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SUBMANIFOLDS WITH NONVANISHING
PARALLEL MEAN CURVATURE VECTOR
FIELD OF A SASAKIAN SPACE FORM

U-HaANG Kr1*, NAM-GIL KiM*,
SUNG-BAIK LEE AND IN-YEONG YOO

0. Introduction

The theory of a submanifold of a Sasakian manifold was investi-
gated from two different points of view, namely, one is the case where
submanifolds are tangent to the structure vector field, and other is the
case where those are normal to the structure vector field (cf. [1], 8],
[9]).

The purpose of the present paper is to study submanifolds tangent
to the structure vector field with nonvanishing parallel mean curvature
vector field immersed in a Sasakian space form.

In §1 we state general formulas on submanifolds of a Sasakian man-
ifold, especially those of a Sasakian space form. §2 is devoted to the
study submanifolds with nontrivial parallel mean curvature vector field.
Moreover, we suppose that the shape operator in the direction of unit
normals is parallel along the structure vector field of the submanifold.
We compute the restricted Laplacian for the shape opeator in the di-
rection of the mean curvature vector field in §3. As applications of
this, in the last §4 we prove our main theorems.

1. Preliminaries

In this section, the basic properties of submanifolds of a Sasakian
manifold are recalled [2], [3], [9].
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Let M be a Sasakian manifold of dimension 2m + 1 with almost
contact metric structure (¢,G,V). Then for any vector fields X and
Y on M, we have

$1X = —X + v(X)V, G(4Y,X) = G(Y,X) — v(¥ Jo(X),
v($X) =0, ¢V =0, v(V) =1, G(X,V) = v(X).

Since M is a Sasakian manifold, we obtain
(1.1) VxV = ¢X, (Vx9)Y = —G(X,Y)V + o(Y)X,

where V denotes the Riemannian connection of M.

Let M be an (n + 1)-dimensional Riemannian manifold covered by
a system of local coordinate neighborhoods {U; z"*} and immersed iso-
metrically in M by the immersion ¢ : M — M. When the argument

is local, we may identify M with i(M). We represent the immersion ¢
locally by

yAzyA(:z:l,"' ’mn+l)’ (A=1,-~,n+1,'-' ,2m+1)

and put B4 = 8;y4, (8; = 8/dz7) then B; = (B;*) are (n + 1)-
linearly independent local tangent vector fields of M. We choose 2m—n
mutually orthogonal unit normals C, = (C,*) to M. Throughout
this paper, the indices h, ¢, j,--- run over the range {1,--- ,n+1} and
u,v,w,--- the range {n+2,--.,2m+1} and the summation convention
will be used with respect to those indices.

The immersion being isometric, the induced Riemannian metric ten-
sor g on M and the metric tensor é of the normal bundle are then
respectively obtained :

gji = G(B]’ Bi), 5yr = G(Cy’ CI)'

In the sequel, we assume that the submanifold M of M is tangent
to the structure vector field V. Then we have

(1'2) V= §iBia &= G(Bia V)
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The transforms of B; and C, by ¢ are respectively represented in
each coordinate neighborhood as follows :

(1.3) $B; = f;'B; + J;*Cx,

(1.4) $C, = —J'B; + Q 'C,,
where we have put
fii = G(éB;, B;), Jjz = (¢B;,C;), Jz; = —G(¢C:, B;),

Qzy = G(#C:,Cy), f;* = fisg™, J;* = J546%%, QF = Q.:6%,

8¥* being the contravariant components of §,, and (¢’!) = (gji)_l.
From these definitions, we verify that f;; + fi; = 0, J;jz; = J;; and
Qty + Qyz =0.

In what follows we denote the index n + 2 by the symbol *.

By the properties of the Sasakian structure tensor, it follows from
(1.2), (1.3) and (1.4) that we have

(1‘5) fjtfth = -6],. + EJEh + Jj:']zh’ szQyz = _627. + Jthtz)
(1.6) £+ T0Q7 =0,

1.7 EI;7=0,¢f"=0, ¢ =1.

By denoting V; the operator of van der Waerden-Bortolotti covari-
ant differentiation with respect to g and G, the equations of Gauss and
Weingarten for the submanifold M are respectively given by

(1.8) V:,B. = 14]z ZCI, VJCJ’: = _Ajthh,

where A ;i © are the second fundamental forms in the direction of C,
and related by

Ajh:: — jizgih = AJ: ygihayz.
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Differentiating (1.3) and (1.4) covariantly along M and making use
of (1.1), (1.8) and these equations, we easily find

(1.9) Vifh =6 — gjul* + AP JT— Ay TN,
(1.10) Vit =4;707 - Ay o
(1.11) ViQ) 7 = A; °J) — Aj, J®.
We also have from (1.2)
(1.12) Vit = fji,
(1.13) A; T =T;"

because of (1.1), (1.3) and (1.8).

In the rest of this section we suppose that the ambient Sasakian
manifold M is of constant ¢-holomorphic sectional curvature ¢, which
is called a Sasakian sapce form, and is denoted by M2?™t1(¢c). Then
we see, using (1.2), (1.3), (1.4) and (1.8), that equations of the Gauss,
Codazzi and Ricci for M are respectively given by

(1.14)
1
Rijin = Z{c+ 3)(grngi — gingki) + Apn " Ajiz — Ajp " Aric
1
+ Z(C — 1)(€x€igjn — Ei€igin + Ej€ngri — Exngyi
+ fenfii — Finfei — 2fxj fir),

1
(1.15) Vi4;;*— VA" = Z(C — D)(J&" f3i — J;" Frei — 2% fxj),

1
(1.16) Rjiye = 7(¢ = W(Jjediy = JizJjy — 2f;iQyz)
+ AjtzAity - AitzA 't

7y
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where Ryjin and Rj;y, are the Riemannian curvature tensor of M and
that with respect to the connection induced in the normal bundle of
M respectively. We see from (1.14) that the Ricci tensor S of M can
be expressed as follows :

(1.17)
Rji = 1{n(c +3)+2(c — D}gsi - 7(e — D+ 266
= 2= VI i B Agie — A A
with the aid of (1.5), where A% = g7'4;;,.
2. Parallel mean curvature vector fields

Let H be a mean curvature vector field of M in a Sasakian manifold.
Namely, 1t is defined by

H=g"4;*C:/(n+1)=h*C;/(n+1),

which is independent of the choice of the local field of orthonormal
frames {C.}.

In the following we suppose that the mean curvature vector field H
of M is nonzero and is parallel in the normal bundle. Then we may
choose a local field {e,} in such a way that H = 6Cpr42 = 0C,, where
o = |H| is nonzero constant. Because of the choice of the local field,
the parallelism of H yields

{h‘: , z>n+3

(21) h*=(n+1)o.

Differentiating (1.13) covariantly along M and using (1.10) and
(1.12), we find

(VkAJ"‘I)Gr + Ajrszr = AkJ yQyt - Akrzfjr,
which together with (1.7) and (1.15) implies that

(2'2) frvrAjkx - Akj yQyz - Akr:fjr - Ajrszr-
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Thus, it is seen that h?Q,, = 0 since the mean curvature vector field
is parallel. Accordingly, by (2.1) we have

(2.3) Q. =0,
which join with the second equation of (1.5) imples
(2.4) JizJ7* =6

H being a normal vector field on M, the curvature tensor Rj;y, of

the connection in the normal bundle shows that Rji., vanishes identi-
cally for any index z. Thus the Ricci equation (1.16) yields

1
(2.5) Ajt;,;Ait* - Ait;,;Ajt* = Z(C - 1)(.]]'*],',; — Jixdjz)

because of (2.3).
From now on we suppose that the shape operator in the direction
of C; is parallel along the structure vector field £, namely,

(©) VAT =0.
Then we have by (2.2)
(2.6) Ajrafi" + Aira f;7 = Ay, YQys-

REMARK 1. A submanifold of a Sasakian manifold M is called a
generic submanifold if Q,, vanishies identically [7]. If a submanifold of
M is generic and A f = fA® holds for any index z, then the condition
(C) is satisfied because of (2.2). But, the converse assertion is not
always true.

By (2.6) the equation (1.10) is reduced to
(2.7) Vle'z == Air ::er.
Transvecting (2.6) with ¢/ and using (1.7) and (1.13), we find

Jrzfi T + JiZsz = 07
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which together with (1.6) gives
(2.8) JoofiT =0, JiQ =0.

Hence, from (1.5) we have f3 + f = 0 and Q*® + Q = 0, namely, f and
Q define the f-structure in M and that in the normal bundle of M
respectively [5]. In such a case M is called a contact CR submanifold
of a Sasakian manifold [8], [10].

Transforming (2.6) by f,' and making use of (1.5) and (1.13), we
get

(Ajerzr)sz + fchjz - Ajiz + J‘i.'rrzfjrfk‘.J = "Aj"zflcr rzv

from which, taking the skew-symmetric part with respect to indices j
and k and using (2.6),

(Ajrz D) = (A I+ 1T e — € Tks
= —24;r:fi" Q. — AjkwQ." Q.

If we transvect J, ¥ to above equation and make use of (1.5) and (2.8),
we obtain

(2.9)  Ajrzd,)” = PyooJ;” + €i(6y: + Q:2Q)7) — (4jrud, )R,V QS

where we have put Py,, = Aji,Jy‘Jzi and hence Py;;Qyy = 0. Thus,
by transvecting (2.9) with Qu.J;” and taking account of (2.8), we get

(2.10) Py.2Qus = 0.
From (2.9) we also have

(211) Aj,-*Jyr =Pyz*']jz+6y*£j
because of (2.3).
Multiplying J, Jy‘ to (2.5) and summing for j and ¢, we find

u* u* 1 * 71 ER )
Puz::Py — Pyy,P,"" = Z(c + 3){6, Jy Jzi — 5y J, i},
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where we have used (1.7), (2.4), (2.8), (2.10) and (2.11). Consequently

we have

1
(2.12) PyzzPyZ* - Pszz* = Z(C+ 3)(p —_ 1)63*,

*p z* z%x 1 i *0 %

where we denote P,** = P* and szJj‘ =p.
Differentiating (2.11) covariantly and substituting (1.12) and (2.7),
we find
(VkAjr *)Jyr + Ajr*Arsyfks = (Vkuz*)sz + Pyz*Ajr kar + 6y*fkj

and hence, taking the skew-symmetric part with respect to k and j
and taking account of (1.15), (2.4), (2.6) and (2.8),

(2.14) 24, Aoy fi* + AT 45raQF — 2Py AT
1
=(ViPyzu)J;* = (ViPyze)di™ + 5(c + 3)oysfis-

If we transvect f* to the last equation and make use of (1.5), (2.5)
and (2.8), we can get

A Arsy(g7* = €760~ J771.%)
* zf T j &7 jwr r 1 *
= P!Iz Ajr (gJ - -7 Jw ) + Z(C + 3)63/ (n _p)a
which together with (1.13), (2.1), (2.4) and (2.11) yields
-. 1
Aji *AJ' y = h* y** +Pzwszw* - Pszy* +26y* + Z(c+3)(n —p)6y*-
Thus, it follows that we obtain

(2.15) Aj; *A =R Py.+ %(n —1)(c+3)8," +26,
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because of (2.12).

For the shape operator A* in the direction of the mean curvature
vector field, a tensor field (A*)”" and a function h¢,) for any integer
a > 2 are introduced as follows :

(A )" = A7," 4, O AR, by = Z (4 )"
Thus, (2.15) implies that

1
(2.16) h(2) = h*P*** + Z(n — 1)(0 + 3) + 2.

3. Lemmas

In this section we prepare some lemmas for later use.

LEMMA 1. Let M be an (n + 1)-dimensional submanifold tangent
to the structure vector field of a (2m + 1)-dimensional Sasakian space

form. Suppose that the mean curvature vector field is nonzero and
parallel in the normal bundle. If V¢A* = 0 on M, then we have

1

(3.1)  Rj,A;" A’ — Ry AFP* AT = =

(c—1)*(n—p).
Proof. When y = % in (2.14), we have
24, Arsufy’

1
= (Vszt*)sz - (VjPzau)sz + 2Pz*xAjrszr + 5(0 + 3)fkj

because of (2.3). Transforming by A4,”*f*' and making use of (1.5),
(2.8) and (2.11), we find

Ajr*A"*Atj*(gat _ fsft _ JS‘IDJwi)
=Pz**Ajf-At]*(grt - frft - er']wt)
1 - w
+5(c+ A6 - &8~ 0T,
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which combine with (1.13), (2.4), (2.9), (2.10) and (2.11) gives forth
h(3) = sz*PzI*Pzw* _ Pzszxw*Pz** + P***
Z AJi%x 1 * *

If we take account of (2.13) and (2.15), then the last equation is reduced
to

(32) Ay = 1Pounl + 1(c+ 3)(n = 2DPuss + 1(c+ 3" +3Prss.
By using (1.13), (2.1) and (2.5), the equation (1.17) implies
Ry A% = (e +3) +2(c — 1}k — (e~ 1)(n +2)
. -Zi(c CVAFATTL T 4 Wby — A A AT AT
- ;li(c — DA A (Jrediz — Jindrz),
which together with (2.4), (2.10), (2.11), (2.12) and (3.2) leads to
RjoA** AT = %{n(c +3) + 2(c — 1)} heg) — %(c —1)(n+2)
(3.3) (1) - 2 (e=1)P*Prs — 3(c—1)(c+2)p
+ |R*Pousl? + %(c +3)(R*)’ + 3h* Pess
+ i—(e +3)(n — 2)h*Pyus — Aj, "Aigs AT AT

On the other hand, by means of (1.13), (2.4) and (2.15), the equation
(1.14) gives

Rijin AFM* AT = Z(c +3){(r*)? — Ay} + 5(e— 1)
* 3 * Aji%
(3.4) + |B* Pl + Z(C — 1) AR AT s
— Ajrz:AiszA”*Aji* + %(C + 3)(n — l)h*P***

1
+4h* Py + {Z(c +3)(n — 1) + 2}%
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By the way, making use of (1.5), (1.13), (2.4), (2.11) and (2.12) we
obtain

(3'5) Akh*AJ'*fk]fh! - h(Z) - PxPz** ol -4‘(6 —_ 1)(p — ].) —_ p — 1_
From the last three equations we easily see that
Rj A AT — Ryjin AF* A7
1 1
={7(c+3)n +1}(h@) = k" Pus) = 3(c = 1)(n +2)
1 2 1 . 1
+ 7= = {7(c+3)(n-1)+2}* - 5(c-1)
3 3 1
+ 5= D -+ Ze=Dp+1) - 3(c—1)(c+2)p,

which joined with (2.16) implies (3.1). This completes the proof.

LEMMA 2. Under the same assumptions as that in Lemma 1, the
function h(y) is harmonic.

Proof. By definition we have P,,, = Aji.J,'J.. Differentiation
covariantly we have

VkP*** = (vaji*)J*jJ*iv

where we have used (2.7), (2.8) and (2.11). Thus, the Laplacian of the
function P,,. is given by

AP,.. = (AA;i)T T+ 2(ViAji)J VT
which together with (1.5), (1.13), (1.15) and (2.7) gives
(3.6) APyy = (AA;i) T T — %(c _1)(h* — P).

Since the submanifold M has parallel mean curvature vector field,
the Laplacian AAj;, of A* is given , using the Ricci formula for A*
and (1.15), by

(3.7) AAjiw = Rj A;™ — RyjinA™™*

1
+ Z(C — DV  fii+ i fi* + 2T f;5).
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Thus, it follows that we get
(AA;; )T AT} = Rjp AT T, — Ryjin A 7.0,
3
+ (e = 1)(r" - P7)

because of (1.5), (1.7), (1.9), (2.7), (2.8) and (2.11). Therefore (3.6)

turns out to be
(3.8) APy = Rj;A;*J 7 J, = Ryjun AM*J 37,0+ %(c —1)(k* - P*).
From (1.17) we obtain

39)  RuJiAMIT

=h*—P*+ %(n — 1)(c + 3)Prss + h*|Prusl”

— P Pyz  P**°

because of (1.7), (1.13), (2.4) and (2.11). We also have by (1.14)
(3.10) Ryjind,t J, AR

= i—(c +8)(A* — Pasa) + Praadji: AT

AP T 4 W) (P T+ 87

= 2(c+3)(A" — Pu) + FIPoul®

+3(0 = 1)(c+8)Paws = Pusa P, " P7™,

where we have used (1.7), (1.13), (2.11) and (2.15).

Substituting (3.9) and (3.10) into (3.8) and taking account of (2.13),
we get AP,,, = 0. Thus, the equation (2.16) implies that Ah() = 0
because the mean curvature vector field is parallel. Therefore we arrive
at the conclusion.

LEMMA 3. Under the same assumptions as that in Lemma 1, we
have

(3.11) Vid;;* = —;11-(c — D)(Jjxfri + Jixfrj)-
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Proof. By (1.9) we have
Vifi¥ = n&i+ 2 Jiu — AiraJ,”
because of (2.1). Hence we have
APV fiF) = A Ajee i £ P (Paa 46 ) it 0 Jiam A7 T 21

by virtue of (2.7) and (2.11), or using (1.5), (1.7), (1.13) and (2.4) we
obtain

(3.12)
APEV(TjafiF)
= -h(2)+sz*sz* — P?®Pryx + h*Prs +n—p+2
= —z(e-D(n—p)

by means of (2.13) and (2.16).

Multiplying A7** to (3.7) and summing for j and i, and making use
of (3.1) and (3.12), we have

1 * 1
(3.13) AT*AA =_§@~1fm—p)
By the way, genera,l); we have
1 .. . .
38he) = AT AL "+ Vi, .

Thus because of Lemma 2 and (3.13), we obtain
1
(3.14) IVidjil® = gle- 1)*(n - p).
On the other hand, we easily verify that
Vid;; * 4 (e~ 1)(J; Jiufe)l? = Vi [ — Lo 177
Vi ji +Z(C— Y(Jjafri + Jiefi)|* = Vi ji | —'8'(0— ) (n—p),

where we have used (1.5), (1.15), (2.4) and (2.8). Consequently (3.11)
is valid by virtue of (3.14). This completes the proof.
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REMARK 2. If M is a generic submanifold of a Sasakian space form
satisfying A*f = fA®, then (3.11) holds on M provided that M has
nonzero and parallel mean curvature vector field.

4. Main theorems

Let M be a submanifold tangent to the structure vector field of a
Sasakian space form M2™t(¢) satisfying (3.11).

Transvecting (3.11) with (47%*)*™" for any integer a > 2 and taking
account of (1.7), (2.8) and (2.11), we then obtain Vih(,) = 0.

For any point ¢ in M we can choose a local orthonormal frame
field {E;} so that the shape operator A* in the direction of the mean
curvature vector field is diagonalizable at that point ¢, say A4;; * =
Aj6ji. Then h(,)y can be written as

h(a) ZZ’\ia, (a=1,2,---).

Since we have h(,) = constant for any integer a > 1, it is seen that \;
is constant, namely all eigenvalues of A* are constant.

We denote by o;; the sectional curvature of M spanned by E; and
E;. Then by Lemma 1 we have

Z (Ai— z\j)zaj,- = -;—(c - 1)2(n -p)>0

because of (3.14). Thus, if ¢j; < 0, then (¢ — 1)’(n — p) = 0, and
consequently VA* = 0 by Lemma 3. Moreover, we have ¢ = 1 or
n =p. Hn=p, then f =0 and M is a totally real submanifold of
M?*™+1(c) tangent to the structure vector field V (cf. [6]). Thus we
have

THEOREM 4. Let M be an (n+1)-dimensional submanifold tangent
to the structure vector field of a Sasakian space form M?*™t1(c) with
nonvanishing parallel mean curvature vector field. If V¢A® =0, and if
the sectional curvature of M is nonpositive , then the shape operator A*
in the direction of the mean curvature vector field is parallel. Moreover,
c¢=1, or M is totally real in M?*™+(c) with respect to ¢.

According to Theorem 3.5 of [3] and Theorem 3.2 of [4] and Theorem
4, we have
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THEOREM 5. Under the same hypothesis as that in Theorem 4, if M
complete and simply connected, then M is a product of Riemannian

manifolds My x --- x M,, where s is the number of the distinct eigen-
values of A*, and the mean curvature vector field of M is an umbilical
section of My(t =1,--- ,s).

su

REMARK 3. Let M be a complete and simply connected generic
bmanifold of a Sasakian space form with nonvanishing parallel mean

curvature vector field. Then it is, taking account of Remark 2, seen

th

at if A*f = fA* for any index z, and if the sectional curvature of

M is nonpositive, then M is the same type as that in Theorem 5 (See
also Theorem 3.8 of [3]).
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