INDICES OF IRREDUCIBLE BOOLEAN MATRICES

Han Hyuk Сho

1.Introduction

Let $\beta=\{0,1\}$ be the Boolean algebra of order two with operations $(+, \cdot): 1+0=0+1=1+1=1 \cdot 1=1 \& 0+0=0 \cdot 1=1 \cdot 0=$ $0 \cdot 0=0$ and an order : $0<1$. Then under these Boolean operations, the set B_{n} of all $n \times n$ matrices over β (Boolean matrices) forms a multiplicative matrix semigroup. There have been many researches on various semigroup properties of B_{n}. In this paper we study the indices of irreducible Boolean matrices in B_{n}.

Definition 1.1. Let A be an $n \times n$ Boolean matrix in B_{n}. The index of A and the period of A are the least positive integers q and p respectively such that $A^{q}=A^{q+p}$. For $A \in B_{n}$, index (A) and $\operatorname{period}(A)$ denote the index and the period of A respectively, and $\sigma(A)$ denotes the number of one's of $A . A \in B_{n}$ is called a J-matrix if $\sigma(A)$ is n^{2}, and A is primitive if A^{q} is a J-matrix for some integer q.

For an $n \times n$ Boolean matrix $A=\left[a_{i j}\right]$, the associated digraph of A, denoted by $G(A)$, is the digraph with vertices $\{1,2, \ldots, n\}$ such that there is an arc from i to j if and only if $a_{i j}>0$. A path from i to j of length l in $G(A)$ is a sequence of vertices $\left(v_{0}=i, v_{1}, \ldots, v_{l}=j\right)$ such that $a_{v_{k} v_{k+1}}=1$ for each $k \in\{0,1, \ldots, l-1\}$. A path is a simple path if v_{1}, \ldots, v_{l} are all distinct, and a simple path is a cycle if $v_{0}=v_{l}$. Then we can interpretes many properties of $A \in B_{n}$ in terms of its digraph $G(A)$. For example, a Boolean matrix $A \in B_{n}$ is primitive if and only if its associated digraph $G(A)$ is strongly connected (i.e. for any vertices i and j in $G(A)$ there is a path from i to j).

[^0]Definition 1.2. Let $A \in B_{n}$ be an $n \times n$ Boolean matrix. Then A is irreucible if A is not permutationally similar to a matrix of the form $\left(\begin{array}{cc}B_{1} & * \\ 0 & B_{2}\end{array}\right)$, where B_{i} 's are square matrices. A is reducible if A is not irreducible. A is nearly reducible if deleting any positive entry of A results in a reducible matrix. If A is an irreducible matrix of period p, then A is called a p-irreducible matrix. $A \in B_{n}$ is called a cyclically p-partite matrix if A is permutationally similar to the following matrix

$$
\Pi=\left(\begin{array}{ccccc}
D_{1} & B_{1} & & & 0 \\
& D_{2} & B_{2} & & \\
0 & & D_{3} & \cdot & \\
& & & \cdot & B_{p-1} \\
B_{p} & & 0 & & D_{p}
\end{array}\right)
$$

where the block matrices D_{k} 's on the main diagonal of Π are square zero matrices. For each k and m, we let $\pi_{k}(m)=B_{k} \cdot B_{k+1} \cdots B_{k+m-1}$ and $\pi_{k}=\pi_{k}(p)$, where B_{k+i} represents B_{j} of Π if $k+i \equiv j(\bmod p)$.

Lemma 1.3. Consider the matrix Π in the Definition 1.2. Then,
(1) $\operatorname{period}\left(\pi_{i}\right)=\operatorname{period}\left(\pi_{j}\right)$.
(2) $\left|\operatorname{index}\left(\pi_{i}\right)-\operatorname{index}\left(\pi_{j}\right)\right| \leq 1$.
(3) If Π is irreducible, then index(II) is the smallest integer q such that $\pi_{k}(q)$ is a J-matrix for any k.

Proof. Refer to Cho [3].

2. Frobenius Numbers and Circum-diameters

For the semigroup R_{n} of $n \times n$ real matrices, we say $M \in R_{n}$ is power convergent in R_{n} if the powers $M, M^{2}, M^{3}, \cdots, M^{q}, \cdots$ form a convergent sequence in R_{n}. It is well known that the power convergence of M is closely related to the set of eigenvalues of M. For the semigroup B_{n} of Boolean matrices, any p-irreducible matrix $A \in B_{n}$ has a finite index in B_{n}, and the circumferences of A is closely related to the index of A as follows.

Defintion 2.1. Let $C=\left\{c_{1}, c_{2}, \cdots, c_{\lambda}\right\}$ be a finite set of relatively prime positive integers. The Frobenius number $\varphi(C)$ of C is the
smallest integer q such that any integer $h(\geq q)$ can be expressed as a nonnegative linear combination of c_{i} 's (i.e. $h=\sum_{i=1}^{\lambda} a_{i} c_{i}$, where a_{i} 's are nonnegative integers). In general, for a finite set of positive integers $C=\left\{c_{1}, c_{2}, \cdots, c_{\lambda}\right\}$ with the greatest common divisor $\operatorname{gcd}(C)=p$, the Frobenius number $\varphi(C)$ of C is $p \cdot \varphi\left(d_{1}, d_{2}, \cdots, d_{\lambda}\right)$, where $d_{i}=\frac{c_{i}}{p}$.

Let $A \in B_{n}$ be an $n \times n$ Boolean matrix, and let $G(A)$ be its associated digraph with vertices $\{1,2, \ldots, n\}$. If there is a $c-$ cycle (cycle of length c), then such integer c is called a circumference of A (and of $G(A)) . \Gamma A$ and $\lambda(A)$ denote respectively the set of all the circumferences of A and the cardinality of ΓA. Now let A be irreducible and C be a subset of ΓA. For any vertices s and t in $G(A), P(s, t)=\{\tau \mid \tau$ is a path from s to $t\}$ and $Q(C, s, t)=\{\tau \mid \tau$ is a circumpath from s to t w.r.t. $C\}$ (i.e. τ is a path from s to t such that τ meets with a p-cycle for each $p \in C)$. Then the distance $d(s, t)$ from s to t is the minimum of $\{$ length of $\tau \mid \tau \in P(s, t)\}$, and the circum-distance $\delta(C, s, t)$ from s to t w.r.t. C is the minimum of the set $\{$ length of $\tau \mid \tau \in Q(C, s, t)\}$. Finally the circum-diameter $\delta_{A}(C)$ of A w.r.t. C is the maximum of $\{\delta(C, s, t) \mid s, t \in G(A)\}$, and $\varphi_{A}(C)$ denotes $\varphi(C)$ if C is a subset of Γ.

Lemma 2.2. Let $A \in B_{n}$ be a p-irreducible matrix. Then index (A) $\leq \varphi_{A}(C)+\delta_{A}(C)$ for any subset C of ΓA with $\operatorname{gcd}(C)=p$.

Proof. Refer to Cho [3].

Consider the 4 by 4 Boolean matrix $W=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0\end{array}\right)$. Then the characteristic polynomial of W (as a real matrix) is $\lambda^{4}-\lambda-1$, and W is power divergent in R_{4} since there exists an eigenvalue whose absolute value is greater than 1. But W (as a Boolean matrix) is power convergent in $B_{\boldsymbol{n}}$, and index $(A)=\varphi_{W}(C)+\delta_{W}(C)$. Now consider the primitive matrix

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Then $\Gamma A=\{4,5,7\}, \varphi_{A}(4,5,7)=7, \delta_{A}(4,5,7)=7$. But index $(A)=$ $12<14=\varphi_{A}(4,5,7)+\delta_{A}(4,5,7)$. Thus there exists a Boolean matrix A such that index $(A)<\varphi_{A}(C)+\delta_{A}(C)$. Note that if p and q are relatively prime integers, then $\varphi(p, q)=(p-1)(q-1)$.

3. Gaps in the Index Set E_{n}^{p}

For the given positive integers n and $p(p \leq n)$, let E_{n}^{p} be the index set $\left\{\operatorname{index}(A) \mid A \in B_{n}\right.$ is p-irreducible $\}$ and $m E_{n}^{p}$ be the maximum element of E_{n}^{p}. Also let G_{n}^{p} be the set $\{g \mid g$ is a positive integer less than $m E_{n}^{p}$ and $\left.g \notin E_{n}^{p}\right\}$. Then any integer in G_{n}^{p} is called a gap of E_{n}^{p}. Shao [11] and Min [9] proved that there is no gap less than $\omega_{n}+1$ in the index set $E_{n}^{1}(n \neq 11)$, where $\omega_{n}=\frac{n^{2}-2 n+2}{2}$. Moreover Lewin and Vitek [7] specified the gaps greater than $\omega_{n}+1$ in E_{n}^{1}. In this section we investigate the gaps in the index set E_{n}^{p} of $n \times n$ p-irreducible matrices using their results and the index properties of cyclically p-partite matrices.

DEFINITION 3.1. $E_{n}(i, j)$ denotes an $n \times n$ Boolean matrix whose (i, j)-entry is the only nonzero entry. Each $n \times n$ permutation matrix P can be expressed as a Boolean sum $\sum_{i=1}^{n} E_{n}(i, \sigma(i))$, where σ is an element of the symmetric group S_{n} representing P. Let $n=p \alpha+\beta$ with $\alpha=\left[\frac{n}{p}\right]$ for some positive integers $p(\leq n)$, and let M_{n}^{p} denote the set $\left\{A \in B_{n} \mid A\right.$ is p-irreducible and $\left.\operatorname{index}(A)>p\left(\omega_{\alpha}+1\right)+\beta\right\}$.

Lemma 3.2. Let $C=\left\{c_{1}, c_{2}, \cdots, c_{\lambda}\right\}$ be a finite set of positive integers with $2 \leq c_{1}<c_{2}<\cdots<c_{\lambda} \leq n$ and $\operatorname{gcd}(C)=p$. If $c_{\lambda}+c_{\lambda-1} \geq n$, then $E_{n}^{p}(C) \subseteq E_{n}^{p}$, where $E_{n}^{p}(C)=\left\{\varphi(C)+c_{\lambda}-\right.$ $\left.p, \cdots, \varphi(C)+c_{\lambda}-p+\left(n-c_{\lambda-1}\right)\right\}$.

Proof. Let $u=c_{\lambda-1}, v=c_{\lambda}$, and $M(C)=\pi(v)+\sum_{i=1}^{\lambda} E_{v}\left(c_{i}\right)$. Here, + is the Boolean sum, $\pi(v)=E_{v}(v, 1)+\sum_{i=1}^{v-1} E_{v}(i, i+1)$, and
$E_{v}\left(c_{i}\right)=\sum_{j \in S_{i}} E_{v}\left(c_{i}, j\right)$, where $S_{i}=\left\{j \mid j>0\right.$ and $\left.c_{i}-j+1 \in C\right\}$. For integers s and t with $0 \leq s \leq v-u$ and $0 \leq t<u$, consider the $(v+t) \times(v+t)$ matrix

$(\mathrm{t}+1)$-th position
where $M(C, s)=M(C)+\sum_{i=1}^{s} E_{v}(i+u)$. For n with $v \leq n<u+v$

$$
M_{n}(C, s, t)=\left(\begin{array}{cc}
M(C, s, t) & Q \\
R & 0
\end{array}\right)
$$

is an $n \times n$ matrix such that the $i-$ th row (respectively column) of $R(Q)$ is the first row (column) of $M(C, s, t)$ for any i. If $u+v>$ n, then the index of the above $M_{n}(C, s, t)$ is $\varphi(C)+(v-p)+(v-$ $u-s)+t$. Now let $u+v=n$, and consider the $n \times n$ matrix $S=$ $\left(\begin{array}{cc}M_{n-1}(C, 0, u-1) & 0 \\ 0 \cdots 0 & 0\end{array}\right)+E_{n}(u-1, n)+E_{n}(n, u+1)$. Then the index of S is $\varphi(C)+(v-p)+(n-u)$. Therefore we have the lemma.

It is well known that any p-irreducible matrix is a cyclically p-parti te matrix. Also note that permutationally similar matrices have the same index. Thus without loss of generality we will assume that the matrix A of Lemma 3.3 and 3.4 is of the form II (in Definition 1.2).

Lemma 3.3. If $A \in M_{n}^{p}(\alpha \geq 3)$, then $\Gamma A=\{p g, p h\}$ with $g+h>\alpha$.
Proof. First let $p=1$. It is known that for a primitive matrix $A \in B_{\alpha}, \lambda(A) \geq 3$ means index $(A) \leq \omega_{\alpha}+1$ [7]. If $\lambda(A)$ is 1 , then
the girth of A is 1 and index $(A) \leq \alpha \leq \omega_{\alpha}+1$. Also if $\Gamma A=\{g, h\}$ with $g+h \leq \alpha$, then index $(A) \leq(g-1)(\alpha-g-1)+2 \alpha-g-1=$ $-g^{2}+g(\alpha-1)+g \leq \omega_{\alpha}+1$. Now let $p \geq 2$. If index $\left(\pi_{1}\right)$ is the minimum of the set $\left\{\operatorname{index}\left(\pi_{i}\right)\right\}$ and if there are β many π_{i} 's such that index $\left(\pi_{i}\right)>\operatorname{index}\left(\pi_{1}\right)$, then index $(A) \leq p\left(\operatorname{index}\left(\pi_{1}\right)\right)+\beta$. Thus if $\lambda(A)=1$, then the girth of A is p and index $(A) \leq p \alpha+\beta \leq$ $p\left(\omega_{\alpha}+1\right)+\beta$. Next if $\lambda(A) \geq 3$, then index $(A) \leq p\left(\omega_{\alpha}+1\right)+\beta$ since there are at most β many π_{i} 's whose order is greater than α. Now let $\Gamma A=\{p g, p h\}$ with $g<h$, and let γ be the minimum of \{order of $\left.\pi_{i}\right\}$ and the order of π_{k} be γ. Note that if $g+h \leq \alpha$, then index $\left(\pi_{k}\right) \leq(g-1) \cdot(\alpha-g-1)+2 \gamma-g-1 \leq \omega_{\alpha}+1$. Since at least $p-\beta$ many π_{i} 's are of order less than $\alpha+1, \operatorname{index}(A) \leq p\left(\omega_{\alpha}+1\right)+\beta$. Thus if index $(A)>p\left(\omega_{\alpha}+1\right)+\beta$, then $\Gamma A=\{p g, p h\}$ with $g+h>\alpha$.

Lemma 3.4. Let $A \in B_{n}(\alpha \geq 3)$ be p-irreducible, $\Gamma A=\{p g, p h\}$ ($g<h$), and $q=g(h-1)$. If every π_{i} is nonsymmetric and $g+h>\alpha$, then $p q \leq \operatorname{index}(A) \leq p q+p(\alpha-g)+\beta$ is a sharp inequality.

Proof. If $p=1$, then A is primitive and the lemma holds by the results of Lewin and Vitek [7]. From their results, if A is symmetric, then index $(A) \leq \omega_{\alpha}+1$. For each h-cycle τ of $G(A)$, there is an arc (s, t) in τ with $d(t, s)=h-1$, and $g(h-1) \leq \operatorname{index}(A) \leq g(h-1)+$ $(\alpha-g)$. Thus in the following proof, we will assume that $p \geq 2$. We also let $u=p g$ and $v=p h$.
(Upper bound) Since A is a p-irreducible matrix, without loss of generality, let A be of the form Π (in Definition 1.2). If the order of π_{i} is m for some i, then index $\left(\pi_{i}\right) \leq q+(m-g)$. If $m<\alpha$, then index $\left(\pi_{j}\right) \leq q+(\alpha-g)$ for any j, and index $(A) \leq p q+p(\alpha-g)$ in this case. Now let the minimum of \{order of $\left.\pi_{i}\right\}$ be α. Then there are at most β many π_{i} 's such that the order of each π_{i} is greater than α. Therefore by the structure of $A(=\Pi)$ and Lemma 1.3, index $(A) \leq$ $p q+p(\alpha-g)+\beta$.
(Lower bound) Consider a v-cycle of $G(A)$ labeled as (v_{1}, v_{2}, \cdots, $\left.v_{v}, v_{1}\right)$. Without loss of generality let $d\left(v_{p+1}, v_{1}\right)$ be $v-p$ (so there is no path of length $p q-p$ from v_{p+1} to v_{1}). If index $(A) \leq p q-1$, then there is a path τ_{j} of length $p q-1$ from v_{p+1-j} to v_{p-j} for $0 \leq j<p$. Note that the length of τ_{i} can be expressd as a sum of the length of a simple path from v_{p+1-j} to v_{p-j} and some circumferences of A. Also note that $p(g-1)(h-1)-p(=p g h-p g-p h)$ cannot be expressed
as a nonnegative linear combination of u and v. So there is a path of length $u-1$ from v_{p+1-j} to v_{p-j} for $0 \leq j<p$ since $p q-1=$ $p(g h-g)-1=p g h-p g-1=p g h-p g-p h+(v-1)$. By the similar reason, we can construct a path of length $k(u-1)$ from v_{p+1} to v_{p+1-k} for $0<k \leq p$. Then there is a path of length $p q-p$ from v_{p+1} to v_{1} since $p q-p=u(h-1)-p=u(h-p-1)+p(u-1)$, contradiction. Thus index $(A) \geq p q$.
(Sharpness) By the Lemma 3.2.
Theorem 3.5. For each $\theta(\geq 3)$ and $n=p \alpha+\beta$ with $\alpha=\left[\frac{n}{p}\right](\geq$ 3), $\left[p\left(\alpha^{2}-\theta \alpha+\left[(\theta+1)^{2} / 4\right]\right)+1, \cdots, p\left(\alpha^{2}-(\theta-1) \alpha+(\theta-2)\right)-1\right]$ is a gap interval greater than $p\left(\omega_{\alpha}+1\right)+\beta$ in the index set E_{n}^{p}.

Proof. Let $M_{n}^{p}[\varepsilon, \delta]$ denote the set $\left\{A \in M_{n}^{p} \mid \Gamma A=\{p g, p h\}(g<h)\right.$ such that $\varepsilon=h-g+1$ and $\delta=\alpha-h\}$. For a positive integer θ, $M_{n}^{p}[\theta]$ denotes the set $\bigcup_{\varepsilon+2 \delta=\theta} M_{n}^{p}[\varepsilon, \delta]$. Now choose any $A \in M_{n}^{p}$. Then we may assume that $\Gamma A=\{p g, p h\}(g<h)$ with $g+h>\alpha$ by Lemma 3.3, and $A \in M_{n}^{p}[\theta]$ for some θ. From Lemma 3.4 we can obtain an inequality $p\left(\alpha^{2}-\theta \alpha+\left[-\delta^{2}+(\theta-2) \delta+(\theta-1)\right] \leq\right.$ index $(A) \leq$ $p\left(\alpha^{2}-\theta \alpha+\left[-\delta^{2}+(\theta-3) \delta+2(\theta-1)\right]\right)$. Since $\delta=(\theta-\varepsilon) / 2$ the minimum possible value of $\left[-\delta^{2}+(\theta-2) \delta+(\theta-1)\right]$ is $\theta-1$ when $\delta=0$ by simple calculation, and the maximum possible value of $\left[-\delta^{2}+(\theta-3) \delta+2(\theta-1)\right]$ is $\left[(\theta+1)^{2} / 4\right]$ when δ is $(\theta-3) / 2$. Therefore there does not exist any matrix in M_{n}^{p} whose index lies between $p\left(\alpha^{2}-\theta \alpha+\left[(\theta+1)^{2} / 4\right]\right)+1$ and $p\left(\alpha^{2}-(\theta-1) \alpha+(\theta-2)\right)-1$.

It is our belief that if $\alpha \geq 14$ or $\alpha \leq 8$, then there is no gap less than $p\left(\omega_{\alpha}+1\right)+\beta$ in the index set E_{n}^{p}.

References

1. A.Berman and R.J. Plemmons, Nonnegative Matreces in the Mathematical Sciences, Academic Press, New York, 1979.
2. R.A. Brualdi and B. Liu, Generalized exponents of primitive directed graphs, J. Graph Theory (4) 14 (1990), 483-499.
3. H.H. Cho, On the indices of the Boolean matrices, Proc. Workshops Pure Math. 9 (1989), 161-168.
4. A.L. Dulmage and N.S. Mendelsohn, Gaps in the exponent set of primiteve matrices, Illinois J. Math. 8 (1964), 642-656.
5. K.H. Kim, Boolean Matrix Theory and Applications, Pure and Applied Mathematics, 70, Marcel Dekker,New York, 1982.
6. K.H. Kim, An extension of the Dulmage-Mendelsohn theorem, Linear Algebra and Appl. 27 (1979), 187-197.
7. M. Lewin and Y. Vitek, A system of gaps in the exponect set of primitive matrices, Illinois J. Math. 25 (1981), 87-97.
8. G. Markowsky, Bounds on the index and period of a binary relation on a finite set, Semigroup Forum. 13 (1977), 253-259.
9. Z.K.Min, On Lewin and Vitek's conjecture about the exponent set of primitive matrices, Linear Algebra and Appl. 96 (1987), 101-108.
10. H.Minc, The structure of irreducible matrices, Lin. and Multilinear Algebra 2 (1974), 85-90.
11. J. Shao, On a conjecture about the exponent set of primitive matrices, Linear Algebra and Appl. 65 (1985), 91-123.
12. Y.Vitek, Bounds for a linear diophantine problem of Frobenius, J.London Math. Soc. 10 (1975), 79-85.

Department of Mathematics Ed.
Seoul National University
Seoul 151-742, Korea

[^0]: Received February 11, 1992. Revised January 22.1993.
 Partially supported by the Korea Science and Engineering Foundation.

