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SPINOR GENERIC THETA-SERIES

MYUNG-HWAN KIM

§o. Introduction and Notations

Let Q be a positive definite integral quadratic form in m variables
and N be a semi-positive definite integral quadratic form in n variables.
It is well known [H] that the representation of N by the genus of Q is
equivalent to that by the spinor genus of Q if m ~ n + 3.

In this article, we prove that the generic theta-series associated to Q
is equal to the spinor generic theta-series associated to Q and thereby
recapture the above result as a corollary (under an additional dimen
sional restriction, which can be removed, however, by a better estima
tion of the growth of eigenvalues of cusp forms). In the context, we will
give arguments only for even m, for convenience. Analogous arguments
can easily be established for odd m modulo the so called canonical de
composition of Siegel modular forms of half integral weight, which is
not yet given in any literature, while that of Siegel modular forms of
integral weight is at hand [E].

For 9 E M 2n(R), let A g , B g , Cg , and D g denote the n x n block ma
trices in the upper left, upper right, lower left, and lower right corners
of g, respectively. Let.Nm be the set of all semi-positive definite (eigen
values ~ 0), semi-integral (diagonal entries and twice of nondiagonal
entries are integers), symmetric m x m matrices, and N;;; be its subset
consisting of positive definite (eigenvalues > 0) matrices. Let

Gn = GSp~(R) = {g E M 2n(R); tgJng = rJn, r> O}

'H.n = {Z E Mn ( C); t Z = Z, Im(Z) is positive definite}
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where I n= (~;n ~:) and r = r(g) is a real number determined by

g. We set for 9 E Gn and Z E 'Hn

and for a complex valued function F on 'Hn

where k is a positive integer and < n >= n(n + 1)/2.
Let q be positive integer and p be a prime relatively prime to q. Let

r n = SPn(Z) = {M E M 2n(Z); tMJnM = I n}

L n = L; = {g E M2n(Z[P-lD; tgJng = p 6I n, 6 E Z}

r:(q) = {M E r n
; CM == O(modq)}

L:(q) = L:,p(q) = {g E L n ; Cg =0 (modq)}

r~ = {M E r n
; CM = O}, L~ = L:,p = {g E L n ; Cg = O}

An = SLn(Z), V n = Vp
n = {D E Mn(Z[P-l]); det D = pd, dE Z}

where 6 = 6(g) is ~ integer deterrined by 9 in Ln above. We alSo set

En = E; = {g E L n ; 6 E 2Z},

El:(q) = El:,p(q) = En n L:(q) and El: = E:;'p = En n L:.

For Z E Mn(C), let e(Z) = exp(21riu(Z)) where u(Z) is the trace
of Z. For other standard terminologies and basic facts, we refer the
readers [Al], [M], [0].

§l. Preliminaries

Let m ;:::: n be positive integers and let Q E N;i;. We define the
theta-series of degree n associated to Q by

(1.1) en(Z,Q) = 'E eCXQXZ) = L r(N,Q)e(NZ)
XEM....,n{Z) NENn
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for z E 'Hn, where r(N, Q) = I{X E Mm,n(Z); tXQX = N}\ < 00 is
the representation number of N by Q.

Let k, q be positive integers and let X be a Dirichlet character mod
ulo q. Let M k(q, X) be the space (over C) of Siegel modular forms F
of degree n, weight k, level q, with character X, i.e., the space of holo
morphic functions F: 'Hn ~ C satisfying (i) FlkM = x(det DM)F for
every M E f(j(q) and (ii) FlkM is bounded as Im z ~ 00, z E 'HI,
for every M E fI = SL2(Z) when n = 1. It is known [Ko] that the
boundedness condition (ii) when n ~ 2 follows from the holomorphicity
of F and (i). Mk(q, X) is a finite dimensional vector space.

When m is even, the following is known [A-M] :

(1.2) on(z, Q) E Mi:(q, X), Z E 'Hn

where k = m/2, q is the level of Q, and X = XQ is a Dirichlet character
modulo q defined by

(1.3)
{

(d/ldl)k ((_l)k det 2Q)
X(d) = Idl Jac

1

if q> 1

if q = 1

for integers d relatively prime to q. (See [K] for the analogy when m
is odd.)

Let M: be the space of even( s = 0) or odd(s = 1) modular forms
of degree n, i.e., the space of holomorphic functions F : 'Hn ~ C
satisfying (i)' (detDM )8F(M(Z)) = F(Z), Z E 'Hn for every M E f~

and (ii)' F(z) is bounded as Imz ~ 00, z E 'HI when n = 1. Observe

(1.4) Mi:(q, X) c M: if X( -1) = (_1)l:+8.

Let .c~(q) = .c~,p(q), .c~ = .c~,p, and 1)n = 1);, be the Hecke rings
of the Hecke pairs (f(j(q), L(j(q)), (f(j, L(j), and (An, V n ), respectively.
Similary, let Eo(q) = Eo.p(q) and Eo = Eo.p be the Hecke rings of the
Hecke pairs (f(j(q),Eli(q)) and (fo,Eli), which are the even subrings
of .c~(q) and .co, respectively. There exists an injective homomorphism
[Al] f3n : .c;;(q) ~ .co defined by

(1.5)
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where 9i are chosen to be in Lo. We set

We introduce a homomorphism 'l/Jn : .co ~ Cn[~], where Cn[~] =
C[xg=l, ... ,X~l]. Let X E .co. X can be written in the form X =

E ai(f09i), where 9i = (p6i~i ~:) E Lo, with Ci = C(9i) E Z,

Bi E Mn(Z[P-l]), Di E V n and Di = (tD)-l. We define

Then W n is a surjective ring homomorphism. Let W = Eait6i(AnDi)
E Vn[t±l]. We may assume that each Di is an upper triangular matrix
with diagonal entries pdi 1 , ••• ,pdi n • We define

<Pn: V n[t±1] ~ Cn[~] by <Pn(W) = 2::aix~i ( IT (XiP-i)din).
l$i$n

Then <Pn is an injective ring homomorphism. Finally, we set

(1.7)

§2. Hecke Operators

Let n, k, q, X be as above. For FE Mk(q, X) and X = E ai(ro(q)9i)
E .co(q), we set

(2.2)

where X(-1) = (-1) Hs . X acting on modular spaces as above are
called Recke operators.
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Let F E M~(q, X) with X(-1) = (_l)k+ s and let X = L: aj(r~(q)9j)
E .cj)(q) with 9j chosen to be in L~. Then from (1.4), (1.5) and the
above definitions follows that

(2.3)

Let FE M:. We define the Siegel operator ~: M: -+ M:-1 by

(2.4) (~F)(Z') = .\~ooF ( (~' i~))' Z' E 'Hn - 1 and -\ > 0

(M~ = C, 'Ho = {O}). Every F E M:, hence every F E Mk(q,x)
with X(-1) = (_l)k+ s , has a Fourier expansion of the form

(2.5) F(Z) = L f(N)e(NZ), Z E 'Hno
NENn

So from (2.4) and (2.5) follows that

(2.6) (~F)(Z') = L f ((~' ~)) e(N'Z'), Z' E 'Hn - 1

N'ENn-l

(No = {O}) and that ~F E M~-l(q, X) if F E M~(q, X).

Let X = L: ai(rj)9i) E .c~ with 9i = (p6;~: ~:) E L~. By

multiplying (~* ~i) E rj) for a suitable Uj E GLn(Z) from the left

( D' *)of 9i, we may assume that all the Dj are of the form Dj = Oi pd; ,

d i E Z, where D~ E V n - 1 is upper triangular. We set

(
6; (D~)* B~ )where 9~ = P I I E L n - 1 Here B~ and D~ denote the

I 0 D~ o· I I
I

blocks of size (n - 1) x (n -1) in the upper left corner of Bj and Dj,
respectively. ITn = 1, we set '11(X,u) = L:aju-6i (up-l)di. '11(-,u) is
a well defined ring homomorphism : .c~ -+ .c~-l[u±l] (see [Z]).
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THEOREM 2.1. Let F E Mi:(q,x) with X(-I) = (_I)k+ s , and let
X E .co(q). Then

<I?(Flk X) = (<I?F)lk '1'(Y,pn-kX(p)-l),x ,x

where Y = f3n(x) E .co' (H n = 1, then the action on the right hand
side is nothing but a multiplication of complex numbers.)

Proof [A2]. (See [KKO] for the analogy when k is a half integer.)

The following result is also given by Andrianov [A2].

THEOREM 2.2. W(-, u) : Eo ~ E~-l is a surjective ring homomor
phism for any u E C, u =1= o.

§3. Theta Operators

Let e~ be the space (over C) spanned by on(Z, Q), Q E N:' and
let e~(q,d) be its subspace spanned by on(z, Q), Q EN:' with d =
det 2Q and q = the level of Q for given positive integers d and q. Then

(3.1) e~(q,d) c M;:(q, X) and e~ c M~

for even m wherex isa character (1.3).
Let Q E N:'. We denote the genus, the spinor genus, and the class

of Q by [Q], {Q}, and (Q), respectively. SO (Q) ~ {Q} ~ [Q] and [Q]
contains a finite number of classes (see, for instance, [0)). Note that
en(Z, Ql) = en(Z, Q) for any Ql E (Q). Since d = det2Q and the level
q of Q are invariants of [Q],

(3.2) e~[Q] c e~(q, d) c e~

where e~[Q] is the subspace of e~ spanned by en(Z, Qi), Qi E [Q].
It is well known that

(3.3)

<I?(on(z, Q» = en-1(Z', Q), Z = (:' :) E 1in , Z' E 1in - 1.

In particular, <I? : e~[Q] ~ e~-l[Q], 4> : e~(q, d) ~ e~-l(q, d) are
epimorphisms for all n ~ 1 and isomorphisms [F] if n > m.
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We now introduce theta operators. Let m, n 2:: 1 and let p be a
prime relatively prime to q. Let Q : L~ -+ C x be a character such that

Q(r~) = 1. For X = (r~gor~) E £~ with go = (pog~ ~~) E L~
and on(z, Q) E e:;. with Q E N;t., we set

(3.5)

DEADoA/A
p6 Q[D']EN,:t

where A = Am and

lx (Q,D) = L e(QBD- I
).

BEBx (D)/mod D

Here Bx (D) = {B E Mm(Z[P-I]); (pog* ~) E r~gOr~} and

Bl,B2 E Bx(D) are said to be congruent modulo D on the right if
(B I - B2)D-I E Mm(Z). This congruence is obviously an equivalent
relation and the summation in (3.5) is over the equivalent classes in
Bx(D) modulo D on the right. We extend (3.4) by linearity to the
whole space e:;. and the whole ring £~. We set

£;;0 = {L ai(r~gir~) E £~ j 8i m - 2b i = 0, bi = logp Idet D g;I}
and ff!tJ = fO" n £00' where gi E L~ with 8i = 8(gi)'

THEOREM 3.1. (1) The action (3.4) is a well defined action.
(2) e:;.(q, d) is invariant under the theta operators of £00 if p is

relatively prime to q.
(3) e:;'[Q] is invariant under the theta operators of f oo if p is rela

tively prime to 2q, where q is the level of Q.

Proof See [A2] for even m and [K] for odd m.

Let Q EN;;; with m even. We define W= WQ : fij(q) -+ fr;-I(q)
by requiring the following diagram commutes :

fo(q) En
pR 0

(3.6) wl 1w(_,pn-kx-l(p»

fl{-I(q) E n- I
fJ R- 1

) 0
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where k = m/2 and X = XQ is the character (1.3). W is surjective
since the right vertical arrow is surjective by Theorem 2.2. We let
wT be the r-th iteration of W for r > 0 and WO = the identity map.
For X E &f:-r(q), 0 S r S n, let w-r(X) denote any element in &t:(q)
whose image under 'li r is X.

Let X = (r;fgrlf) E .elf We define the signature seX) of X by
seX) = 2b - mS where S = S(g) and b = logp Idet Dgl. A linear combi
nation of double cosets with the same signature s E Z in .elf is said to
be s-homogeneous of signature s. For general X = E ai(rlfgi) E .elf,
we denote the s-homogeneous part of signature s in X by X(s), i.e.,

i,2b,-m,s,=s

where Si = S(gi) and bi = logp Idet D g, I. Let X E &f:"(q) and Y =
(3m(x) E Llf. We define a homomorphism em = e; : &{J(q) -t &{)O by

(3.7) em(X) = L(x(p)pm/2)sY(_2S)X~s

s~O

where X = XQ and

X+s = p-sm ~ (rm (D* 0) r m) E em
m LJ 0 0 D 00'

DEAm\Mm(Z)/Am

detD=p'

THEOREM 3.2. Let m ;::: n ;::: 1 be integers, m even. Let Q E N~

witb level q and let p be a prime relatively prime to 2q. Tben for
X E &t:(q), we bave

(3.8) (}n(z, Q)lk,xX = (}n(z, Q) 0a em(wn-m(x))

wbere k = m/2, X = XQ' and Q = Q.c : Llf -t C x is a character.x
defined by

(3.9)

for any g E Llf witb S = S(g) and b = logp 1det Dgl.

Proof. [A2]. (See [K] for the analogy when m is odd.)
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§4. Generic and Spinor Generic Theta-series

Let Q E N;t;. Let Qb··· ,Qg be the full set of representatives of
the classes in the genus [Q] of Q. We define the generic theta-series of
degree n associated to Q by

where ei is the order of the orthogonal group O(Qi).

THEOREM 4.1. Let m ~ n ~ 1 be integers with m even. Let
Q E N;t;. Let q and X = XQ be the level and the character of Q,
respectively. Let p be a prime relatively prime to 2q. Then for any
X E £o(q),

(4.2)

where k = m/2 and the eigenvalue ..\(X, X) = Ap(X, x) is determined
as follows: Let f(xo, XI,··· ,xn) = (?jJn 0 (3n)(x) E WnW. Then

(4.3) ..\(X, X) = f(pnk-<n>X(p),pl-kX(p),··· ,pn-kX(p)).

Proof. [A2]. Note that X(p) = X(p)-,-l in this case. (See [K] for the
analogy when m is odd.)

Let Ql, ... , Qh be the full set of representatives of the classes in the
spinor genus {Q} of Q. We define the spinor generic theta-series of
degree n associated to Q by

Cleary on(z, {Q}) E 8:'[Q]. We now prove the following:

THEOREM 4.2. Let m be even ~ 4 such that m 2:: n 2:: 1. Let
Q, q, X, p and k be as in the above theorem. Then for any X E £0 (q),

(4.5)
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where the eigenvalue A(X,X) is (4.3).

Proof. It is well known[S] that 61(Z, [Q]) = 61(Z, {Q}) if m ~ 4. By
Theorem 3.2,

with a = ak,x is the character (3.9). Applying cP n - 1 both sides, we
get

(Jl(Z, {Q})lk,xwn-1(X) = (Jl(Z, {Q}) 0", €m(wn-m(x)).

SO, 61(Z,{Q}) 0", €m(wn-m(x)) = A(Wn- 1(X),X)61(Z, {Q}). Since
A(Wn-1(X), X) = A(X, X) and theta operators do not depend on the
degree n, the theorem follows.

Theorem 4.2 says that the generic theta-series and the spinor generic
theta-series of Q are both simultaneous eigenforms with respect to the
Hecke operators in e:;(q) with the same eigenvalues. Furthermore,
since Schulze-Pillot's result that (Jl(Z,[Q]) = 61(Z,{Q}) does not de
pend on the parity of m as long as m ~ 4, one can use analogous
arguments to show that Theorem 4.2 holds for odd m.

We now introduce so called the canonical decomposition of M k(q, X)
due to Evdokimov [E]. For a positive integer k, we have

(4.6)
n

Mi:(q, X) = EB M:,r(q, X)
r=O

where M:,r(q, X) are subspaces defined inductively for r = n, n 
1, ... ,0 as follows: M:,n(q, X) is the subspace of cusp forms, i.e., the
subspace consisting of FE Mk(q, X) satisfying cP(FlkM) = 0 for any
ME r n ; for each r, 0::; r ::; n-l, M:,r(q,X) is the subspace consist
ing of F satisfying (i) cPn-r(FlkM) is a cusp form for any M Ern, (ii)
F is orthogonal to EI1:=r+IM:,8(q, X) with respect to the canonical in
ner product induced from Maass-Petersson inner product. M;,r(q,X)
are mutually orthogonal and are invariant under the Hecke operators
in .c:;(q).
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(5.2)

§5. The Main Theorem

THEOREM 5.1. Let Q E N:j;, m even 2: 2n + 3. Let n, k, q, X be as
above. Then

Proof. LetTn= (ro(q)(; p~n)ro(q»)2 E£«f(q),gcd(p,2q)=

1. Then (tPn 0 ;3n)(Tn) = x~(1 + Xl)2 ... (1 + x n)2. Let F(Z) be either
()n(z, [Q]) or ()n(z, {Q}). From (4.2) and (4.5) follows

F(Z)lk T n = ).(Tn, X)F(Z), Z E 'Hn.X

with the eigenvalue

A(T",X) ~ D, (p'-' + X(Pl) '.

We decompose F(Z) = Fo(Z) + F1(Z) + ... + Fn(Z) with Fr(Z) E
M~,r(q, X), r = 0,1, ... , n. Then

(5.3)

because of the invariance of M~,r(q, X) under Hecke operators in LO(q).
On the other hand,

for each T = 0,1, ... , n (see (2.3), (3.6), and Theorem 2.1). Since
wn-r(Tn) = ).n_rTr where

(5.4)

we have

if T < n

if T = n,

(5.5)
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From the definition of Mz,r(q,X) follows that ~n-r(Fr(Z» is a cusp
form in Mk(q, X). It is well known [R] that for any cusp form G(Z') E
Mk(q, X), there exists a constant Ca independent of Z' E Hr such that

(5.6)

(5.8)

We now assume in addition that G(Z') is an eigenform with respect
to Tr E eo(q) with the eigenvalue Aa. We may write j3r(Tr) =

2: ai(rogi) E £0 with ai > 0 and gi = (p6;t>i ~:) E EO. Then

from (2.2), (2.3), and (5.6) follows

IG(Z')lk,xTrl :::; L ailX(detp6; DnG(Z')lkgi /

= L aip6i(rk-<r» Idet D;kG(p6iDiZ'D;1 + BiD;I)1

:::; Ca(L aiP6;(rk/2-<r») det(ImZ')-k/2.

But 2: aip6;(rk/2-<r» is precisely the value of ('1pro j3r)(Tr) E Wn[.f.]
evaluated at Xo = prk/2-<r>, Xl = Pt, . .. ,Xr = pr. SO,

and by taking Z' = iln we obtain

(5.7) IAal :::; C~prk-2<r>(1 + p)2 ... (1 +pr?

Let G(Z') = ~n-r(Fr(Z». Then from (5.5) and (5.7) follows

IA(Tn,X)! = O(pn(2k-n-I)-r(k-r-l».

Since m 2: 2n + 3 implies k - r - 1 > 0 for any r = 0,1,·" ,n,
(5.8) contradicts to (5.2) unless r = O. Therefore Fr(Z) = 0 for r =
1,2, ... , n and this proves the theorem.
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COROLLARY 5.2. Let m ~ 2n +3, m even. Then for any Q EN;;,

(5.9)

Proof. Let Q1, ... , Qh, Qh+l' ... , Q9 be the full set of representa
tives of classes in [Q] while Qb .. ', Qh is that in {Q}. It is known [Ki]
that the constant term of (In(z, Qi) - (In(z, Qj) vanishes at every cusp
for each pair i,j. In other words,

n

(In(z, Qi) - (In(z, Qj) E EB M~,r(q, X).
r=l

Fix j and take a weighted average over i = 1, ... , 9 as in (4.1) and then
take a weighted average over j = 1, ... , h as in (4.4). Then we have

n

(In(z, [Q]) - (In(z, {Q}) E EB M~,r(q, X).
r=l

Hence by Theorem 5.1, (In(z, [Q]) - (In(z, {Q}) = O.

COROLLARY 5.3. (HSIA). Let Q E N;; and N E Nn with 2m ~

n+3. Then r(N,Qi) > 0 for some Qi E [Q] if and only ifr(N,Qj) > 0
for some Qj E {Q}.

Proof. Clear from Corollary 5.2. Hsia proves this for m ~ n +3 [H].
Note that our dimensional restriction 2m ~ n + 3 can be improved
with a better estimation of IAal (see (5.7».

REMARK 5.4. The canonical decomposition (4.6) of Mk(q,x) for
half integer k is not yet given in literature. IT we assume this, however,
Theorem 5.1 and Corollary 5.2 can be extended for odd m immediately
because all the necessary analogies are established in [K], [Sh], [Zhl,2],
etc., for odd m or half integral k.
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