J. Korean Math. Soc. 30 (1993), No. 2, pp. 267-274

INDICES OF IRREDUCIBLE BOOLEAN MATRICES

HAN HYUK CHO

1.Introduction

Let $\beta = \{0,1\}$ be the Boolean algebra of order two with operations $(+, \cdot): 1+0=0+1=1+1=1 \cdot 1=1 \& 0+0=0 \cdot 1=1 \cdot 0=0 \cdot 0=0$ and an order : 0 < 1. Then under these Boolean operations, the set B_n of all $n \times n$ matrices over β (Boolean matrices) forms a multiplicative matrix semigroup. There have been many researches on various semigroup properties of B_n . In this paper we study the indices of irreducible Boolean matrices in B_n .

DEFINITION 1.1. Let A be an $n \times n$ Boolean matrix in B_n . The index of A and the period of A are the least positive integers q and p respectively such that $A^q = A^{q+p}$. For $A \in B_n$, index(A) and period(A) denote the index and the period of A respectively, and $\sigma(A)$ denotes the number of one's of A. $A \in B_n$ is called a J-matrix if $\sigma(A)$ is n^2 , and A is primitive if A^q is a J-matrix for some integer q.

For an $n \times n$ Boolean matrix $A = [a_{ij}]$, the associated digraph of A, denoted by G(A), is the digraph with vertices $\{1, 2, ..., n\}$ such that there is an arc from i to j if and only if $a_{ij} > 0$. A path from i to j of length l in G(A) is a sequence of vertices $(v_0 = i, v_1, ..., v_l = j)$ such that $a_{v_k v_{k+1}} = 1$ for each $k \in \{0, 1, ..., l-1\}$. A path is a simple path if $v_1, ..., v_l$ are all distinct, and a simple path is a cycle if $v_0 = v_l$. Then we can interprete many properties of $A \in B_n$ in terms of its digraph G(A). For example, a Boolean matrix $A \in B_n$ is primitive if and only if its associated digraph G(A) is strongly connected (i.e. for any vertices i and j in G(A) there is a path from i to j).

Received February 11, 1992. Revised January 22. 1993.

Partially supported by the Korea Science and Engineering Foundation.

DEFINITION 1.2. Let $A \in B_n$ be an $n \times n$ Boolean matrix. Then A is irreucible if A is not permutationally similar to a matrix of the form $\begin{pmatrix} B_1 & * \\ 0 & B_2 \end{pmatrix}$, where B_i 's are square matrices. A is reducible if A is not irreducible. A is nearly reducible if deleting any positive entry of A results in a reducible matrix. If A is an irreducible matrix of period p, then A is called a p-irreducible matrix. $A \in B_n$ is called a cyclically p-partite matrix if A is permutationally similar to the following matrix

$$\Pi = \begin{pmatrix} D_1 & B_1 & & 0 \\ & D_2 & B_2 & & \\ 0 & & D_3 & \cdot & \\ & & & \cdot & B_{p-1} \\ B_p & & 0 & & D_p \end{pmatrix},$$

where the block matrices D_k 's on the main diagonal of Π are square zero matrices. For each k and m, we let $\pi_k(m) = B_k \cdot B_{k+1} \cdots B_{k+m-1}$ and $\pi_k = \pi_k(p)$, where B_{k+i} represents B_j of Π if $k+i \equiv j \pmod{p}$.

LEMMA 1.3. Consider the matrix II in the Definition 1.2. Then,

- (1) $period(\pi_i) = period(\pi_i)$.
- (2) $| \operatorname{index}(\pi_i) \operatorname{index}(\pi_i) | \leq 1.$
- (3) If Π is irreducible, then index(Π) is the smallest integer q such that π_k(q) is a J-matrix for any k.

Proof. Refer to Cho [3].

2. Frobenius Numbers and Circum-diameters

For the semigroup R_n of $n \times n$ real matrices, we say $M \in R_n$ is power convergent in R_n if the powers $M, M^2, M^3, \dots, M^q, \dots$ form a convergent sequence in R_n . It is well known that the power convergence of M is closely related to the set of eigenvalues of M. For the semigroup B_n of Boolean matrices, any p-irreducible matrix $A \in B_n$ has a finite index in B_n , and the circumferences of A is closely related to the index of A as follows.

DEFINITION 2.1. Let $C = \{c_1, c_2, \dots, c_{\lambda}\}$ be a finite set of relatively prime positive integers. The Frobenius number $\varphi(C)$ of C is the

 $\mathbf{268}$

smallest integer q such that any integer $h(\geq q)$ can be expressed as a nonnegative linear combination of c_i 's (i.e. $h = \sum_{i=1}^{\lambda} a_i c_i$, where a_i 's are nonnegative integers). In general, for a finite set of positive integers $C = \{c_1, c_2, \dots, c_{\lambda}\}$ with the greatest common divisor gcd(C) = p, the Frobenius number $\varphi(C)$ of C is $p \cdot \varphi(d_1, d_2, \dots, d_{\lambda})$, where $d_i = \frac{c_i}{p}$.

Let $A \in B_n$ be an $n \times n$ Boolean matrix, and let G(A) be its associated digraph with vertices $\{1, 2, ..., n\}$. If there is a c-cycle (cycle of length c), then such integer c is called a circumference of A (and of G(A)). ΓA and $\lambda(A)$ denote respectively the set of all the circumferences of A and the cardinality of ΓA . Now let A be irreducible and C be a subset of ΓA . For any vertices s and t in G(A), $P(s,t) = \{\tau | \tau \text{ is}$ a path from s to t} and $Q(C,s,t) = \{\tau | \tau \text{ is a circumpath from s to t}$ w.r.t. C} (i.e. τ is a path from s to t such that τ meets with a p-cycle for each $p \in C$). Then the distance d(s,t) from s to t is the minimum of {length of $\tau | \tau \in P(s,t)$ }, and the circum-distance $\delta(C,s,t)$ from s to t w.r.t. C is the minimum of the set {length of $\tau | \tau \in Q(C,s,t)$ }. Finally the circum-diameter $\delta_A(C)$ of A w.r.t. C is the maximum of $\{\delta(C,s,t)|s,t \in G(A)\}$, and $\varphi_A(C)$ denotes $\varphi(C)$ if C is a subset of ΓA .

LEMMA 2.2. Let $A \in B_n$ be a *p*-irreducible matrix. Then index(A) $\leq \varphi_A(C) + \delta_A(C)$ for any subset C of ΓA with gcd(C) = p.

Proof. Refer to Cho [3].

Consider the 4 by 4 Boolean matrix
$$W = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
. Then

the characteristic polynomial of W (as a real matrix) is $\lambda^4 - \lambda - 1$, and W is power divergent in R_4 since there exists an eigenvalue whose absolute value is greater than 1. But W (as a Boolean matrix) is power convergent in B_n , and $index(A) = \varphi_W(C) + \delta_W(C)$. Now consider the primitive matrix

$$A = egin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then $\Gamma A = \{4,5,7\}, \varphi_A(4,5,7) = 7, \delta_A(4,5,7) = 7$. But $index(A) = 12 < 14 = \varphi_A(4,5,7) + \delta_A(4,5,7)$. Thus there exists a Boolean matrix A such that $index(A) < \varphi_A(C) + \delta_A(C)$. Note that if p and q are relatively prime integers, then $\varphi(p,q) = (p-1)(q-1)$.

3. Gaps in the Index Set E_n^p

For the given positive integers n and $p(p \leq n)$, let E_n^p be the index set $\{index(A)|A \in B_n \text{ is } p-irreducible \}$ and mE_n^p be the maximum element of E_n^p . Also let G_n^p be the set $\{g|g \text{ is a positive integer less}$ than mE_n^p and $g \notin E_n^p$. Then any integer in G_n^p is called a gap of E_n^p . Shao [11] and Min [9] proved that there is no gap less than $\omega_n + 1$ in the index set $E_n^1(n \neq 11)$, where $\omega_n = \frac{n^2 - 2n + 2}{2}$. Moreover Lewin and Vitek [7] specified the gaps greater than $\omega_n + 1$ in E_n^1 . In this section we investigate the gaps in the index set E_n^p of $n \times n$ p-irreducible matrices using their results and the index properties of cyclically p-partite matrices.

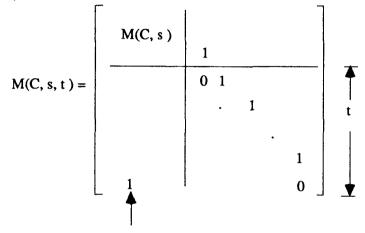
DEFINITION 3.1. $E_n(i,j)$ denotes an $n \times n$ Boolean matrix whose (i,j)-entry is the only nonzero entry. Each $n \times n$ permutation matrix P can be expressed as a Boolean sum $\sum_{i=1}^{n} E_n(i,\sigma(i))$, where σ is an element of the symmetric group S_n representing P. Let $n = p\alpha + \beta$ with $\alpha = [\frac{n}{p}]$ for some positive integers $p(\leq n)$, and let M_n^p denote the set $\{A \in B_n | A \text{ is } p\text{-irreducible and } index(A) > p(\omega_{\alpha} + 1) + \beta\}$.

LEMMA 3.2. Let $C = \{c_1, c_2, \dots, c_{\lambda}\}$ be a finite set of positive integers with $2 \leq c_1 < c_2 < \dots < c_{\lambda} \leq n$ and gcd(C) = p. If $c_{\lambda} + c_{\lambda-1} \geq n$, then $E_n^p(C) \subseteq E_n^p$, where $E_n^p(C) = \{\varphi(C) + c_{\lambda} - p, \dots, \varphi(C) + c_{\lambda} - p + (n - c_{\lambda-1})\}$.

Proof. Let $u = c_{\lambda-1}$, $v = c_{\lambda}$, and $M(C) = \pi(v) + \sum_{i=1}^{\lambda} E_v(c_i)$. Here, + is the Boolean sum, $\pi(v) = E_v(v, 1) + \sum_{i=1}^{v-1} E_v(i, i+1)$, and

270

 $E_v(c_i) = \sum_{j \in S_i} E_v(c_i, j)$, where $S_i = \{j | j > 0 \text{ and } c_i - j + 1 \in C\}$. For integers s and t with $0 \le s \le v - u$ and $0 \le t < u$, consider the $(v + t) \times (v + t)$ matrix



(t+1)-th position

where $M(C,s) = M(C) + \sum_{i=1}^{s} E_{v}(i+u)$. For *n* with $v \le n < u+v$

$$M_n(C,s,t) = \begin{pmatrix} M(C,s,t) & Q \\ R & 0 \end{pmatrix}$$

is an $n \times n$ matrix such that the *i*-th row (respectively column) of R(Q) is the first row (column) of M(C, s, t) for any *i*. If u + v > n, then the index of the above $M_n(C, s, t)$ is $\varphi(C) + (v - p) + (v - u - s) + t$. Now let u + v = n, and consider the $n \times n$ matrix $S = \begin{pmatrix} M_{n-1}(C, 0, u - 1) & 0 \\ 0 \cdots 0 & 0 \end{pmatrix} + E_n(u - 1, n) + E_n(n, u + 1)$. Then the index of S is $\varphi(C) + (v - p) + (n - u)$. Therefore we have the lemma.

It is well known that any p-irreducible matrix is a cyclically p-partite matrix. Also note that permutationally similar matrices have the same index. Thus without loss of generality we will assume that the matrix A of Lemma 3.3 and 3.4 is of the form II (in Definition 1.2).

LEMMA 3.3. If $A \in M_n^p(\alpha \ge 3)$, then $\Gamma A = \{pg, ph\}$ with $g+h > \alpha$.

Proof. First let p = 1. It is known that for a primitive matrix $A \in B_{\alpha}$, $\lambda(A) \geq 3$ means $index(A) \leq \omega_{\alpha} + 1$ [7]. If $\lambda(A)$ is 1, then

the girth of A is 1 and $index(A) \leq \alpha \leq \omega_{\alpha} + 1$. Also if $\Gamma A = \{g, h\}$ with $g + h \leq \alpha$, then $index(A) \leq (g - 1)(\alpha - g - 1) + 2\alpha - g - 1 = -g^2 + g(\alpha - 1) + g \leq \omega_{\alpha} + 1$. Now let $p \geq 2$. If $index(\pi_1)$ is the minimum of the set $\{index(\pi_i)\}$ and if there are β many π_i 's such that $index(\pi_i) > index(\pi_1)$, then $index(A) \leq p(index(\pi_1)) + \beta$. Thus if $\lambda(A) = 1$, then the girth of A is p and $index(A) \leq p\alpha + \beta \leq p(\omega_{\alpha} + 1) + \beta$. Next if $\lambda(A) \geq 3$, then $index(A) \leq p(\omega_{\alpha} + 1) + \beta$ since there are at most β many π_i 's whose order is greater than α . Now let $\Gamma A = \{pg, ph\}$ with g < h, and let γ be the minimum of $\{order \ of \ \pi_i\}$ and the order of π_k be γ . Note that if $g + h \leq \alpha$, then $index(\pi_k) \leq (g - 1) \cdot (\alpha - g - 1) + 2\gamma - g - 1 \leq \omega_{\alpha} + 1$. Since at least $p - \beta$ many π_i 's are of order less than $\alpha + 1$, $index(A) \leq p(\omega_{\alpha} + 1) + \beta$. Thus if $index(A) > p(\omega_{\alpha} + 1) + \beta$, then $\Gamma A = \{pg, ph\}$ with $g + h > \alpha$.

LEMMA 3.4. Let $A \in B_n(\alpha \ge 3)$ be *p*-irreducible, $\Gamma A = \{pg, ph\}$ (g < h), and q = g(h-1). If every π_i is nonsymmetric and $g + h > \alpha$, then $pq \le index(A) \le pq + p(\alpha - g) + \beta$ is a sharp inequality.

Proof. If p = 1, then A is primitive and the lemma holds by the results of Lewin and Vitek [7]. From their results, if A is symmetric, then $index(A) \leq \omega_{\alpha} + 1$. For each h-cycle τ of G(A), there is an arc (s,t) in τ with d(t,s) = h - 1, and $g(h-1) \leq index(A) \leq g(h-1) + (\alpha - g)$. Thus in the following proof, we will assume that $p \geq 2$. We also let u = pg and v = ph.

(Upper bound) Since A is a p-irreducible matrix, without loss of generality, let A be of the form II (in Definition 1.2). If the order of π_i is m for some i, then $index(\pi_i) \leq q + (m - g)$. If $m < \alpha$, then $index(\pi_j) \leq q + (\alpha - g)$ for any j, and $index(A) \leq pq + p(\alpha - g)$ in this case. Now let the minimum of $\{order \ of \ \pi_i\}$ be α . Then there are at most β many π_i 's such that the order of each π_i is greater than α . Therefore by the structure of $A(=\Pi)$ and Lemma 1.3, $index(A) \leq pq + p(\alpha - g) + \beta$.

(Lower bound) Consider a v-cycle of G(A) labeled as $(v_1, v_2, \dots, v_v, v_1)$. Without loss of generality let $d(v_{p+1}, v_1)$ be v - p (so there is no path of length pq - p from v_{p+1} to v_1). If $index(A) \leq pq - 1$, then there is a path τ_j of length pq - 1 from v_{p+1-j} to v_{p-j} for $0 \leq j < p$. Note that the length of τ_i can be expressed as a sum of the length of a simple path from v_{p+1-j} to v_{p-j} and some circumferences of A. Also note that p(g-1)(h-1) - p(=pgh - pg - ph) cannot be expressed

as a nonnegative linear combination of u and v. So there is a path of length u - 1 from v_{p+1-j} to v_{p-j} for $0 \le j < p$ since pq - 1 = p(gh-g) - 1 = pgh - pg - 1 = pgh - pg - ph + (v-1). By the similar reason, we can construct a path of length k(u-1) from v_{p+1} to v_{p+1-k} for $0 < k \le p$. Then there is a path of length pq - p from v_{p+1} to v_1 since pq - p = u(h-1) - p = u(h-p-1) + p(u-1), contradiction. Thus $index(A) \ge pq$.

(Sharpness) By the Lemma 3.2.

THEOREM 3.5. For each $\theta(\geq 3)$ and $n = p\alpha + \beta$ with $\alpha = [\frac{n}{p}](\geq 3), [p(\alpha^2 - \theta\alpha + [(\theta + 1)^2/4]) + 1, \cdots, p(\alpha^2 - (\theta - 1)\alpha + (\theta - 2)) - 1]$ is a gap interval greater than $p(\omega_{\alpha} + 1) + \beta$ in the index set E_n^p .

Proof. Let $M_n^p[\varepsilon, \delta]$ denote the set $\{A \in M_n^p | \Gamma A = \{pg, ph\}(g < h)\}$ such that $\varepsilon = h - g + 1$ and $\delta = \alpha - h\}$. For a positive integer θ , $M_n^p[\theta]$ denotes the set $\bigcup_{\varepsilon+2\delta=\theta} M_n^p[\varepsilon, \delta]$. Now choose any $A \in M_n^p$. Then we may assume that $\Gamma A = \{pg, ph\}(g < h)$ with $g + h > \alpha$ by Lemma 3.3, and $A \in M_n^p[\theta]$ for some θ . From Lemma 3.4 we can obtain an inequality $p(\alpha^2 - \theta\alpha + [-\delta^2 + (\theta - 2)\delta + (\theta - 1)] \le index(A) \le p(\alpha^2 - \theta\alpha + [-\delta^2 + (\theta - 2)\delta + (\theta - 1)])$. Since $\delta = (\theta - \varepsilon)/2$ the minimum possible value of $[-\delta^2 + (\theta - 2)\delta + (\theta - 1)]$ is $\theta - 1$ when $\delta = 0$ by simple calculation, and the maximum possible value of $[-\delta^2 + (\theta - 3)\delta + 2(\theta - 1)]$ is $[(\theta + 1)^2/4]$ when δ is $(\theta - 3)/2$. Therefore there does not exist any matrix in M_n^p whose index lies between $p(\alpha^2 - \theta\alpha + [(\theta + 1)^2/4]) + 1$ and $p(\alpha^2 - (\theta - 1)\alpha + (\theta - 2)) - 1$.

It is our belief that if $\alpha \ge 14$ or $\alpha \le 8$, then there is no gap less than $p(\omega_{\alpha} + 1) + \beta$ in the index set E_{n}^{p} .

References

- 1. A.Berman and R.J. Plemmons, Nonnegative Matreces in the Mathematical Sciences, Academic Press, New York, 1979.
- R.A. Brualdi and B. Liu, Generalized exponents of primitive directed graphs, J. Graph Theory (4) 14 (1990), 483-499.
- 3. H.H. Cho, On the indices of the Boolean matrices, Proc. Workshops Pure Math. 9 (1989), 161-168.
- 4. A.L. Dulmage and N.S. Mendelsohn, Gaps in the exponent set of primiteve matrices, Illinois J. Math. 8 (1964), 642-656.
- 5. K.H. Kim, Boolean Matrix Theory and Applications, Pure and Applied Mathematics, 70, Marcel Dekker, New York, 1982.

- 6. K.H. Kim, An extension of the Dulmage-Mendelsohn theorem, Linear Algebra and Appl. 27 (1979), 187-197.
- 7. M. Lewin and Y. Vitek, A system of gaps in the exponect set of primitive matrices, Illinois J. Math. 25 (1981), 87-97.
- 8. G. Markowsky, Bounds on the index and period of a binary relation on a finite set, Semigroup Forum. 13 (1977), 253-259.
- 9. Z.K.Min, On Lewin and Vitek's conjecture about the exponent set of primitive matrices, Linear Algebra and Appl. 96 (1987), 101-108.
- 10. H.Minc, The structure of irreducible matrices, Lin. and Multilinear Algebra 2 (1974), 85-90.
- 11. J. Shao, On a conjecture about the exponent set of primitive matrices, Linear Algebra and Appl. 65 (1985), 91-123.
- 12. Y.Vitek, Bounds for a linear diophantine problem of Frobenius, J.London Math. Soc. 10 (1975), 79-85.

Department of Mathematics Ed. Seoul National University Seoul 151-742, Korea