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UNIQUENESS THEOREMS IN THE AMBROSETTI

TYPE SEMILINEAR WAVE EQUATION
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1. Introduction

The uniqueness theorem is important in the study of differential
equations. In this paper we deal the uniqueness theorem in the Am­
brosetti type semilinear wave equation,

Utt - Uxx +au+ - bu- = !(x,t) in (c,d) x R.

u(c,t) = u(u,t) = 0

u(x, t + T) = u(x, t),

(1.1)

(1.2)

where the period T is given.
For simplicity, we consider only the case T = 7r. By obvious changes

of variavles, Problem (1.1) can be reduced to

Utt-uxx+au+-bu-=!(x,t)in (-i,i) xR

u(±i,t) =0

u(x, t +7r) = u(x, t)

Here u+ is a upward restoring force and u - a downward restoring force.
We shall assume that ! is even in x and periodic in t with period 7r,
and we shall look for 7r-periodic solutions of (1.2).
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2. The Banach space spanned by eigenfunctions and uniqu­
eness theorems

In this section we investigate the properties of the Banach space
spanned by the eigenfunctions of the wave operator and we prove the
uniqueness theorems in a semilinear wave equation.

Let L be the wave operator, in R2,

Lu = Utt - U zz•

When U is even in x and periodic in t with period 'If, the eigenvalue
problem for u(x, t)

LU=AU In (-~ ~) xR
2' 2 '

(2.1)

U(±i,t) =0

has infinitely many eigenvalues

(m,n = 0,1,2,···)

and corresponding normalized eigenfunctions tPmn, 'l/Jmn (m, n $ 0)
given by

V2tPOn = - cos(2n + l)x
'If

2
tPmn = - cos2mt· cos(2n + 1)x

1f

tPmn = ~ sin2mt· cos(2n + 1)x
'If

Let n be fixed and we define

for n ~ 0,

for m > 0, n ~ 0,

for m > 0, n ~ o.

A~ = infpmn: Amn > o} = 4n + 1,
m

A; =sUPPmn : Amn < o} = -4n - 3.
m

(2.2)

(2.3)
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Letting n --+ 00, A;t --+ +00 and A; --+ -00. Hence we can know
that the only eigenvalues in the interval (-15, 9) are given by

A32 = -11 < A2I = -7 < AIO = -3 < Aoo = 1 < All = 5.

[ ~~] [~~] .Let Q be the square - 2" 2' x - 2" 2' and Ho the Hllbert space

defined by
Ho = {u E L 2(Q): u is even in x}.

The set offunctions {tPmn, tPmn} is an orthonormal base in Ho. Let us
denote an element u, in Ho, as

and we define a subspace H of Ho as follows

Then this is a complete normed space with a norm

Since IAmnl ~ 1 for all rn, n, we have that

(i) IlIulll ~ lIull, where lIull denotes the L2 norm of u,
(ii) lIull = 0 if and only if IlIull! = 0,

(iii) Lu E H implies u E H.

We note that 1 belongs to Ho, but does not to H. Hence we can see
that the space H is a proper subspace of Ho. The following lemma is
very important in this paper.

LEMMA 2.1. Let c be not an eigenvalue of L. Let u E Ho. Then
we have (L + C)-I U E H.

Proof. Suppose that c is not an eigenvalue of L and finite. When
n is fixed, A;t and A; were defined in (2.2) and (2.3)

A~ = 4n + 1,
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..\;; = -4n - 3.

We see that ..\;t ---t +00 and ..\;; ---t -00 as n ---t 00. Hence we
know that the number of {..\mn : I..\mnl < lel} is finite, where ..\mn is an
eigenvalue of L. Let

Then

(L + C)-lu = L (..\ 1 hmntPmn +..\ 1 kmntPmn) .
mn +c mn+ c

Hence we have the inequality

III(L + c)-lulll = L I..\mnl (..\mn
1
+ c)2 (h~n + k~n)

~ CL(h~n + k~n)

for some C, which means that

o

With the above Lemma 2.1, we can obtain the folloing lemma.

LEMMA 2.2. Let f(x, t) E Ho. Let a and b be not eigenvalues of
L. Then all the solutions in Ho of

Lu + au+ - 00- = f(x, t) ill Ho

belong to H.

Let Itl and 1t2 be eigenvalues of L such that there is no eigenvalue
in between Itl and 1t2. Then we have the uniqueness theorem.

THEOREM 2.1. Let f(x, t) E Ho and -It2 < a, b < -Itl. Then the
equation

Lu + au+ - bu- = f(x, t) (2.4)
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has a unique solution in Ho. Fhrthennore this equation (2.4) has a
unique solution in H.

1
Proof. Let f(x, t) E Ho and -P2 < a, b < -PI· Let 6 = -'2(P1 +

P,2). The equation (2.4) is equivalent to

u = (L + 6)-1[(15 - a)u+ - (6 - b)u- + f(x, t)],

where (L+c5)-l is a compact, seH-adjoint, linear map from Ho into Ho

with norm 2 . We note that
P2 - PI

11(6 - a)(ut - ut) - (6 - b)(u; - ut )1I ~ max{16 - ai, 115 - bl}lIu2 - u111
1

< '2(P2 - pdllu2 - u111·

It follows that the right hand side of (2.4) defines a Lipschitz mapping
of Ho into Ho with Lipschitz constant 'Y < 1. Therefore, by the con­
traction mapping principle, there exists a unique solution u E Ho of
(2.4).

On the other hand, by Lemma 2.2, if f(x, t) E Ho then we know
that the solution of (2.4) belongs to H. 0

We now state a symmetry theorem which was proved in [4].

THEOREM A. AssumethatL: V(L) C L2 (0) ---+ L2(0) is a linear
self-adjoint operator which posseses two closed invariant subspace HI
and H 2 = Ht. Let (7 denote the spectrum ofL and (7; the spectrum of

LIH; (i = 1,2; (7 = (71 U (72). Let ~~(u,x) == fu be piecewise smooth

and assume that fu E [a, b] for all u ER. and x E O.
If [a, b] n (72 = tP and if the Nemytzki operator u ~ Fu = f( u(x), x)

maps HI into itself, then evelY' solution of

Lu = f(u,x) ill

is in HI.

With the Theorem A, we have the follwing theorem, which is im­
portant in the study of nonlinear oscillations in the wave of a string

Lu+au+-bu-=f(x,t) In H (2.5)



342 Q-Heung Choi, Sang-Kyu Bahk, Jongsik Kim and Tacksun Jung

THEOREM 2.2. Let -1 < a, b < 7. We assume that

1 1
va+T + VbTI =1= 1. (2.6)

Then the equation

Lu + au+ - 00- = 0 ill Ho (2.7)

has only the trivial solution u == O.

Proo/. The space H 1 = span{cos x cos 2mt : m ~ O} is invariant
under L and under the map u 1-+ au+ - bu-. The spectrum U1 of L re­
stricted to H1 contains '\10 = -3 and does not contain any other point
in the interval (-7, 1). The sectrum Uz of L restricted to H z = Ht
does not intersect the interval (-7,1). From Theorem A, we conclude
that any solution of (2.7) belongs to H1 , i.e., it is of the form yet) cos x,
where y satisfies

y" + y + ay+ - by- = 0, (2.8)

since cos x is positive in the interval (-"i, "i) .Any nontrivial periodic

solution of this equation is periodic with period

7r 7r

Ja+T + VbTI =1= 7r.

In fact, if Y1 is a solution (with period ~) of y" + (a + l)y = 0
a+1

and yz is a solution (with period~) of y" +(b+ l)y = 0, then the
b+1

only nonzero candidate y = Y1 + - yz - is a nonzero solution of (2.8)
when y and y' has no discontinuity. This candidate y must be periodic

with period·~ +~. This shows that there is no nontrivial
a+1 b+1

solution of (2.7). 0

The condition (2.6) is essential. When

1 1
Va + 1 + Vb+I = 1,

we can construct a nontrvial solution Uo of (2.7) and any kuo(k > 0)
becomes a nontrivial solution of (2.7).
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THEOREM 2.3. Let j.Ll and j.L2 be the nearest eigenvalues to the left
and right of Amo(m 2:: 2), respectively. Let -j.L2 < a < AmO < b < -j.Ll·

Then the equation (2.7) has only the trivial solution.

Proof. We can know that

1 + 1
r:::-I1 rz:-;--;- < 1,

ya+1 yb+1

since m 2:: 2. Hence, if we follow the proof of Theorem 2.2, 'we can
obtain Theorem 2.3. 0
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