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POLYGONAL KNOTS

GyO TAEK JIN AND HYOUNG SEOK KIM

o. Introduction

In the 3-dimensional Euclidean space, every knot is ambient isotopic
to spatial polygon, i.e., a simple closed curve obtained by joining a
finitely many vertices with straight edges. The spatial polygons will
be called the polygonal knots.

The minimal number of vertices (or equivalently, edges) of the family
of polygonal knots ambient isotopic to a given knot is certainly a knot
invariant. We call it the polygon index. In this work, we show that
every nontrivial knot has polygon index not smaller than 6. Also we
give some estimations of the polygon indices of some knots.

1. Pentagons are unknotted

The polygon index of a knot k will be denoted by P(k). For a polyg­
onal knot k, the number of vertices (or equivalently, edges) will be
called the polygon number of k, and denote by p( k). Given n points
PI , P2 , ••• , Pn in R 3 , let PI P2 ••• Pn denote the convex hull of the set
{PI , P2 , • • . Pn }.

PROPOSITION 1. IT P(k) ~ 5, then k is unknotted.

Proof. Let k be a polygonal knot. We will show that k is unknotted
if p(k) ~ 5.

Suppose p(k) = 3. Then k is a triangle, and hence unknotted.
Suppose p(k) = 4. Then k is a spatial 4-gon. If A, B, C and D

are vertices of k in that order, then k is the boundary of the disc
ABC U ACD or ABD U BCD. Hence k is unknotted.

Suppose p( k) = 5. Let A, B, C, D and E be the vertices of k in that
order. We may assume that no three cyclically consecutive vertices are
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on one line. IT all the five vertices are on one plane, then k is a Jorden
curve, and hence unknotted. IT all but one vertex, say A, are on one
plane, then k is the boundary of the disc ABC U ACD U ADE. Note
that the disc is the cone on BC U CD UDE with apex at A.

Now suppose that A, B, C, D and E are in general position. IT
DE does not intersect the plane determined by ABC, then k is the
boundary of the disc ABCUACDuADE. IT DE intersects the plane
determined by ABC, let F be the intersection point. IT the line BF
separates A and C, then k is the boundary of the disc AEF U ABF U
BCFUCDF. Note also that the disc is the cone on AEUABuBCUCD
with apex at F. Suppose the line BF does not separate A and C. Let
Ft be the midpoint of DF if LFBA < LFBC or the midpoint of EF if
LFBA> LFBC. Then k is the boundary of the disc AEF' UABF' U
BCF' U CDF'. Again the disc is the cone on AE U AB U BC U CD
with apex at F'. 0

COROLLARY 2. Tbe trefoil knot bas polygon index 6.

Proof.
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FIGURE 1.

COROLLARY 3. k is a nontrivial knot if and only if P(k) ~ 6.
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2. The superbridge index

For a knot k, let S(k) denote the superbridge index of k. See [1]
for the definition of the superbridge index. Given a pair of relatively
prime integers r,s, let Tr,s denote the (r,s)-torus knot.

LEMMA 4. For any knot k,2S(k) $ P(k).

Proof. It is easy to see that the number of maxima of the height
function of a polygonal knot k with respect to any axis is not greater
than P(k)/2. Therefore S(k) $ P(k)/2, and hence 2S(k) S P(k). 0

COROLLARY 5. Let r, s be relatively prime positive integers satis-
fying 2 $ r < s. Then

P(Tr,s) ~ 2min{2r,s}.

Proof. This follows from the fact that S(Tr,s) = min{2r,s}. See
[l,Theorem B]. 0

3. Upper bounds for the polygon index

THEOREM 6. H s is odd and if s ~ 3, then P(T2 ,s) $ s + 3.

Proof. Since T2,a is the trefoil knot, the theorem holds for s = 3, by
Corollary 2. For s = 5,7,9, ... , we construct T2 ,s as follows.

For i ~ 1, let ai = t i(i-I) and let

4i - 3 - s
Xi = cos 11',

S

. 4i - 3 - S
Yi = sm 11'.

s

IT s = 4n + 1, for some positive integer n, define

(Xi, Vi, a2i-l)
(Xi-l,Yi-l,-a4n+5-2i)

( Xi-t,Yi-t,a 2i-4n-4)

(Xi-2,Yi-2,2a2n+2)

(Xi-2,Yi-2,-2a2n+2)

(Xi-a,Yi-a,-aSn +lO-2i)

1 Si S n + 1
n+2 $i $ 2n+2

2n + 3 $i $ 3n + 2
i = 3n+ 3
i = 3n +4

3n + 5 $i $ 4n + 4,
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and if s = 4n + 3, for some positive integer n, define

A i =

(Xi, Yi, a2i-l)
(Xn+l ,Yn+! ,2a2n+3)
(Xn+2 ,Yn+2,- 2a2n+3)
(Xi-2, Yi-2, -a4n+9-2i)
(Xi-2, Yi-2, a2i-4n-S)
(Xi-3, Yi-3, -aSn+!4-2i)

1 ~i ~ n + 1
i=n+2
i=n+3

n+4 ~i ~ 2n+4
2n +5 ~i ~ 3n +5
3n + 6 ~i ~ 4n + 6.

FIGURE 2.

(a i+3)! 0
,,.,,

,,,

FIGURE 3.

(-ai+1) .-------._.. - ... (-ai+2)

Co"~"~,
,,..,,
A': (-ai+3)

,

Then the projection of the (s + 3)-gon A 1A2 ••• A s+3 into the XY­
plane is a regular s-gonal star as in Figure 2. In Figure 2, at each thick
vertex there are two vertices overlapped. It is clear that every crossing,
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except three (which are circled in Figure 2), in the projection is as in
Figure 3, where the labels in parentheses represent the z-cooqlinates.
Choose points F and G on AB and CD, respectively, so that F B =
tAB and CG = tCD. Then the intersection AB n CD is the point
E = AF n GD. Noitce that F and G have the same z-coordinate
±t (2i 3 +4i + 3). Therefore CD crosses over AB at E. With similar
computations on the three exceptional crossings of Figure 2, we can see
that projection is an alternating diagram so that it represents a copy
of T2 ,s. 0

COROLLARY 7. P(T2 ,s) = 8.

THEOREM 8. Hr and s are relatively prime integers satisfying 2 :$
r < s, then

P(Tr,s):$ rmin{nln > 2s}.
r

Proof. Let m = min{nln > 2;}. For j = 0,1, ... , mr - 1, define

(
2rrj rr 2rrsj

Pj = cos -(L + 2sec - cos --),
m m mr

. 2rrj rr 2rrsj . 2rrSj )
srn --(L + 2sec - cos --), srn -- .

m m mr mr

We will show that the mr-gon k = POP1 ••• Pmr- l is a copy of Tr,s if
L is large enough. Let ko be the regular m-gon with vertices at

(
2rrj . 2rrj )

Q j = L cos -;;;:-' L sm -;;;:-, °
for j = 0,1, ,m. Let Bj be the set of r edges of k around QjQj+l'

for j = 0,1, , m - l.
For u = 0,1, ... , r - 1, define

(
2rru. 2rru rr 2rru )

au(x, t) = cos(x + -), sm(x + -), L - ttan - cos(x +-) ,
r r m r

(
2rru. 2rru rr 21l"u )

bu(x, t) = cos(y +-), sm(y + -), -L + ttan - cos(y +-) ,
r r m r
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where 0:::; t:::; 1 and y = x + ~:. Let lu(x,t) denote the line segment
joining au(x, t) and bu(x, t) and let B(x, t) = {lu(x, t)IO :::; u :::; r-l}.It
is not hard to see that there is a rigid motion of R 3 mapping B( ~: j, 1)
onto Bj. To show that k is a torus knot Tr,s, it is enough to show that
lu(x, t) and Iv(x, t) do not intersect for sufficiently large L. Let duv(x, t)
denote the distance between the line segments lu(x, t) and Iv(x, t). Then

duv(x, t)

_ I{(au(x, t) - bu(x, t» x (av(x, t) - bv(x, t»} . (au(x, t) - av(x, t»1
lI(au (x, t) - bu(x, t» x (av(x, t) - bv(x, t»1I

It is a good exercise in Vector Calculus and Trigonometry to compute

li d ()
7rS • 7rIU - vi

m uv x, t = 2 cos - sm .
L-+oo mr r

Notice that this limit is independent of x and t, and is positive if u f= v.
o

COROLLARY 9. For any positive integer r,P(T2r+l,3r+d is either
6r + 2 or 6r + 3.

Proof. Notice that min{2(2r + 1),3r + I} = 3r + 1 and min{nln >
2(3r + 1)/(2r + I)} = 3. According to Corollary 5 and Theorem 8, we
have 6r +2 ::; P(T2r+1,3r+d :::; 6r + 3. 0

THEOREM 10. Let W s be the Whitehead-double of the unknot hav­
ing crossing number s for s ~ 3. Then peWs) :::; s + 3.

Proof. By Corollary 2, P(W3 ) = 6. As mentioned in [2,Theorem 6],
P(W4 ) = 7, and peWs) ~ 8. Figure 4 shows the projection oftheoctag­
onal knot with vertices at (5,8,0),(5,0,0),(1,7,8),(7,7,-5),(7,2,5),
(3.5,4.5, -3), (6.5, 4.5,1) and (3,8,1), into the xy-plane.
Hence P(Ws) = 8.
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For s = 6,7,8, ... , we construct W" as follows. For n ~ 1, let
ai = ti(i - 1) and let Ci = (cos ~i:l"7r, sin ~i::7r). If s = 4n for some
integer n ~ 2, define

Ai=

(C2i-1, a2i-l)
(HC2n- 1 + 3C2n+1), a2n+d

(C4n+4-2i, a4n+4-2i)

(C4n+4-2i, -a2i-4n-3)

(HC2- 2n + 2Cl - 2n + C-2n ), a2n+d

((0,0), a2n+l)

(t(C3- 2n + C l - 2n), -a2n)

(C2i-8n-7, -a8n+8-2i)

if 1 ;:;i ;:; n

if i = n + 1
if n + 2 ;:;i ;:; 2n + 1
if 2n + 2 ;:;i ;:; 3n + 1
if i = 3n + 2
if i = 3n + 3
if i = 3n + 4
if 3n + 5 ;:;i ;:; 4n + 3.

If s = 4n + 1 for some integer n ~ 2, define
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(C2i-b a2i-l)
(f(C2n- 1+ 3C2n+I), a2n+l)
(C4n+4-2i, a4n+4-2i)
(C4n+4-2i, -a2i-4n-3)
(!(C2- 2n + C-2n ), -a2n+l)
«0,0), a2n+l)
(f(Cl - 2n + 2C_2n + C-1- 2n), a2n+l)
(C2i-Sn-9, -aSn+lO-2i)

if 1 ~i ~ n
if i=n+l
if n + 2 ~i ~ 2n + 1
if 2n + 2 ~i ~ 3n + 1
if i = 3n +2
if i = 3n +3
if i = 3n +4
if 3n + 5 ~i ~ 4n +4.

IT s = 4n + 2 for some positive integer n, define

(C2i-b a2i-l)
(f(C2n- 1 + 3C2n+l), a2n+I)
(C4n+4-2i, a4n+4-2i)
(C4n+4-2i, -a2i-4n-3)
(f(C-2n +2C-1- 2n +C-2- 2n), a2n+l)
«0,0), a2n+I)
(!CCl - 2n + C-1- 2n), -a2n+2)
(C2i-Sn-ll, -aSn+12-2i)

IT s = 4n + 3 for some positive integer n, define

(C2i-b a2i-l)
(f(C2n- 1+ 3C2n+l), - a2n+l)
(C4n+4-2i7 a4n+4-2i)
(C4n+4- 2i, -a2i-4n-3)
(!(C-2n +C-2- 2n), a2n+3)
«0,0), a2n+l)
(f(C-1- 2n +2C-2- 2n +C-3- 2n ), a2n+l)
(C2i-Sn-13, -aSn+l4-2i)

if 1 ~i ~ n
if i=n+l
if n + 2 ~i ~ 2n + 1
if 2n + 2 ~i ~ 3n + 2
if i = 3n + 3
if i = 3n +4
if i = 3n +5
if 3n + 5 ~i ~ 4n +5.

if 1 ~i ~ n
if i=n+l
if n + 2 ~i ~ 2n + 1
if 2n + 2 ~i ~ 3n + 2
if i = 3n +3
if i = 3n +4
if i = 3n + 5
if 3n + 5 ~i ~ 4n + 6.

Then the projection of the (s +3)-gon k = A1A2 ••• AS+J into the xy­
plane is, if s = 11, as in Fi~e 5. An argument as in the proof of
Theorem 6 shows that the projection is an alternating diagram so that
k represents a copy of Ws • 0
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FIGURE 5.

THEOREM 11. Let ~(a1,a2, ... ,an) denote the pretzel knot (or
link) of type (all a2, .. . ,an)' Then

n

P(~(a1,a2, ... ,an)) ~ n+ L lail·
i=l

FIGURE 6.
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Proof. We construct an (n + I:~1 laiD-gon whose projection into
the xy-plane is as in Figure 6. Figure 6 shows the case (aI, a2, ... , an) =
(3,4,5,3,5) SO that (n + I:7=1 6n laiD = 25. It is not hard to choose
the z-coordinates of the vertices so that the polygon is actually a copy
of E (al, a2, ... , an). See [4] for detail. 0

4.The polygon index of composite knots

Let k#l denote the connected sum of k and 1. A vertex of a polyg­
onal knot willl be call1ed. an external vertex if it is contained in the
boundary of the convex hull of the knot.

THEOREM 12. Let k and 1be knots. Then P(k#l) ::; P(k) +P(1) - 2.

Proof We may assume that k and 1 are polygonal knots with ver­
tices Po, ... , Pp(k)-1 and Qo, . .. , QP(l)-b respectively, such that Qo
is external. By affine transformations of R 3 , we may assume that
LPp(k)-IPOPl and LQP(I)-IQOQl are right angles. By resizing, if
necessary, we may put k and 1 together so that

(i) k n1= Po = Qo, where I is the convex hull of 1,
(ii) Pp(k)-I, Po and Ql are on one line,

(iii) QP(l)-b Qo and PI are on one line.

Now we can choose a point R near PI so that the curve obtained
by joining the points R, P2, ••• , Pp(k)-I, Ql, ... , QP(I)-I, R by straight
edges in that order is the connected sum k#l. Therefore p(k#l) ::; P(k)+
P(l) -2. 0

An edge of a polygonal knot will be called an external edge if it is
contained in the boundary of the convex hull of the knot. An edge of
a polygonal knot k = VI V2 ... Vn, say V2V3,is of positive type if

(VI~ X V2t{)· V3~ > 0,

and of negative type if



Polygonal Knots 381

THEOREM 13. Let k and 1 be knots. If k admits a minimal polygo­
nal embedding which has an external edge, then P(kUl) ~ P( k)+P(1)­
3. Furthermore, if 1 admits a minimal polygonal embedding such that
one of the edge is of the same type with the external edge for k, then
P(kUl) ~ P(k) +P(l) - 4.

Proof. Suppose that k has a minimal polygonal embedding k 1 =
P1P2 ... Pn such that the edge P2P3 is external, say, of positive type.

Let 1have a minimal polygonal embedding 11 = Q1 Q2 ... Qm. Choose
an external vertex, say Q2. By pulling Q2 outward from the convex hull
without making crossings of edges, we may assume that there is a plane
B which separates Q2 from all other vertices of 11 , We choose a point
Q2' near Q2 so that 12 = Q1Q2,Q2 ... Qm still represents 1 and the
edge Q2,Q2 is of positive type.

Since the edge P2 P3 is of positive type, there is an orientation pre­
serving nonsingular affine transformation T of ]R3 such that the lines

T(P1P~) and T(P3P~) are equal to the lines (hQ~ and Q1Q2:' respec­
tively. Furthermore, if we make det T small enough, we may place all
T(Pi)'S on one side of the plane B where Q2 is. Then it is clear that
the (m+n -3)-gon T(PdQ3Q4". QmT(P4)T(Ps) ... T(Pn ) represents
the knot kUl. This proves the first part of the theorem.

Suppose that it has an edge of positive type, say Q2Q3' By apply­
ing the Gram-Schmidt orthonormalization processes if necessary, we

---+ ---+ --+ ---+ --=-----t ---+
may assume that {P1P2, P2P3 , P3P4} and {Q1Q2' Q2Q3' Q3Q4} are
orthonormal sets. By moving vertices Qs, ... , Qm if necessary we may
further assume that a thin cylindrical neighborhood of radius € of the
~ --

line Q2Q3 does not intersect the edges Q4QS,.'" Qm-1Qm, QmQ1'
By an affine transformation which radially shrinks the planes perpen­
dicular to P2 P3 , we may put k1 inside a cylinder of diameter € so
that the edge P2P3 is a part of longitudalline of the cylinder. Then
there is a rigid motion of]R3 which moves k1 so that P2 = Q3, P3 =
Q2, hp~ = Q3Q~ and (JtQ; = P3P~. Then the (m + n - 4)-gon
P1Q4QS··. QmQ1P4 ... Pn represents kU/. This proves the second part.
o

Figure 7 shows projections of the octagonal knots with vertices
at (-2,1,1), (2, -1, 1), (1,1, -1.9), (1, -1, 1.9), (2,1, -1), (-2, -1, -1),
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(-1,1,1.9), (-1, -1, -1.9), and (-2,1,1), (2, -1, 1), (1,1, -1.9), (1, -1,
1.9), (2,1, -1), (-2, -1, -1), (3, 3, 3.1), (3, -3, -3.1), into the xy-plane.
It can be easily checked that the knot on the left is a square knot and
the one on the right a granny knot. As mentioned in [2,Theorem 6],
the unknot, the trefoil knots and the figure eight knot are the only
knots with polygon indices less than 8. Therefore the square knot
and the granny knot have polygon index 8. These are the cases that
P(kUI) = P(k) + P(I) - 4.

FIGURE 7

It is not hard to see that the polygonal torus knots Tr,s as con­
structed in the proof of Theorem 8 have no external edges for r ~ 3. It
is not known whether there actually exist knots all of whose minimal
polygonal embeddings have no external edges. We guess that some
torus knots k and 1satisfy

P(kUl) = P(k) +P(I) - 3.

We also guess that

3 ~ P(k) +P(I) - P(kUl) ~ 4

for all knots k and I.
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