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ON THE MINIMIZERS OF CERTAIN

SINGULAR CONVEX FUNCTIONALS

HI JUN elIOE

l.Introduction

In this paper the minimizers of singular functionals are considered.
Suppose that 0 is a bounded, open, convex subset of Rn and f : 0 --+ R
is smooth and uniformly strictly convex. Suppose further that f 2:: 0
and

lim f(P) = 00.
p ......ao

Set f(P) = 00 for all P E Rn \ o.
For example, f can be one of the following:

or
1 1

f(P) = 1 _ Pl + 1 _ Pi' 0 = (-1,1) x (-1,1).

Consider the functional

I(u) = fnf(Du)dx

defined for appropriate u : n --+ R, where n is a bounded, open subset
of Rn with smooth boundary.

Suppose that Uo E W 1,2(n) and I(uo) < 00. Then Uo is Lipschitz
on the closure of n and it is relatively easy to see that there exists a
unique u E Uo + W~,2(n) such that

I(u) ~ I(v)
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for all v E uo + w~,2(n). Of course, u is Lipschitz on the closure of
n with u = Uo on an and minimizes I among all such functions. The
:first question addressed is that of the regularity of Du.

Suppose that Uo satisfies the following "bounded slope condition":
there exists a constant M such that for each point Xo E an, there exist
linear functions 'IT± such that

and

'IT-(x - xo) ::; uo(x) - uo(xo) ::; 'IT+(x - xo)

for all x E an. Then it is shown that u E cl,O'(n) for any a E (0,1).
In fact, f(Du) is bounded, and since f is smooth, it follows that u E
COO(n).

This seems to be the first regularity result of this type, i.e., where
the function f exhibits this type singular behavior. The study of this
question is motivated by models for hyperelastic materials (see Ball
[1]) in which one is lead to consider minimizers of functionals over
vector-valued mappings where the integrand exhibits a certain type of
singular.behavior..

In case Uo does not satisfy the bound~dslope condition given above,
then the corresponding minimizer need not be in Cl. An example is
given, in case n = 2,

with n an open ball in R 2• The minimizer fails to be in Cl exactly on
a line joining two points of an.

For systems, it is known that minimizers need not be Cl even if f is
uniformly strictly convex on all of Rn with bounded second derivatives.
In case n = 1 and f depends on u and Du, J. M. Ball and V. Mizel[2]
have given examples showing that singularities can occur in the interior
of n. As far as we know the examples given here are the first in the
higher-dimensional scalar case showing that singularities can occur in
the interior even if f depends only on Du.
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2. Existence and uniqueness

Suppose that 0 is a bounded open convex subset of Rn and that
f : 0 -t R is C2

( 0) and for some constant A > 0,

82

8Pi8Pj f(P)€i€j ~ A I € 1
2

for all P E 0, €E Rn. Suppose further that

(2) lim f(P) = 00
p-ao

and f(P) = 00 for all P E Rn \ O.
Suppose n is an open connected subset of Rn. Suppose Uo E

WI,I(n; R) and

I[uo] = ~ f(Duo)dx < 00.

LEMMA 1. Let K = {v E Uo + WI,I(n) : I[v] < oo}. Then K is
convex.

proof Let VI, v2 E K, then for each 0 :::; t :::; 1, tVI + (1 - t)V2 E
Uo + W~,I and I[VI], I[v2] < 00. Since f is convex, we have

I[tVI + (1 - t)V2] = l f(tDvI +(1 - t)DV2)dx

:::; t~ f(DvI)dx + (1 - t)~ f(Dv2)dx < 00.

So tVI + (1 - t)V2 E K and K is convex.

Since 0 is bounded, K is a bounded subset of WI,p for all 1 :::; p :::;
00. Since any convex function is bounded below, we assume that f is
nonnegative and f(O) = 0 is the minimum of fin O. The next theorem
proves that I is weakly sequentially lower semicontinuous in WI,I(n).
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THEOREM 1. Suppose that u, Un E K for each n and Un ->. U weakly
in W1,1(D) for each D cc n. Then

(3) I[u]::; lim inf I[u n ].
n-+oo

proof. Let d = dist(D, on) and 4> be a nonnegative smooth function
supported in the unit ball such that

r 4>(x )dx = l.iRn
, Define wp(x) by

(4) 1 1 x-yWp(X) = n 4>(--)w(y)dy
P Rn p

for each function w E W1,1(n) and p > O. Since Du p~ Du almost
everywhere in D as p ~ 0 and j is continuous, we have

j(Du p) ~ j(Du)

almost everywhere in D as p ~ O. Sin.ce f is nonnegative,

I[u : D] = r j(Du)dx::; lim inf r j(Dup)dxiD p-+o iD
by Fatou's lemma. From Jensen's inequality, we have

and

on D, for each nand p < d.
So we see that
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Since Dun ........ Du weakly in L1(D') for each D CC D' cc 0, Dun,p-+
Du p pointwisely in D cc 0 as n -+ 00. Thus, combining the previous
inequalities, we have

I[u p : D] = iD f(Dup)dx

= f lim inf f(Du n p)dx
JD n - oo '

S lim inf f f(Du n p)dx
n-oo JD '

S lim inf f f(Dun)dx.
n-oo Jo

So we have

I[u : DJ = £f(Du)dx

Slim inr! f(Dup)dx
p-O D

S lim inf f f(Dun)dx.
n-oo Jo

Since D is chosen arbitrarily, we have

I[u : 0] = I[u] S lim inf I[un]
n-+oo

and I is lower semicontinuous.

Now we prove the existence and uniqueness of the minimizer. The
theorem follows essentially from the weak compactness of the bounded
subset of W 1,2(O).

THEOREM 2. Let It = infvEK I[v]. Then there is a unique u E K
such that

I[u] = It.

proof We note that It is a finite number, since I is convex and
Uo E K. Let {un} be a sequence in K such that I[u n] -+ It as n -+ 00.

Since K is a bounded subset of WI,2(O), there is a subsequence {UnA:}



320 Hi Jun Choe

such that Unj, --" u weakly in W 1,2(11) for some u E Wl,2(11) as k --t 00.

We see that u - Uo E W:'\11). From the lower semicontinuity of I we
have

So I[u] = Jl from the fact that Jl = infvEK I[v].
We prove the uniqueness by using the strict convexity of f and a

variational inequality which the minimizer u satisfies. First we show
that u satisfies a variational inequality. Suppose that v E K. Then
I[v] < 00. Since j is convex,

j(Dv(x)) _ j(Du(x)) ~ f(Du(x) + t(Dv(x) ~ Du(x))) - j(Du(x))

for all x E 11 and 0 < t S 1. Moreover we see that

Ft(x) = j(Du(x) + t(Dv(x) - Du(x))) - f(Du(x))
t

is monotone decreasing as t --t o and Ft(:I;) converges to jp;(Du(x))
(Div - DiU) for almost all x E 11. Since Ft(x) S j(Dv(x)) - j(Du(x))
for all x E 11 and Ft converges to f Pi (Du(x))(D iV - DiU) monotonically
as t --t 0, by the monotone convergence theorem, we have

Since I[v] - I[u] ~ In Ft(x) ~ 0 for all 0 < t S 1,

for all v E K.
Let I[u] = I[v] for some v E K. Then since j is strictly convex, we
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have
o=I[u] - I[v]

= 10 [J(Du) - J(Dv)] dx

= 1oJp;(Du)(Div-Diu)dx

+ i 1\1 - t)Jp;Pj (Du + t(Dv - Du))dt

X (DiV - DiU)(Djv - Dju) dx

2:~A 10 1 Du - Dv 1
2 dx.

Since u - v E W~,2(O), from Sobolev's inequality,

11 u - v Ib~ c 11 Du - Dv 112= 0

for some C, where 11 u 112 is L2(O) norm of u.

3. Approximation

We approximate J with functions JP which grow quadratically by
using the implicit function theorem.

Let E p = {P E Rn : J(P) ~ p}. Then E p is a strictly convex,
bounded and closed subset of Rn.

Now we construct a uniformly strictly convex function with quadrat­
ic growth. First we recall the Implicit Function Theorem.

LEMMA 2. Let 9 E C 2 and Dyg(xo, Yo) f: O. Then there exists a
function h(y) such that Xo = h(yo) and g(h(y),y) = 0 in some neigh­
borhood U of Yo. Moreover hE C 2(U).

The following theorem is fundamental to the approximation.

THEOREM 3. Suppose 9 E C 2(Rn
) and

(5)
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for some v > 0 and all P, eE Rn. Suppose further that g(0) = 0 is the
minimum. Define by r(P) > 0

P
g( r:::iD\) = C > 0

yr(P)

for all P E Rn \ {O}. Then rep) E C 2(Rn \ {O}) and

(6)

for all P, eE Rn \ {O}. Moreover VI and V2 depend only on c and v.

proof. We see that 9 is radia1ly strictly increasing. Since we are
assuming r > 0, reP) is well defined for all P E Rn \ {O}. By differen­
tiating g( St.) with respect to r, we have

for all P E Rn \ {O}. So, from Lemma 2, reP) E c 2 and

P
g( r.::Tii\) = c.

yr(P)

Define

We see that

and hence that
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Setting T = gjPj and differentiating with respect to Pk,

Substituting rk = 2ffTr, we have

~T2rik~i~k =Tyrgik~iek - yrgi/p/9keiek + 2rgigk~i~k
yr

- yrgi9jkPjeiek + Tgj/P/Pj9i9keiek - rgigkeiek.

Let S = gi~i. Then, by using gik = gki, we have

We have for some M 1 ,M2 and M 3 , which depend only on c,

and
To< M 1 ::; ..;r ::; M 2

for all P E Rn \ {O}. Thus we have

rik~iek ::; V2 le 12

for all P, eE Rn where V2 depends on c.
Now we define h(e) and h(e) by

Since 9 is strictly convex,
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Let m = maxg(p)=c I P I. Then

_IS_P_I < .,..---,-Sm_
IeIT - IeIM I

for all P E Rn \ {O}. H I~I ~ ~, then

On the other hand, if I~I ~ ~, then

- v
h >­- M 2 •

Thus

where VI = min(:$, M2)' which depends only on v and c.

Now we approximate f. Let .,p : R --+ R be Coo such that

.,p(t) = 1

for t E (-00,0] and
.,p(t) = 0

for t E [1,00).
Define r(P) by

P 6
f( ..;:;:[p)) = p + 2".

From the definition of Ep+t and rep), we see that

8Ep+t = {P: rep) = 1}

and rep) E C 2 • Let b(P) = (r(P) -1)+. Then

b(P) = 0
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if P E Ep+~ and
b(P) = rep) - 1

if P E Rn \ E p+ ~ .

Now we regularize b(P) with €' as (4) and get b/(P) E Coo. Then
we see that b/ (P) satisfies the same growth condition as rep) if IPI is
large enough. So b/ (P) grows quadratically. Moreover b/ (P) = 0 for
PEEp and

1/1 I (1 2 :s b~',P;Pj(P)(i(j:S 1/21 (/2

for all P E Rn \ E pH for some 1/1 and 1/2 if €' is small enough.

THEOREM 4. Suppose that JP is defined by

(7)

for all P E Rn and for some J.l > O. If J.l is sufficiently large, then JP
satisfies the following ellipticity condition

(8)

for all P, ( E Rn and for some AI, A2 > 0 and JP(P) = J(P) for PEEp.

proof We note that b/ (P) = 0 and 'ljJ( !(P)-;p-f» = 1 for PEEp.
SO JP(P) = J(P) for PEEp. By differentiating JP with respect to Pi,
we have

and

!'J,iPj = ;2'ljJttJJpJpj+~J'ljJdp;pj + ~'ljJdpJpj
+'ljJJp;p). + J.lb/ p.p. (P)., . )

Since b/ is convex,

b/,P;p;(i(j ~ 0

for all PE Rn. Let P E E pH . Then'ljJ = 1, 'ljJt = 0 and 1/Jtt = O. Hence
we have
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for all eE Rn. Since I fp;Pj (P) I:::; M for some M and for all PE EpH'
we have

fp;Pjeiej :::; C I e1
2

for all eE Rn, where C depends on JL and M.
Let P E E p+28 \ EpH' Then we have

for all eE Rn. If PE E p+28 \ EpH, then

for some M. Hence if JL is large enough, we have that for all P E

E p+28 \ E p+8

for some C2 which depends on M and JL.
Since JLb€, p'. p. eieJ• :::; JLV2 I e12 and 1('lj;J)p; p.J• I:::; M for all P E

, • J

EP+8 \ E p, we have

where C3 depends on M and JL.
H P E Rn \ EP+28' then 'lj; = 0 and fP(P) = JLbl(P), Hence by

Theorem 3 we have

for all P, eERn.

4. Regularity

By using a maximum principle and existence theorem for quasilinear
elliptic equations due to P. Hartman and G. Stampaccia [3] we obtain
cl,Q(n) regularity for a minimizer if (uo, an) satisfies a certain bounded
slope condition.
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THEOREM 5. Suppose that n is a bounded open connected subset
of Rn with an E Cl,l. Moreover suppose that Uo satifies the following
"bounded slope condition" : there exists a constant M such that for
each point Xo E an, there exist linear functions 7f~ such that

and

(9)

for all x E an. Then the minimizer u with respect K is Cl,O(n) for all
O~a<l.

J. Moser observed in [4] that if v is a solution of a linear elliptic
equation

(10)

with a ij measurable and

for some positive constants Co and Cl, then for any convex function
h, h(u) is a subsolution of (10). We prove a similar theorem for the
derivatives of solutions of quasilinear elliptic equations.

THEOREM 6. Suppose that Ai E Cl(Rn) satisfies the following el­
lipticity condition:

(11)

for all P, eE Rn and for some positive constants Co and Cl. Moreover
suppose that 9 : R -t R is nonincreasing and in Cl.

Let v E W l ,2(n) be a solution to the quasilinear equation

(12) Di(Ai(Dv» + g(v) = O.

Suppose that G E C2(Rn; R) is a convex function with G(O) = 0 as
minimum. Then G(Dv) is a subsolution to

(13)
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proof. First we prove that v E Wl~:(11) by difference quotient argu­
ment.

Let 11' cc n and d < dist(11', (11). Let h :::; id and ek be k-th
direction unit coordinate vector for k = 1, ..., n. Let.,p E Coo(11),
ID.,p1 :::; ~ for some c and supp(.,p) ± idek C 11. We apply (v(x +hek)­
v(x)).,p2(x) as a test function to (12). Hence we have that

LV1i(Dv(x + hek» - Ai(Dv(x))]Di[(v(x + hek) - v(x».,p2(x)]dx

-l[g(v(x + hek» - g(v(x»)][(v(x + hek) - v(x».,p2(x)]dx = 0

for all k = 1, ... , n. Since 9 is nonincreasing, we have that

for all x E 11 and k = 1, ..., n. By using the ellipticity of Ai and the
equation we have

~~ LIDv(x + hek) - Dv(x)/2.,p2dx

:::; ;2lrAi(DV(X + hek» - Ai(Dv(x))][DiV(X + hek) - DiV(X)].,p2dx

:::; - :2 L[Ai(Dv(x + hek» - Ai(Dv(x»]

X [vex + hek) - v(x)]Di.,p(x).,p(x)dx

:::;2CI lIDV(X + he~) - Dv(x) 11 vex + he~) - vex) IID.,p(x)I.,p(X)dX.

Now by using Holder's inequality on the right hand side of the last
inequality, we have

f /Dv(x+hek)-DV(x)1
2

dx:::;":'- { /V(x+hek)-V(x)1
2

dx
ln' h d2 1n" h

, " 1 22for some n c 11 c 11, for all 0 < h < id and k. So v E W1o'c (11) and
we can differentiate formally with respect to Xk to obtain
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for each k. Let.,., be a nonnegative Cgo(O) function. Then

Since
Di(GP,,(Dv)',.,) = Gp"P,DiD,V.,., + Gp" (Dv)Di7J

and Gp" (Dv).,., E WJ,2(O), we have

l Ai,PjGp,,(Dv)DjDkVDi.,.,dx

=l Ai,PjDjDkVDi(GP,,(Dv).,.,)dx

-l Ai,PjGp"p,(Dv)DjDkVDiD,V.,.,dx

=l g' (V)DkvGp" (Dv).,.,dx -l Ai,Pj Gp" P, (Dv)DjDkVDiD,V.,.,dx.

Since G is radiallly increasing and g' ~ 0,

Since Ai,Pj and Gp" P, are positive definite matrices,

Therefore we have

LAi,Pj(Dv)DjG(Dv)Di1/dx ~ 0

for all nonnegative 1/ E Cgo(O). Hence G(Dv) is a subsolution to

and this completes the proof.

We have the following lemma for the solutions of homogeneous equa­
tions.
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LEMMA 3. Let v E W l ,2(n) be a solution to

wbere Ai : Rn ---t R satisfies tbe ellipticity condition (12). Let G :
Rn ---t R be convex and in Cl. Tben G(Dv) is a subsolution to

Since G(Dv) is a subsolution of a linear elliptic equation, we have a
maximum principle.

LEMMA 4. Let G and v E Cl(n) satisfy tbe same conditions as in
Tbeorem 6. Tben we bave tbe following maximum principle

(14) maxG(Dv) :::; maxG(Dv).
n an

proof Let M = maxan G(Dv) and w = (G(Dv) -M - €)+ for some
€ > O. Then we see wE Wg,2. So by using was a test function to (13),
we have

and

r ID(G(Dv»1 2 dx = O.
J{xEn : G(D1)(X»~M+<}

By using Sobolev inequality we have meas{x En: M +€ :::; G(Dv(x»}
= 0 for all € > O.

Now we prove Theorem 5 by using monotone operator theory as in
[3].

proof of Theorem 5. Let fP be the approximation of f in the theorem
4 such that fP(P) = f(P) for all PE {P : f(P):::; p}U{P : fP(P):::;
p} and let fP satisfy the quadratic growth condition. Let uP be the
minimizer of
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with respect to KP = {v E W 1 ,2 : v - Uo E W;,2}.
From section 2.1, we know that there exists a unique minimizer uP

for each p. Fix L ;::: 2M, where M is the constant defined in the
bounded slope condition of Theorem 5. We know that uL satisfies the
Euler-Lagrange equation

(15)

with u L - Uo E W~,2. We see that (uo,on) has the ordinary bounded
slope condition and

ID7I";o I~ C
for all x E an, where C is independent of Xo.

Since Uo is Lipschitz and (uo, an) satisfies the bounded slope con­
dition, there exists a w L E Cl,a(n) for all 0 ~ a < 1 which satisfies
the Euler-Lagrange equation (15) by the Theorem 13.1 and 14.1 in [3].
By the uniqueness, uL = w L. Since jL is convex, from the maximum
principle (Lemma 4), we see that

maxfL(Du L) ~ max fL(Du L).
n an

Since uL = Uo on an and 7I";o(x) ~ uL(x) ~ 7I";o(x) for all x E n,
a L ) a

01]u (xo = 01]uo(x o)

for all tangent vector 1] to an at Xo and

a + a L a
-71" < -u (xo) < -71"­aT XO - or - or XO

for all outward normal vector T to an at Xo. So we see that

DuL(xo) = tD7I";o + (1 - t)D7I";o

for some 0 ~ t ~ 1 and

jL(DuL(xo)) ~ tjL(D7I":a) + (1 - t)jL(D7I"~) ~ M

for all Xo E an. So
~axfL(DuL) ~ M.

Since fL(p) = f(P) if fL(p) ~ L, we conclude that f(Du L) ­
fL(Du L) for all x E n and hence uL E K. From the uniqueness of the
minimizer, u L = u and u is C1,a(n) for all 0 ~ a < 1.
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5. Counterexamples
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In this section we construct some counterexamples which exhibit
that if the boundary data do not satisfy the bounded slope condition.
Then a minimizer may not have a continuous derivative.

Let 0<8 < 1 and 0 = (-1,1) x (-1,1).
Let f : R 2 -+ R be a function such that

f(P) = (1- pi)-8 +(1- pi)-8

for all P E 0 and
f(P) = 00

for P E R2 \ O.
By direct computation, we have

fpt(P) = 28P1(1- p'f)-8-t,

fp
2
(P) = 28P2(1 - pi)-8-1,

fptpt(P) = 28(1- pi)-8-2(1 + (28 + I)P'f),

fpt P2 (P) = 0,

fp2 P2 (P) = 28(1- pi)-8-2(1 + (28 + I)Pi)

and we can see
fPiPj(P)~i~i ? 281~12

for all P E 0 and ~ E R2
•

Suppose n = (0, i) x (-1,1), 0 1 = (0, i) X (0,1) and O2 = (0, i) x
(-1,0).

We define Ilv} by

1 .1

I[v] = 114

f(Dv)dxdy
-1 0

for all v E W 1,oo. Let U1(X, y) = x(1 - y) in 0 1 = [0, i] x [0,1].
Now reflect U1 with respect to x axis and set Uz = x(1 + y) in Oz =
[0, i] x [-1,0]. Define u = U1 in 0 1 and u = Uz in Oz.
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LEMMA 5. Let w be any admissible function for l( i.e" w = u on
aO) and l[w] < 00). Then

w(x, 0) = x

for all 0 ::; x ::; t,
proof. We prove by contradiction. First we note that w is a Lip­

schitz function. Suppose that the lemma is false and we assume that
w(xo,O) > Xo for some Xo, where 0 < Xo < t. Define a= w(xo,O)-xo.
We regularize w with f as (4). Then w€ ~ w uniformly for all x E
0' cc 0 and by Jensen's inequality,

j(Dw€) ::; j(Dw)€ < 00

,
for all x E 0 if f is sufficiently small.

Let a1 > 0 be so small that

a
w(a}, 0) < 5

and let f be so small that

and

Then we see that

aIw€(aI,O) - w(aI,O) I::; 5

aIw€(xo, O) - w(xo,O) I::; 5'

w€(xo,O)-wiaI,O) 1 ~
-",--~.:...-.......,....-'-'-"';';""":'" > + °2

Xo - a1 -
for some a2 > 0 independently for all small f. So for some a1 ::; x1::; Xo

aw€( )
ax x},O > 1

and
j(Dw€(xI, 0)) = 00.

This contradicts the fact that

for all x E 0' CC O.
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THEOREM 7. u is a minimizer and Du is not continuous.

proof. By direct computation, we see that I[u] < 00 and u is an
admissible function. Moreover for all tP E Coo(Ol),

We have, by direct computation,

and

We see that u satisfies the Euler-Lagrange equation in 0 1 . Similarly
we see that u satisfies the Euler-Lagrange equation in O2 • Since every
admissible function must have the same data on the line y = 0, we
conclude that u is a minimizer.

Since
8u
-=-x
By

in 0 1 and
Bu
-=x
By

in O2 , Du is not continuous on the line y = O.

REMARK. We note that the minimizers do not have the unique con­
tinuation property.
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