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SUBMANIFOLDS WITH NONVANISHING

PARALLEL MEAN CURVATURE VECTOR

FIELD OF A SASAKIAN SPACE FORM

V-HANG KI*, NAM-GIL KIM*,

SUNG-BAlK LEE AND IN-YEONG Yoo

o. Introduction

The theory of a submanifold of a Sasakian manifold was investi­
gated from two different points of view, namely, one is the case where
submanifolds are tangent to the structure vector field, and other is the
case where those are normal to the structure vector field (cf. [1], [8],
[9]).

The purpose of the present paper is to study submanifolds tangent
to the structure vector field with nonvanishing parallel mean curvature
vector field immersed in a Sasakian space form.

In §1 we state general formulas on submanifolds of a Sasakian man­
ifold, especially those of a Sasakian space form. §2 is devoted to the
study submanifolds with nontrivial parallel mean curvature vector field.
Moreover, we suppose that the shape operator in the direction of unit
normals is parallel along the structure vector field of the submanifold.
We compute the restricted Laplacian for the shape opeator in the di­
rection of the mean curvature vector field in §3. As applications of
this, in the last §4 we prove our main theorems.

1. Preliminaries

In this section, the basic properties of submanifolds of a Sasakian
manifold are recalled [2], [3], [9].
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Let M be a Sasakian manifold of dimension 2m + 1 with almost
contact metric structure (</J, G, V). Then for any vector fields X and
Yon M, we have

</J2X = -X + v(X)V, G(</JY, </JX) = G(Y,X) - v(Y)v(X),

v(</JX) = 0, </JV = 0, v(V) = 1, G(X, V) = veX).

Since M is a Sasakiaxi manifold, we obtain

(1.1) VX V = </JX, (Vx</J)Y = -G(X, Y)V +v(Y)X,

where V denotes the Riemannian connection of M.
Let M be an (n + 1)-dimensional Riemannian manifold covered by

a system of local coordinate neighborhoods {Uj x h } and immersed iso­
metrically in M by the immersion i : M ---i- M. When the argument
is local, we may identify M with i(M). We represent the immersion i
locally by

yA=yA(Xt, ... ,xn+l), (A=l, ... ,n+1,'" ,2m+1)

and put B j
A = OjyA, (OJ= ojoxi ) then Bj = (Bj

A ) are (n + 1)­
linearly independent local tangent vector fields of M. We choose 2m-n
mutually orthogonal unit normals C x = (CxA) to M. Throughout
this paper, the indices h, i,j"" run over the range {1,··· ,n+1} and
u, v, w,'" the range {n+2, ... ,2m+1} and the summation convention
will be used with respect to those indices.

The immersion being isometric, the induced Riemannian metric ten­
sor 9 on M and the metric tensor a of the normal bundle are then
respectively obtained :

In the sequel, we assume that the submanifold M of M is tangent
to the structure vector field V. Then we have

(1.2)
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The transforms of Bi and Cx by 4> are respectively represented in
each coordinate neighborhood as follows :

(1.3)

(1.4)

where we have put

Q - G(.J..C C) f h - foogih J x - J. cyx Q Y _ Q czyxy - If' x, y, j -)1 , j - )yU , x - xzU ,

6Yz being the contravariant components of 6yz and (gji) = (gji)-l.

From these definitions, we verify that hi + Jij = 0, Jjx = Jxj and
Qxy+Qyx=O.

In what follows we denote the index n + 2 by the symbol *.
By the properties of the Sasakian structure tensor, it follows from

(1.2), (1.3) and (1.4) that we have

(1.5)

(1.6)

(1.7)

f .t J x + J. YQ x = °
) t J 11 '

. . h 0eJ/ = 0, efj = 0, ~je = 1.

By denoting V j the operator of van der Waerden-Bortolotti covari­
ant differentiation with respect to 9 and G, the equations of Gauss and
Weingarten for the submanifold M are respectively given by

(1.8)

where Aji x are the second fundamental forms in the direction of Cx
and related by

A h A ih A y ihc
j x = jixg = ji 9 U yx '
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Differentiating (1.3) and (1.4) covariantly along M and making use
of (1.1), (1.8) and these equations, we easily find

(1.9)

(1.10)

(1.11)

We also have from (1.2)

(1.12)

(1.13)

because of (1.1), (1.3) and (1.8).
In the rest of this section we suppose that the ambient Sasakian

manifold AI is of constant <ft-holomorphic sectional curvature e, which
is called a Sasakian sapce form, and is denoted by M2m+l(e). Then
we see, using (1.2), (1.3), (1.4) and (1.8), that equations ofthe Gauss,
Codazzi and Ricci for M are respectively given by

(1.14)

Rkjih = ~(e + 3)(9khgji - gjhgki) + A kh z Ajiz - A jh z Akiz

1
+ :i(e -l)(ekeigjh - ejeigkh + ejehgki - ekehgji

+ fkh/;i - /;h/ki - 2/kjlih),

(1.15)

(1.16)
1

Rjiyz = :i(e -l)(JjzJiy - JizJjy - 2/;iQyz)

+ AjtzA/y - AitzA / y'
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where Rkjih and Rjiyx are the Riemannian curvature tensor of M and
that with respect to the connection induced in the normal bundle of
M respectively. We see from (1.14) that the Ricci tensor S of M can
be expressed as follows :

(1.17)
1 1

Rji = 4{n(c + 3) + 2(c - l)}gji - 4(c - 1)(n + 2)~j~i

- ~(c - 1)J/Jiz + h X
Ajix - A/XAitx

with the aid of (1.5), where hX = gjiAjix.

2. Parallel mean curvature vector fields

Let H be a mean curvature vector field of M in a Sasakian manifold.
Namely, it is defined by

which is independent of the choice of the local field of orthonormal
frames {Cx}.

In the following we suppose that the mean curvature vector field H
of M is nonzero and is parallel in the normal bundle. Then we may
choose a local field {ex} in such a way that H = O"Cn+2 = O"C*, where
0" = IHI is nonzero constant. Because of the choice of the local field,
the parallelism of H yields

(2.1) {
hX = 0,

h* = (n + 1)0".

x~n+3

Differentiating (1.13) covariantly along M and using (1.10) and
(1.12), we find

which together with (1.7) and (1.15) implies that
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Thus, it is seen that hYQyx = 0 since the mean curvature vector field
is parallel. Accordingly, by (2.1) we have

(2.3) Qx* = 0,

which join with the second equation of (1.5) imples

(2.4)

H being a normal vector field on M, the curvature tensor Rjiyx of
the connection in the normal bundle shows that Rji*X vanishes identi­
cally for any index x. Thus the llicci equation (1.16) yields

(2.5) AjtxA/* - AitxA/* = ~(c -l)(Jj*Jix - Ji*Jjx)

because of (2.3).
From now on we suppose that the shape operator in the direction

of ex is parallel along the structure vector field ~, namely,

(C)

Then we have by (2.2)

(2.6)

REMARK 1. A submanifold of a Sasakian manifold M is called a
generic submanifold if Q yx vanishies identically [7]. IT a submanifold of
M is generic and A xf = fAx holds for any index x, then the condition
(C) is satisfied because of (2.2). But, the converse assertion is not
always true.

By (2.6) the equation (1.10) is reduced to

(2.7)

Transvecting (2.6) with ~j and using (1.7) and (1.13), we find
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which together with (1.6) gives

(2.8)

Hence, from (1.5) we have P + 1= 0 and Q3 + Q = 0, namely, I and
Q define the I-structure in M and that in the normal bundle of M
respectively [5]. In such a case M is called a contact eR submanifold
of a Sasakian manifold [8], [10].

Transforming (2.6) by I k
i and making use of (1.5) and (1.13), we

get

from which, taking the skew-symmetric part with respect to indices j
and k and using (2.6),

(Ajr:rJ/)J/ - (AkrxJ/)J/ + ~kJjx - ~jJkx

= -2Ajrzl/Q/ - AjkwQzwQ/.

If we transvect Jy k to above equation and make use of (1.5) and (2.8),
we obtain

where we have put Pyzx = AjixJyiJzi and hence PyzxQwy = O. Thus,
by transvecting (2.9) with QwxJ/ and taking account of (2.8), we get

(2.10)

From (2.9) we also have

PyzxQwx = o.

(2.11)

because of (2.3).
Multiplying J/J/ to (2.5) and summing for j and i, we find
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where we have used (1.7), (2.4), (2.8), (2.10) and (2.11). Consequently
we have

(2.12)

(2.13)

where we denote Pzzx = p x and Jjx Jjx = p.
Differentiating (2.11) covariantly and substituting (1.12) and (2.7),

we find

and hence, taking the skew-symmetric part with respect to k and j
and taking account of (1.15), (2.4), (2.6) and (2.8),

(2.14) 2A{*ArsyfkS + A{*AjrzQyZ - 2Pyz*Aj~fkr

=('fiJkPyn)J/ - ('fiJjPyz*)Jk
z + ~(c+ 3)Sy*!kj.

If we transvect fk j to the last equation and make use of (1.5), (2.5)
and (2.8), we can get

A{*Arsy(gjs - ej ea - JjzJ zS)

= Pyz *A jr z(gjr - ejer - JjwJ;) + ~(c +3)S;(n - p),

which together with (1.13), (2.1), (2.4) and (2.11) yields

Thus, it follows that we obtain

(2.15) A ji *Aji y = h*Py** + ~(n -l)(c +3)S; +2fJ;



(2.16)
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because of (2.12).
For the shape operator A* in the direction of the mean curvature

vector field, a tensor field (A*t and a function h(a) for any integer
a? 2 are introduced as follows:

Thus, (2.15) implies that

h(2) = h*P*** + ~(n -1)(c + 3) + 2.

3. Lemmas

In this section we prepare some lenunas for later use.

LEMMA 1. Let M be an (n + 1 )-dimensional submanifold tangent
to the structure vector field of a (2m + I)-dimensional Sasakian space
form. Suppose that the mean curvature vector field is nonzero and
parallel in the normal bundle. If \7eA z: = 0 on M, then we have

(3.1) RjsA/*Aji* - RkjihAkh*Aji* = 1~(C _1)2(n - p).

Proof. When y = * in (2.14), we have

2A/*Ars*fk
s

= (VkPn*)J/ - (VjPn*)Jk
z + 2PzuAjrzf'/ + ~(c + 3)!kj

because of (2.3). Transfonning by A/*fkt and making use of (1.5),
(2.8) and (2.11), we find

A/*Ars*A/*(gBt - ce - ]SwJw
t)

=P%**Aj~A/*(grt - ee - JrwJ,;)

+ i(c + 3)A/*(c5/ - ~je - Jj
W Jw

t
) ,
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which combine with (1.13), (2.4), (2.9), (2.10) and (2.11) gives forth

h P P zx*p w* P pxw*pz** + P(3) = wz* x - xwz ***

+ Pz**Aji zAji* + ~(e + 3)(h* - P*).

Ifwe take account of (2.13) and (2.15), then the last equation is reduced
to

(3.2) h(3) = h*/Pz**1
2

+ ~(e+ 3)(n - 2)P*** + ~(e+ 3)h* + 3P***.

By using (1.13), (2.1) and (2.5), the equation (1.17) implies

RjsA/*Aji* = ~{n(e + 3) + 2(e - 1)}h(2) - ~(e - l)(n + 2)

-~(e-1)Aj*Asi*J' J.z+h*h -A.xA· ATS*Aji*4 s JZ • (3) Jr laX

- i(e -l)A{XAji*(JnJix - Ji*Jrx ),

which together with (2.4), (2.10), (2.11), (2.12) and (3.2) leads to

RjsA/*Aji* = i{n(e + 3) + 2(e -1)}h(2) - ~(e - l)(n + 2)

1 2 3 x 1
(3.3) +:i(e-1) -:i(e-1)P PX**-:i(e-1)(c+2)p

+ Ih*Px **12 + i(c+3)(h*i +3h*P***

+ i(e + 3)(n - 2)h*P*** - Ajr xAisxArs*Aji*.

On the other hand, by means of (1.13), (2.4) and (2.15), the equation
(1.14) gives

RkjihAkh*Aii* = i(e+ 3){(h*)2 - h(2)} + ~(e -1)

(3.4) + Ih*Pz**12+ ~(C-1)AkhAji*fkjfhi

- AjrxAisxArs*Aji* + ~(e + 3)(n - 1)h*P***

1+ 4h*P*** + {:i(e + 3)(n -1) + 2}2.
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By the way, making use of (1.5), (1.13), (2.4), (2.11) and (2.12) we
obtain

(3.5) A kh•Aji.hj!hi = h(2) - pxPx** - ~(c - l)(p - 1) - P - 1.

From the last three equations we easily see that

R · A· 8 ·Aji. - R .. Akh·Aji.
J8 I kJlh

={~(c+ 3)n + 1}(h(2) - h·P••• ) - ~(c - l)(n + 2)

+ ~(e - 1)2 - {~(c + 3)(n -1) + 2}2 - ~(c - 1)
4 4 2

+ 1
3
6(e - 1)2(p - 1) + ~(c - l)(p + 1) - ~(c -l)(c + 2)p,

which joined with (2.16) implies (3.1). This completes the proof.

LEMMA 2. Under the same assumptions as that in Lemma 1, the
function h(2) is harmonic.

Proof. By definition we have p... = Aj;.J.iJ/. Differentiation
covariantly we have

where we have used (2.7), (2.8) and (2.11). Thus, the Laplacian of the
function p ••• is given by

which together with (1.5), (1.13), (1.15) and (2.7) gives

(3.6) 6.P••• = (6.A ji.)J/J. i - ~(c - l)(h· - p.).

Since the submanifold M has parallel mean curvature vector field,
the Laplacian 6.Aji. of A· is given, using the Hicci formula for A·
and (1.15), by

(3.7) 6.Aji. = RjrA/· - RkjihAkh

1 k k k+ :i(e - l)V'k(J. hi + Jj.!i +2Ji.!j ).
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Thus, it follows that we get

( AA )J jJ i R A r*J jJ i R Akh*J jJ i
L.l. ji* * * = jr i * * - kjih * *

+ ~(c -l)(h* - P*)

because of (1.5), (1.7), (1.9), (2.7), (2.8) and (2.11). Therefore (3.6)
turns out to be

(3.8) 6.P*** = RjrA{*J/J/-RkjihAkhJ/J*i+l(c-1)(h*-P*).

From (1.17) we obtain

(3.9) RjJ/Ar
i*J*r

= h* - P* + l(n - l)(c + 3)P*** + h*IPz**1
2

- Pz**Pux*pzux

because of (1.7), (1.13), (2.4) and (2.11). We also have by (1.14)

(3.10) R J jJ iAkh*kjih * *.

= l(c + 3)(h* - P***) + Pz**AjizAji*

- A kh*(Pwx*JkW +bx*(.k)(Pzx*Jh
z+ bX*(.h)

= l(c + 3)(h* - P***) + h*lPz**1
2

+ l(n - 1)(c + 3)P*** - Pux*Pzu*p zx*,

where we have used (1.7), (1.13), (2.11) and (2.15).
Substituting (3.9) and (3.10) into (3.8) and taking account of (2.13),

we get 6.P*** = O. Thus, the equation (2.16) implies that 6.h(2) = 0
because the mean curvature vector field is parallel. Therefore we arrive
at the conclusion.

LEMMA 3. Under the same assumptions as that in Lemma 1, we
have

(3.11)



Submanifolds With NODvanishing Parallel Mean Curvature 311

Proof. By (1.9) we have

because of (2.1). Hence we have

Aji·V,,(Jj.f/') = Aji.Ajr.!"rfi"+(Pn.Jiz+ei)(nei+h· Ji.-A{Z Jzr )

by virtue of (2.7) and (2.11), or using (1.5), (1.7), (1.13) and (2.4) we
obtain

(3.12)

Aji·V,,(Jj.!i ")

= -h(2) + Pzy.pzy. - p z p u • + h·p••• + n - p + 2

1
= -4(c -l)(n - p)

by means of (2.13) and (2.16).
Multiplying Aji. to (3.7) and summing for j and i, and making use

of (3.1) and (3.12), we have

(3.13)

By the way, generaly we have

~~h(2) = Aji·~Aji • + IV"Aji .1 2
•

Thus because of Lemma 2 and (3.13), we obtain

(3.14)

On the other hand, we easily verify that

IV"Aji ·+~(C-1)(Jj./ki+Ji./kj)12= IV"Aji ·12_~(c_1)2(n_p),

where we have used (1.5), (1.15), (2.4) and (2.8). Consequently (3.11)
is valid by virtue of (3.14). This completes the proof.
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REMARK 2. If M is a generic submanifold of a Sasakian space form
satisfying A x f = fA x , then (3.11) holds on M provided that M has
nonzero and parallel mean curvature vector field.

4. Main theorems

Let M be a submanifold tangent to the structure vector field of a
Sasakian space form M 2 m+l(c) satisfying (3.11).

Transvecting (3.11) with (Aji*t-1 for any integer a ~ 2 and taking
account of (1.7), (2.8) and (2.11), we then obtain 'fihh(a) = O.

For any point q in M we can choose a local orthonormal frame
field {Ei} so that the shape operator A * in the direction of the mean
curvature vector field is diagonalizable at that point q, say A ji * ­
AjCji. Then h(a) can be written as

h(a) = LA/, (a = 1,2, ... ).

Since we have h(a) = constant for any integer a ~ 1, it is seen that Ai
is constant, namely all eigenvalues of A * are constant.

We denote by (Tji the sectional curvature of M spanned by E j and
Ei. Then by Lemma 1 we have

"" 2 1 2~ (Ai - Aj) (Tji = S(c -1) (n - p) ~ 0
1,'

because of (3.14). Thus, if (Tji :::; 0, then (c _1)2(n - p) = 0, and
consequently VA* = 0 by Lemma 3. Moreover, we have c = 1 or
n = p. If n = p, then f = 0 and M is a totally real submanifold of
M2mH (c) tangent to the structure vector field V (cf. [6]). Thus we
have

THEOREM 4. Let M be an (n+l)-dimensional submanifold tangent
to the structure vector field of a Sasakian space fonn M2m+l(c) with
nonvanishing parallel mean curvature vector field. IfV eAx = 0, and if
the sectional curvature ofM is nonpositive , then the shape operator A *
in the direction of the mean curvature vector field is parallel. Moreover,
c = 1, or M is totally real in M2mH(c) with respect to <p.

According to Theorem 3.5 of [3] and Theorem 3.2 of [4] and Theorem
4, we have
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THEOREM 5. Under tbe same bypotbesis as tbat in Tbeorem 4, ifM
is complete and simply connected, tben M is a product of Riemannian
manifolds M 1 x .'. x Ms, wbere s is tbe number of tbe distinct eigen­
values of A *, and tbe mean curvature vector field of M is an umbilical
section of Mt(t = 1, ... ,s).

REMARK 3. Let M be a complete and simply connected generic
submanifold of a Sasakian space form with nonvanishing parallel mean
curvature vector field. Then it is, taking account of Remark 2, seen
that ifAx f = fA x for any index x, and if the sectional curvature of
M is nonpositive, then M is the same type as that in Theorem 5 (See
also Theorem 3.8 of [3]).
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