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INDICES OF IRREDUCIBLE BOOLEAN MATRICES

HAN HYUK eRO

l.IntroductiOD

Let f3 = {O, I} be the Boolean algebra of order two with operations
(+,.) : 1 + 0 = 0 + 1 = 1 + 1 = 1· 1 = 1 & 0 + 0 = 0·1 = 1· 0 =
o.0 = 0 and an order : 0 < 1. Then under these Boolean operations,
the set B n of all n x n matrices over f3 (Boolean matrices) forms a
multiplicative matrix semigroup. There have been many researches on
various semigroup properties of Bn • In this paper we study the indices
of irreducible Boolean matrices in B n •

DEFINITION 1.1. Let A be an n x n Boolean matrix in B n . The
index of A and the period of A are the least positive integers q and
p respectively such that All = AIl+p. For A E B n , index(A) and
period(A) denote the index and the period of A respectively, and a(A)
denotes the number of one's of A. A E B n is called a J-matrix if a(A)
is n2 , and A is primitive if All is a J-matrix for some integer q.

For an n x n Boolean matrix A = [aij), the associated digraph of
A, denoted by G(A), is the digraph with vertices {I, 2, ... , n} such that
there is an arc from i to j if and only if aij > O. A path from i to
j of length I in G(A) is a sequence of vertices (vo = i, VI, • •• ,VI = j)
such that av/ov/o+l = 1 for each k E {O, 1, ... , I-I}. A path is a simple
path if VI, ••. ,VI are all distinct, and a simple path is a cycle if Vo = VI.

Then we can interpretes many properties of A E B n in terms of its
digraph G(A). For example, a Boolean matrix A E B n is primitive if
and only if its associated digraph G(A) is strongly connected (i.e. for
any vertices i and j in G(A) there is a path from i to j).
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DEFINITION 1.2. Let A E B n be an n x n Boolean matrix. Then A
is irreucible if A is not permutationally similar to a matrix of the form

(~l ;2)' where Bi's are square matrices. A is reducible if A is not

irreducible. A is nearly reducible if deleting any positive entry of A
results in a reducible matrix. H A is an irreducible matrix of period p,
then A is called a p-irreducible matrix. A E B n is called a cyclically
p-partite matrix if A is permutationally similar to the following matrix

o

where the block matrices Dk's on the main diagonal of IT are square
zero matrices. For each k and m, we let 1I"k(m) = B k ·Bk+l··· Bk+m-l
and 1I"k = 1I"k(p), where Bk+i represents B j of IT if k + i == j(mod p).

LEMMA 1.3. Consider the matrix IT in the Definition 1.2. Then,

(1) period(1I"j) = period(1I"j).
(2) I index(1I"j) - index(1I"j) I ~ l.
(3) IfU is irreducible,t1:leri index(II) is the smallest integer q such

that 1I"k(q) is a J-matrix for any k.

Proof. Refer to Cho [3].

2. Frobenius Numbers and Circum-diameters

For the semigroup Rn of n x n real matrices, we say M E Rn is
power convergent in Rn if the powers M, M 2

, M 3
, ••• ,Mq,··· form a

convergent sequence in Rn. It is well known that the power convergence
of M is closely related to the set of eigenvalues of M. For the semigroup
B n of Boolean matrices, any p-irreducible matrix A E B n has a finite
index in B n, and the circumferences of A is closely related to the index
of A as follows.

DEFINITION 2.1. Let C = {CI,C2'··· ,c).} be a finite set of reIa
tively prime positive integers. The Frobenius number ep(C) of C is the
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smallest integer q such that any integer h("2 q) can be expressed as a
nonnegative linear combination of ci's (i.e. h = L~l aiCi, where ai's
are nonnegative integers). In general, for a finite set of positive integers
C = {Cb C2, ••• ,c>.} with the greatest common divisor gcd(C) = p, the
Frobenius number ep(C) of C is p' ep(db d2 ,··· ,d>.), where di = ;-.

Let A E En be an n x n Boolean matrix, and let G(A) be its as
sociated digraph with vertices {I, 2, ... , n}. If there is a c-cycle (cycle
of length c), then such integer c is called a circumference of A (and of
G(A». r A and A(A) denote respectively the set of all the circumfer
ences of A and the cardinality of fA. Now let A be irreducible and C
be a subset of fA. For any vertices s and t in G(A), pes, t) = {TIT is
a path from s to t} and Q(C, s, t) = {TIT is a circumpath from s to t
w.r.t. C} (i.e. T is a path from s to t such that T meets with a p-cycle
for each p E C). Then the distance des, t) from s to t is the minimum
of {length of TIT E P(s,t)}, and the circum-distance 8(C,s,t) from s
to t w.r.t. C is the minimum of the set {length of TIT E Q(C, s, t)}.
Finally the circum-diameter OA(C) of A w.r.t. C is the maximum of
{o(C,s,t)ls,t E G(A)}, and epA(C) denotes ep(C) if C is a subset of
fA.

LEMMA 2.2. Let A E En be ap-irreducible matrix. Tben index(A)
~ epA(C) + OA(C) for any subset C offA witb gcd(C) = p.

Proof. Refer to Cho [3].

Consider the 4 by 4 Boolean matrix W = (~ ~ ! ~). Then

1 100
the characteristic polynomial of W (as a real matrix) is A4 - A-I,
and W is power divergent in ~ since there exists an eigenvalue whose
absolute value is greater than 1. But W (as a Boolean matrix) is power
convergent in En' and index(A) = epw(C)+ow(C). Now consider the
primitive matrix
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o 1 0 0 0 0 0
001 0 100
000 1 000

A= 1 0 0 0 1 0 0
o 0 0 0 0 1 0
000 000 1
1 0 1 0 000

Then rA = {4,5, 7},rpA(4,5, 7) = 7,CA(4,5, 7) = 7. But index(A) =
12 < 14 = <PA(4,5, 7) +cA(4, 5, 7). Thus there exists a Boolean matrix
A such that index(A) < <PA(C) + CA(C), Note that if p and q are
relatively prime integers, then rp(p,q) = (p-1)(q-1).

3. Gaps in the Index Set E~

For the given positive integers n and pep ~ n), let E~ be the index
set {index(A)\A E B n is p-irreducible } and mE~ be the maximum
element of E~. Also let G~ be the set {gig is a positive integer less
than mE~ and g rt. E~}. Then any integer in G~ is called a gap
of E~. Shoo [11] and Min [9] proved that there is no gap less than
W n + 1 in the index set E~(n i- 11), where W n = n

2
-;n±2. Moreover

Lewin and Vitek [7] specified the gaps greater than W n + 1 in E~.

In this section we investigate the gaps in the index set E~ ofn X n
p-irreducible matrices using their results and the index properties of
cyclically p-partite matrices.

DEFINITION 3.1. En(i,j) denotes an n x n Boolean matrix whose
(i, j)-entry is the only nonzero entry. Each n x n permutation matrix
P can be expressed as a Boolean sum 2:7=1 En(i,o-(i», where u is an
element of the symmetric group Sn representing P. Let n = pa + {3
with a = [~] for some positive integers pe::; n), and let M[: denote the
set {A E BnlA is p-irreducible and index(A) > p(wa + 1) + {3}.

LEMMA 3.2. Let G = {Cl, C2, .•• , c~} be a finite set of positive
integers with 2 ::; Cl < c2 < ... < c~ ::; n and gcd(G) = p. H
c~ + C~-l 2:: n, then E~(G) ~ E~, where E~(G) = {rp(G) + c~ 
p,'.' ,<p(G) + c~ - p+ (n - C~-l)}.

Proof. Let u = C~-l, v = c~, and M(G) = 7r(v) + 2:7=1 Ev(Ci)'
Here, + is the Boolean sum, 7r(v) = Ev(v, 1) + 2::::: Ev(i,i + 1), and
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Ev(Ci) = 2: jEs; Ev(Ci,j), where Si = {jlj > 0 and Ci - j + 1 E Cl.
For integers s and t with 0 ~ s ~ v - u and 0 ~ t < u, consider the
(v + t) x (v + t) matrix

M(C, s)

M(C, s, t) =

1

t

1

o 1

1

1

o

f
t

1
(t+l)-th position

where M(C,s) = M(C)+ 2:::=1 Ev(i+u). For n with v ~ n < u+v

M (C t) _ (M(C,s, t) Q)
n ,s, - R 0

is an n x n matrix such that the i-th row (respectively column) of
R(Q) is the first row (column) of M(C, s, t) for any i. If u + v >
n, then the index of the above Mn(C,s,t) is ep(C) + (v - p) + (v
u - s) + t. Now let u + v = n, and consider the n x n matrix S =

(
Mn-l(C,0,U-1) 0) E ( 1 ) E ( 1) Th h' dO... 0 0 + n u - ,n + n n, u+. en t e III ex

of S is ep(C) + (v - p) + (n - u). Therefore we have the lemma.

It is well known that any p-irreducible matrix is a cyclically p-parti
te matrix. Also note that permutationally similar matrices have the
same index. Thus without loss of generality we will assume that the
matrix A of Lemma 3.3 and 3.4 is of the form IT (in Definition 1.2).

LEMMA 3.3. IfA E M~(a ~ 3), then r A = {pg,ph} with g+h > a.

Proof. First let p = 1. It is known that for a primitive matrix
A E Bo:, A(A) ~ 3 means index(A) ~ Wo: + 1 [7]. If A(A) is 1, then
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the girth of A is 1 and index(A) :::; a :::; W a + 1. Also if rA = {g,h}
with 9 + h :::; a, then index(A) :::; (g - l)(a - 9 - 1) + 2a - 9 -1 =
_g2 + g(a - 1) + 9 :::; W a + 1. Now let p ~ 2. H index(7rI) is the
minimum of the set {index(7ri)} and if there are (3 many 7ri'S such
that index(1ri) > index(7rI), then index(A) :::; p(index(7rI» + (3. Thus
if A(A) = 1, then the girth of A is p and index(A) :::; pa + (3 :::;
p(wa + 1) + (3. Next if A(A) ~ 3, then index(A) :::; p(wa + 1) + {3
since there are at most {3 many 7ri's whose order is greater than a.
Now let r A = {pg,ph} with 9 < h, and let, be the minimum of
{order of 7ril and the order of 1rk be,. Note that if 9 + h :::; a, then
index(7rk) :::; (g -1)· (a - 9 - 1) +2,- 9 -1:::; W a + 1. Since at least
p- (3 many ?ri's are of order less than a +1, index(A) :::; p(wa +1) + (3.
Thus if index(A) > p(wa + 1) + (3, then r A = {pg, ph} with g+h > a.

LEMMA 3.4. Let A E Bn(a ~ 3) be p-irreducible, rA = {pg,ph}
(g < h), and q = g(h -1). If every 7ri is nonsymmetric and 9 + h > a,
then pq :::; index(A) :::; pq + pea - g) + (3 is a sharp inequality.

Proof. H p = 1, then A is primitive and the lemma holds by the
results of Lewin and Vitek [7]. From their results, if A is symmetric,
then index(A) :::; W a + 1. For each h-cycle T of G(A), there is an arc
(s,t) in T with d(t,s) = h -1, and g(h -1):::; index(A) :::; g(h -1) +
(a - g). Thus in the following proof, we will assume that p ~ 2. We
also let u = pg and V= ph:

(Upper bound) Since A is a p-irreducible matrix, without loss of
generality, let A be of the form IT (in Definition 1.2). H the order of
7ri is m for some i, then index(7r;) :::; q + (m - g). H m < a, then
index(?rj) :::; q + (a - g) for any j, and index(A) :::; pq + pea - g) in
this case. Now let the minimum of {order of 7ri} be a. Then there
are at most (3 many 7ri'S such that the order of each 7ri is greater than
a. Therefore by the structure of A(= IT) and Lemma 1.3, index(A) :::;
pq+p(a-g)+{3.

(Lower bound) Consider a v-cycle of G(A) labeled as (VI, V2,' .. ,
Vv,VI)' Without loss of generality let d(Vp+I,VI) be v - p (so there is
no path of length pq - p from vpH to VI). H index(A) :::; pq - 1, then
there is a path Tj of length pq - 1 from Vp+l-j to Vp_j for 0 :::; j < p.
Note that the length of Ti can be expressd as a sum of the length of a
simple path from Vp+l-j to Vp_j and some circumferences of A. Also
note that peg - 1)(h - 1) - p(= pgh - pg - ph) cannot be expressed
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as a nonnegative linear combination of u and v. So there is a path
of length u - 1 from Vp+I-j to Vp_j for 0 :s: j < p since pq - 1 =
p(gh - g) -1 = pgh - pg -1 = pgh - pg - ph + (v -1). By the similar
reason, we can construct a path of length k(u -1) from Vp+I to Vp+I-k

for 0 < k :s: p. Then there is a path of length pq - p from Vp+I to VI

since pq - p = u(h - 1) - P = u(h - p - 1) + p(u - 1), contradiction.
Thus index(A) ~ pq.

(Sharpness) By the Lemma 3.2.

THEOREM 3.5. For each O(~ 3) and n = po: + (3 with 0: = [~](~

3), [P(0:2 - 00: + [(0 + 1)2/4]) +1,··. ,p(0:2 - (0 - 1)0: + (0 - 2)) -1] is
a gap interval greater than p(wo: + 1) + (3 in the index set E~.

Proof. Let M!:[c,l5] denote the set {A E M!:lrA = {pg,ph}(g < h)
such that c = h - 9 + 1 and l5 = 0: - h}. For a positive integer 0,
M~[O] denotes the set Ue+2o=9M~[c,l5]. Now choose any A E M~.

Then we may assume that r A = {pg, ph}(g < h) with 9 + h > 0:
by Lemma 3.3, and A E M~[O] for some O. From Lemma 3.4 we can
obtain an inequality p(0:2-00:+[-l52+(0-2)l5+(0-1)] ~ index(A):S:
p(0:2 -00:+[-l52+(0-3)l5+2(0-1)]). Since l5 = (O-c)/2 the minimum
possible value of [_l52 + (0 - 2)l5 + (0 -1)] is 0 -1 when l5 = 0 by simple
calculation, and the maximum possible value of [_l52 +(0-3)l5+2(0-1)]
is [(0 + 1)2/4] when l5 is (0 - 3)/2. Therefore there does not exist any
matrix in M!: whose index lies between p(0:2 - 00: + [(8 + I? /4]) + 1
and p(0:2 - (8 - 1)0: + (0 - 2)) - 1.

It is our belief that if 0: ~ 14 or 0: ~ 8, then there is no gap less
than p(wo: + 1) + (3 in the index set E~.
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