z,y)
for a nonzero constant u where AD—~BC # 0. Because n—(i+2) > i+1
and ¢ and j may be viewed as same integers, coefficients of the following
monomials yz"~1,y227"2 ...  y"+2;7~(+2) i the polynomial f(Az +
By,Cz + Dy) are zero. Let us write down these coefficients in detail
as follows :

(1))
yz" " (’;) A™'B +a; k+ZI=1 (n L i) C) cr~*~*D*4*"'B!

+ot a Z (n ; 1) (]l~>cn-1—kaAl-—lBl + (?) Cn—lD = 0.

k+i=1
(12) o
2 n-2_, (Y yn—2p2 ) M=\ Y vn—i—kpk 4i—lpl
y2z .(2)A B+a,2(k)(1)0 D*A*'B
k=2
=1\ 1\ 1k pnk 41-1p1 n\ n-2p2
+---+alz(k)(1)0 D*A™'B'+{, )C"T*D
k+i1=2
=0.
(I +2) o
i+2_ n—(i+2) . n n—(i+2) pi+2 ) n—iyft
y' ez '<i+2)A B 4 q; Z (k )(l X
k+1=1+42
CrEDP A ey Y n =1\ (1 on-1-k pk g1-1p1
’ k l
k+l=t+2

n n—(i+2) pi+2 _
+ (i + 2)C 0.
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Counsidering 1, a;,a;—1,--- ,a1,1 as a nontrivial solution of the above
[z + 2]-homogeneous equations, then we get an (7 + 2) X (¢ + 2) square
matrix A consisting of coefficients of 1, a;,a;_;,--- ,a3,1 in these equa-
tions whose determinant |A| must be zero. Now write down the deter-
minant |A| :
0 = |A| = [(apg)| where
(@) @pg = Tiapucy ("5 T (T Cn iRk DRAT TR
withl1<p<i+2and2<g¢g<i+1,
(i) ap1 = (;)A““’BP and op it2 = (;:)C"‘”Djp
with1<p<i+2
Then we claim that |A| = tA®~(+2 B[Cn~(+2) D]+ (AD — BC)i+2C2

for some nonzero constant {. Note that Z (n I: z) (;) = (?) for

k+i=j
a given nonnegative integer j. We know that each element in the first

column of A has A"~ (+2) B as common factor. Now we are going to
prove that any elementary signed product from A has [C*~(+2) D41
as common divisor. Consider the degree of C of each element in A as
follows :

0 n-(G+1) ... n—2 n—1
0 n—-(t4+2) ... n—3 n—2
0 n—(G+i+2) ... n—(+3) n—-(:+2)

So the degree of C for each elementary signed product from A is greater
than or equal to the following number : n — (2: +2)+n — (20 + 1) +
oot n—(0+2)+0+14---+i=(i+1)(n—¢—2). Similarly, we can
prove that the degree of D for each elementary signed product from A
is greater than or equal to the integer (7 + 1).

Now it is enough to prove that |A|/ {A®~*~2B(C™~"2D)**1} =
t(AD — BC)+2C2 for a nonzero constant ¢. To show this, divide each
element in the first column of A by A" *~2B and each element in
the remaining columns of A by C" 2D, Let the matrix got in
this way from A be P = P(A,B,C,D). Then it suffices to prove
that the determinant |P| = #(AD — BC)i+2€2. Note that each ele-
mentary signed product from |P| has the same degree (¢ + 2)(i + 1)
sincen(i+2)—(n—t—-1)—(n—-i-1)i+1)=(GE+2)(c+1). Let
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Q(A,B) = P(A, B, A, B). Note that |Q(4,4)| = |[P(A,A,A,A)] =0
and |Q(A, —A)| = |P(A, —A, —A, A)| = 0 because any two column vec-
tors in Q(A, A) or A(A, A, A, A) are same and any two column vectors
in Q(A,—A) or A(A4,—A,—A,A) are same up to a sign. Therefore
|Q(4, B)| = (A? — B?)i+:“2Q,(A, B). But since the degree of each ele-
mentary signed product from Q(A, B) is always (: +2)(i+ 1), Q1(A, B)
must be a constant, say t. Therefore |A| = A7~ (+2) p(Cn—(i+2) )i+
[P1(A, B,C, D)]+22 where Py(A,B,C, D) is a homogeneous polyno-
mial of degree 2.

We claim that P,(A4, B, C, D) = m(AD—BC) for a nonzero constant
m. Let PI(A, B,C, D) = 81A2+52AB+83AC+S4AD+8532+SGBC+
S7BD + 88C2 + SQCD + SloDz.

First we want to prove that s; = s5 = sg = s19 = 0. To prove
s1 = 0, let ap = Max{a : cA*BPCYD? is an any nonzero elementary
signed product from A}. Considering each elementary signed product
from A, we see easily that ag =n - 1+i+(i—-1)+---+1+4+0 =
n—1+414(i+1)/2. But if P;(4, B, C, D) contains a nonzero term s; A?
in its expansion, the highest degree of A among all elementary signed
products from A would be an integer n — (i + 2) + (¢ + 2)(i + 1). Note
that n = (1 +2)+ (1 +2)(i+1)—ag=n—(i+2)+(E+2)(¢+1)—[n—
14i(i+1)/2]=(G+1)(i:+2)/2>0fori > 0. So s; = 0. Similarly,
we can get ss = sg = 830 = 0.

Next, we prove that s; = s3 = sy = s = 0. To prove s3 = 0, let
ap = Max{a + v : cA*>BPCYD*® is an any nonzero elementary signed
product from A}. If P,(A, B,C, D) contains a nonzero term s3AC in
its expansion, ap =n — (1 +2)+(n—- (+2))(+ 1)+ (E+2)@E+1) =
(n — 1)(2 + 2). In fact, ap is equal to an integer (n — 1) + (n — 2) +
coot(n—i—2)=(2n -1 — 3)(i + 2)/2, looking at all elements in A.
Notethat (n — 1)t +2)—(2n - -3):+2)/2=(+1)(t+2)/2>0
for ¢ > 0. So s3 = 0. Similarly, we can get s; = s7 = sg = 0.

Therefore Py(A,B,C,D) = s4AD + s¢BC. Then s4 = —sg because
|P(A, B, A, B)| = t(A? — B*)+:2 and |Q(4, 4)| = |Q(4,~4)| = 0.
Thus we proved that |A| = tA""*~2B(C*~*~2D)**1(AD — BC)i+:Cz
for some constant ¢.

To prove t # 0, consider the term rB? for a nonzero coefficient
r in |A(1,B,1,1)| where A = A(A,B,C,D) and d is the degree of
|A(1, B,1,1)| as a polynomial of B. To find r B¢, write down elements
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of A only whose degree of B is the maximum on each column as below:

* * cen n_.]_CoBl ,,ClBo

* n_,'CoB': “e ,,__IC’-_IBI nC,‘BO

*  aCiB° ... oGB! CipB°
nCip2B*? L CoB* ... . 1CipnB' ,Ci2B°

Then we see that rB? is equal to

0 0 .. 20y
(—1)£+3nCi+ZBi+2+i(i+l)/2 0 n—i+i Co e nCi-—l

n—iCO n—i41 Cl R nCi

n—iCI n—i+102 se nCi+1

= (_1)i+3(_1)(i+1)i/2nci+2 . nC,‘+1 . Bi+2+i(i+l)/2 by Lemma 1.2. But
from |A| = |A(4,B,C,D)|, |A(1,B,1,1)] is tB(1 — B)i+2%2. Thus
tB(—B)""”Cz = (_1)i+3(_1)(i+1)i/2n0‘,+2 . nC,‘+1Bi+2+i(i+l)/2, and so
t = nCit2 - nCit1. Therefore we get |A(A, B,C,D)| = 0 if and only if
ABCD =0.

Claim that |A(A, B, C, D)} = 0 if and only of B = C = 0 whenever
a; # 0 for some ¢ (2 + 3 < n). It is enough to consider the following
cases separately:

(a) C = 0 : It suffices to check the coefficient of yz"~! in the
expansion of f(Az+ By,Cz + Dy). Then AB = 0 implies B = 0 since
AD - BC #0.

(b) D = 0 : Check the coefficient of y*+2z"~ (42 in f(Az+By,Cz+
Dy). Since l < i, AB = 0 implies A = 0 since AD — BC # 0. Looking
at the coefficient of y2"~), then A = D = 0 implies C* 'Ba; =
0. Since AD — BC = —BC # 0, a; = 0. Next, apply the result
A = D = a; = 0 to the coefficient of y?2"2. Trivially a; = 0.
Apply this technique in order to a3,--- ,a;. Then we get easily that
ag =da2 = --- =a; = 0. So f(Az + By,Cz + Dy) = f(By,Cz) =
(By)™ + (C2)" = ug(z,y) = u(z" + biy*2"~* +--- + biy™ 'z +y") for
a nonzero constant u implies that B® = C" = v and a; = b = 0 for
1<k<Li(28+3<n).
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(c) A =0 : Since each element of the first column in the matrix is
zero if A = 0, asin the beginning of the proof, consider a;,a;—1, - - ,a1,1
as a nontrivial solution of the homogeneous equations [1],[2],-- - , [{ +1]
assuming that A = 0. Then we get an (¢ + 1) x (i + 1) square matrix
Ait21(A, B,C, D) consisting of coefficients of a;,ai—1,--- ,a1,1 from
the equations [1],[2],--- , [t + 1]. In fact, Ai421(A, B,C, D) is called a
minor matrix of A by deleting the first column and the last row of A.
Then A,’+2’1(0, B, C, D) =

0 0 (yer—'p
6 ("";‘“)C’;"“‘l Bi-1 . '"1) Cn;i+1 Di-1
§—
ﬂ.;i)cu—iBi (ﬂ:"li‘f'l)cn—iDBi—l . (":) Cr-ips
(nl—l)cn-—-i—-IDBi (n—21+1) Cn—-i—-lD2Bi—1 . ('-:I)C"'_‘_l Di+1

Then |4i42,1(0, B,C, D)| = B D20+ -G+D(H+1)/2 i+l

0 0 ... 20
0 n—i+ICO s nCi—-l
nT-iCO n—i+lcl LR nCi
n—iCI n-—i+IC2 .o nCi+1

— BiH)/20n(4D-(4D+1)/2Di+1 L (L1)6+Di/2 O, | by Lemma 1.2,
Since |4i42,(0,B,C,D)| =0, A = 0 and AD — BC # 0, D must be
zero. From coefficients of yz"~1,y%22""2,... ,y*z""! in the homoge-
neous equations [1},{2],--- ,[i], then we have BCa; = BCap = --- =
BCa; =0 because A=D =0. Soweget ay =a; =---=a; = 0.
Thus we have the same result as in the case (b).

(d) B=0: Since AD — BC # 0, AD # 0. Just as in the case (c),
note that each element of the first column of A is zero if B = 0. So
by the similar method as in the case (c) it is enough to consider the
minor matrix A;y1(A4,B,C,D). Let us compute A;45:(4,0,C, D).
Then Aiy2,1(4,0,C, D) = (Bp,) where

Bpq = (n -t ; 7- 1) criteta-1pp gi—(a-1)
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with 1 <p,¢<:i+1.
Then [Ai+21(4,0,C, D)I = Ai+1)/2 p+1)(i+2)/20(i+1)(n—i-1)

n—iCI n——i+101 .. nCI
n—iC2 n—i+1 C’2 s nCZ
n—iCi+l n—i+1 Ci+1 .. nCi+1

= nCit1 AT/ 2 DGEHDGE+2)/20 6+ (r—i-1) by Lemma 1.2. So C = 0
because |Ai;2,1(4,0,C,D)| =0, B=0and AD — BC # 0.

In the case of (a) and (d), that is, B = C =0, by [3] f(Az+By,Cz+
Dy) = f(Az,Dy) = (A2)" + ai(Dy)"~*(A2)’ +--- + a1(Dy)" "4z +
(DY) = ug(z,y) = u(z™ + biy™'2' + --- + biy™ 'z + y™) for some
nonzero constant u. Thus we get : A" = u, D® = u, D" ¥%Akq; =
ubg(2k + 3 < n). Since (A/D)" = 1, put w = A/D. Also D* k¥ Akq; =
uby implies that (A/D)*a; = bi. Thus we get by = arw* for k =
1,2,--- i (2 +3 <n).

In the case of (b) and (c), that is, A = D = 0, there is nothing to
prove.

Conversely, suppose that there exists a unit w with w® = 1 such that
bx = aww* for k = 1,2,--- ,i = j. Define the map ¢ by ¥(z,y) =
(wz,y). Then foy(z,y) = 2"+ ay" Hwz)' +---+ay™ Nwz)+y" =
2" + biy™ iz 4 oo + by 'z + y™ = g¢(z,y). Thus the theorem is
proved.

COROLLARY 1.4. Let f and g be defined as in the Theorem 1.3. If
f ~ g and f(Az + By,Cz + Dy) = ug(z,y) for some nonzero constant
u, then either B = C = 0, or A = D = 0 and ax = by = 0 for
1<k<i=jwithn>2:+3. ’

2. Analytic classification of plane curve singularities de-
fined by 23+ ay®z + y® or z* + ay3z + ¢*

THEOREM 2.1. Let V = {(z,y) : f = 2% + ay®2 + y® = 0} be
an analytic subvariety of a polydisc near the origin in C? where f is
square-free. Then any f is analytically equivalent each other for any
number a.
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Proof. We know that any homogeneous polynomial with two vari-
ables of degree three which is square-free can be written into f =
z% + ay?z + y® by a nonsingular linear change of coordinate at the ori-
gin, and also this f can be transformed into u(z3 + ayz? + By?z) =
uz(z? + ayz + By?) for a nonzero constant u by another linear change
of coordinates. Note that uz(2? + ayz + By?) = uz(2? + 201y12 + y3)
by a linear change of coordinates and that this polynomial becomes
uz((1 —a?)z? 4+ (y; — 012)?) = uyz;(2% + y2) for a nonzero constant u,
where z; = (1—a})/?2,y; = y1—ayzand a; # 1. Thus f = z(22+y?).

THEOREM 2.2. Let V = {(2,¥) : f = 2* + ay®z + y* = 0} and
W = {(2,y) : ¢ = z* + By3z + y* = 0} be analytic subvarieties of a
polydisc near the origin in C? where f and g are square-free. Then

f = g if and only if a* = 4.

Proof. Assume that f ~ g. Then f(Az + By,Cz + Dy) = (Az +
By)* + a(Cz + Dy)*(Az+ By) +(Cz+ Dy)* = (A* + aAC® + C*)z* +
(4A°B+(3C?DA+C3B)a+4C3D)yz*+(6A’B*+(3C D*A+3C*DB)a
+6C2D?)y%22+(4AB*+(D3A+3CD?B)a+4CD3)y*z+(B*+aBD?*+
D*)y* = u(z* + By®z + y*) for a nonzero constant u by [3].

So we have

(1) A* 4+ ACPa 4+ C* = u

(2) 4A°B + (3C’DA + C®B)a +4C*D =0
(3) 6A42B% + (3CD*A +3C?’DB)a +6C*D? =0
(4) 4AB® + (DA + 3CD*B)a+4CD? = uf
(5) B* +BD*a+D*=u

Subtracting the equation (5) from the equation (1), we get
(6) (A* —=B*)+(AC* - BD*a+C*-D* =0

Now consider the following two cases : (i) ABCDa = 0 and (ii)
ABCDa # 0.
(i) Let ABCDa=0. Then A=0, B=0, C=0, D=0ora=0.
(a) A =0 : From equations (2) and (3), we get
C3Ba +4C3D =0,
3C*DBa +6C*D* = 0.
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These two equations give 6C3D? = 0 and so D = 0 since AD—BC # 0.
From (2), C®Ba = 0 implies @ = 0. From (1) and (5), C* = u = B*
and (4) implies 8 =0. Thus o* = * = 0.

(b) D =0: By (3), AB =0 and so A = 0. Then we get the same
result as in the case (a).

(c)C=0: By (2), AB = 0 and so B = 0. By (1), (4) and (5),
A* = D* =y and D?®Aa = uf. Thus Aa = DB and so a* = .

(d) B=0: From (2) and (3), we get

3C%2DAa+4C3*D =0,
3CD*Aa +6C*D? = 0.
These two equations give 202D? = 0 and so C = 0. Then we get the

same result as in the case (c).
(e) @ =0 : From (2) and (3), we get

4A%B 4C®D
6A2B2 6C*D?

A C

- 2 pr2
=24A°BC*D B DI

0=

So ABCD = 0. Then we get the same result as in the case (a), (b),
(c) or (d).
(ii) Hereafter we assume that ABCDa # 0. |
Then from (2), (3) and (6) which are considered homogeneous equa-
tions, we get
4A%B 3C?DA+ C®B 4C3D
6A2B%> 3CD?A+3C?DB 6C?D?
A* - B* AC®*-BD? c*-D*
= 6C(AD — BC)*(A*C® — BD?*(2AD + BC)).

0=

Since ABCD # 0, 2AD + BC # 0. So
(7 BC + 24D = A%C3?/(BD?)
From (2) and (3), we get

C*(3AD + BC)a = —4(A*B + C®D) and
CD(AD + BC)a = —2(A%B? 4+ C?D?),
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which by eliminating «, give 0 = 2D(AD + BC)(A®B + C®D) —

C(3AD+BC)(A?B%*+C*D?) = (A’B(2AD+BC)—-C3D?*)(AD-BC).

Thus

(8) 2AD + BC = C*D?*/(A%B)

From (7) and (8), A2C3/(BD)? = C3D?/(A%B) and so we get

(9) A* = D*

From (2), (3) and (4) we are going to compute a as follows : Let

A3B C’DA+C*B C3D
A= | 6A2B? 3CD?A+3C?DB 6C2?D? |, and then

4AB? DA +3CD*B 4CD?

|A| = 24ABC*D*(AD — BC)3.

1 4A3B 0 4C*D —uBA
(10) a=—|642B? 0 6C?D?
|A| 4AB® wB 4CD? D(AD B(C)?

Again, from (3), (4) and (5), we want to compute a as follows. Let

6A2B? 3CD?A+3C?DB 6C2D?
A 4AB* D3A+3CD?B  4CD?
B* BD? D*
Then |A'| = 6B2D*(AD — BC)? and so

6A42B% 0 6C2D?
4AB® up 4CD?
u Dt

. ((AD + BC)B — 4AC)

(11) - ;'l

u

= D¥(AD — BC)®

From (10) and (11), we get

—ufA _ u
D(AD - BC)? ~ D*(AD — BC)* (

(AD + BC)B — 4AC)
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Thus
4AC

(12) p= 2AD + BC
Eliminating the first terms from the equations (2) and (3), we get
[6B(3C2DA+C3B)—-4A(3CD?A+3C?DB)|a+24BC3D—-24AC?D? =
0. Simplifying the above, we have

4CD
2AD + BC

From (12) and (13), B/A = —a/D. Since A* = D* by (9), we get
p = ot

Now, conversely, if o* = % # 0, then f(B8z,ay) = B*z* +a(a®y?®)Bz
+atyt = B2t + By3z + y?) = Bg(z,y). If @ = B = 0, then there is
nothing to prove.

COROLLARY 2.3. Let f and g be defined as in Theorem 2.2. If
f = g and f(Az + By,Cz + Dy) = ug(z,y) for a nonzero constant u,
then ABCD may not be zero.

(13) a=—

Proof. It is enough to show that there is such an example with
ABCD #0. Let f(z,y) = z* —4e™/*y32 4+ y* and A =1, B = €3™i/4
C =e™/*and D =1. Then AD — BC =2 # 0 and f(Az+ By,Cz +
Dy) = 4(z* +4e™/4y32 + y*) = 4¢(2,y) by tedius computations. Note
that ABCD # 0.

Finally we are going to give an example which is a help to understand
the condition for restriction on the degree of homgeneous polynomials
in Theorem 1.3 as follows :

Let V = {(2,y) : f(z,y) = 2° +10y3z% + 5y*2 + y* = 0}. By a linear
transformation T : (z,y) — (v, 2z — y),

(f ° T)(Zvy) = f(y')z - y)
=y +10(z - y)°y* +5(z — )y + (2 ~ y)°
=25 — 10y%2% + 15y*2 — 5y°.
By another linear transformation S : (z,y) — (z, —5~3), foT will

be g(z,y) = 2% +10-573/5y322 1+ 15.574/5y* 2 4 5. Note that without
the condition in Theorem 1.3, f = g.
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