A CLASS OF CONDITIONAL WIENER INTEGRALS

Seung Jun Chang and Dong Myung Chung

1. Introduction

Let ($\left.C_{0}[0, T], \mathcal{B}\left(C_{0}[0, T]\right), m_{w}\right)$ denote Wiener space where $C_{0}[0, T]$ is the space of all continuous functions x on $[0, T]$ with $x(0)=0$. Many physical problem can be formulated in terms of the conditional Wiener integral $E[F \mid X]$ of the functional defined on $C_{0}[0, T]$ of the form

$$
\begin{equation*}
F(x)=\exp \left\{-\int_{0}^{T} V(x(t)) d t\right\} \tag{1.1}
\end{equation*}
$$

where $X(x)=x(T)$ and V is a sufficiently smooth function on \mathbf{R}. Indeed, it is known [see [3], [4],[7]] that the function U defined on $\mathbf{R} \times$ $[0, T] \times \mathbf{R}$ by

$$
U\left(\xi, t ; \xi_{0}\right)=\frac{1}{\sqrt{2 \pi t}} \exp \left\{-\frac{\left(\xi-\xi_{0}\right)^{2}}{2 t}\right\} E\left[F\left(x(\cdot)+\xi_{0}\right) \mid x(t)=\xi-\xi_{0}\right]
$$

is the Green's function for the partial differential equation

$$
\frac{\partial U}{\partial t}=\frac{1}{2} \frac{\partial^{2}}{\partial \xi^{2}} U-V U .
$$

So it is of interest to obtain formulas for evaluating such conditional Wiener integrals.
J.Yeh [8] derived several Fourier inversion formulas for conditional Wiener integrals and then used the formulas to evaluate conditional Wiener integrals. Recently, Park and Skoug ([5],[6]) obtained a simple formula of another type for evaluating conditional Wiener and YehWiener integrals. Chung and Kang [2] defined abstract Wiener space

Received March 20, 1992.
This research was supported by KOSEF, 911-0102-004-2 .
version of conditional Wiener integrals and then obtained evaluation formulas for conditional abstract Wiener integral of various functions which include some results given in [5], [6].

In this paper, we consider a class of functions V of the form $V(s, \xi)=$ $-\frac{\alpha}{2} \xi^{2}+\alpha \beta q(s) \xi$, where $q \in L^{2}[0, T]$ and α, β are complex, and give explicit formulas of the conditional Wiener integral of the functions F of the form (1.1) for the class of V's.

2. Preliminaries

For the partition $\tau=\tau_{n}=\left\{t_{1}, \ldots, t_{n}\right\}$ of $[0, T]$ with $0=t_{0}<$ $t_{1}<\cdots<t_{n}=T$, let $X_{\tau}: C_{0}[0, T] \rightarrow \mathbf{R}^{n}$ be defined by $X_{\tau}(x)=$ $\left(x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right)$. Let $\mathcal{B}\left(\mathbf{R}^{n}\right)$ be the σ-algebra of Borel sets in \mathbf{R}^{n}. Then a set of the type

$$
I=\left\{x \in C_{0}[0, T]: X_{\tau}(x) \in B\right\} \equiv X_{\tau}^{-1}(B), \quad B \in \mathcal{B}\left(R^{n}\right)
$$

is called a Borel cylinder set. The collection \mathcal{F} of such a set forms an algebra of subsets of $C_{0}[0, T]$. It is well known that the set function m_{w} on \mathcal{F} defined by

$$
m_{w}(I)=\int_{B} K(\tau, \vec{\xi}) d \vec{\xi},
$$

where

$$
K(\tau, \vec{\xi})=\left\{\prod_{j=1}^{n} 2 \pi\left(t_{j}-t_{j-1}\right)\right\}^{-1 / 2} \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(\xi_{j}-\xi_{j-1}\right)^{2}}{t_{j}-t_{j-1}}\right\}
$$

with $\vec{\xi}=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbf{R}^{n}$ and $\xi_{0}=0$, is a probability measure and thus m_{w} is extended to the Borel σ-algebra $\mathcal{B}\left(C_{0}[0, T]\right)$ generated by \mathcal{F}.

Let F be a complex-valued (C -valued) integrable function on $C_{0}[0, T]$. Let $\mathcal{F}\left(X_{\tau}\right)$ be the σ-algebra generated by the set $\left\{X_{\tau}^{-1}(B): B \in\right.$ $\left.\mathcal{B}\left(R^{n}\right)\right\}$. Then, by the definition of conditional expectation, the conditional expectation of F given by \mathcal{F}_{τ}, written $E\left[F \mid X_{\tau}\right]$, is any real valued \mathcal{F}_{τ}-measurable function on $C_{0}[0, T]$ such that

$$
\int_{E} F d m_{w}=\int_{E} E\left[F \mid X_{\tau}\right] d m_{w} \quad \text { for } \quad E \in \mathcal{F}_{\tau}
$$

It is well known that there exists a Borel measurable and $P_{X_{\tau}}$-integrable function Ψ on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), P_{X_{\tau}}\right)$ such that $E\left[F \mid X_{\tau}\right]=\Psi \circ X_{\tau}$ and $P_{X_{\tau}}$ is the probability distribution of X_{τ} defined by $P_{X_{r}}(A)=m_{w}\left(X_{\tau}^{-1}(A)\right)$ for $A \in \mathcal{B}\left(\mathbf{R}^{\boldsymbol{n}}\right)$. Following Yeh [8], the function $\Psi(\vec{\xi})$, written $E\left[F \mid X_{\tau}=\right.$ $\vec{\xi}]$, is called the conditional Wiener integral of F given X_{τ}.

For a given partition $\tau=\tau_{n}$ of $[0, T]$ and $x \in C_{0}[0, T]$, define the polygonal function $[x]$ on $[0, T]$ by

$$
[x](t)=x\left(t_{j-1}\right)+\frac{t-t_{j-1}}{t_{j}-t_{j-1}}\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right)
$$

for $t \in\left[t_{j-1}, t_{j}\right], j=1, \cdots, n$. Likewise, for each $\vec{\xi}=\left(\xi_{1}, \cdots, \xi_{n}\right) \in$ \mathbf{R}^{n}, define the polygonal function $[\vec{\xi}]$ of $\vec{\xi}$ on $[0, T]$ by

$$
[\vec{\xi}](t)=\xi_{j-1}+\frac{t-t_{j-1}}{t_{j}-t_{j-1}}\left(\xi_{j}-\xi_{j-1}\right)
$$

for $t \in\left[t_{j-1}, t_{j}\right], j=1, \cdots, n$, and $\xi_{0}=0$.
The following theorem, due to Park and Skoug [5], is a evaluation formular for conditional Wiener integrals.

Theorem 2.1. Let F be an integrable function on $C_{0}[0, T]$. Then for $\overrightarrow{\boldsymbol{\xi}} \in \mathbf{R}^{\boldsymbol{n}}$,

$$
\stackrel{\mathbf{R}^{n}}{E}\left[F(x) \mid X_{\tau}(x)=\vec{\xi}\right]=\int_{C_{0}[0, T]} F(x-[x]+[\vec{\xi}]) d m_{w}(x)
$$

We note that a real valued function Y on $[0, T] \times C_{0}[0, T]$ defined by

$$
Y(t, x) \equiv y(t)=x(t)-\frac{t}{T} x(T)
$$

is a pinned Wiener process on $\left(C_{0}[0, T], \mathcal{B}\left(C_{0}[0, T]\right), m_{w}\right)$ and $[0, T]$ with $y(0)=0$ and $y(T)=0$. This process $\{y(t), 0 \leq t \leq T\}$ induces the Gaussian measure, called the pinned Wiener measure m_{p}, on $C_{0}^{0}[0, T]=\left\{x \in C_{0}[0, T] \mid x(T)=0\right\}$, which is uniquely determined by mean function $E[y(t)]=0$ for every $t \in[0, T]$ and covariance function $E[y(s), y(t)]=\min \{s, t\}-\frac{s t}{T}$.

In the following theorem, we gives a convenient formula for evaluating conditional Wiener integrals of the function involving quadratic functional.

Theorem 2.2. Let F be an integrable function on $C_{0}[0, T]$. Then for $0<t_{1}<T$ and $\xi, \xi_{1} \in \mathbf{R}$,

$$
E\left[F(x) \mid x\left(t_{1}\right)=\xi_{1}, x(T)=\xi\right]=\int_{C_{0}^{0}\left[0, T-t_{1}\right]} F(y+g) d m_{p}(y)
$$

where $g(t)=\frac{t}{T-t_{1}}\left(\xi-\xi_{1}\right)+\xi_{1}, t \in\left[0, T-t_{1}\right]$.
In particular if $t_{1}=0$, then

$$
E[F(x) \mid x(T)=\xi]=\int_{C_{0}^{0}[0, T]} F(y+h) d m_{p}(y)
$$

where $h(t)=\frac{t}{T} \xi, t \in[0, T]$.
Proof. The proof easily follows from the fact that

$$
E\left[F(\cdot) \mid x\left(t_{1}\right)=\xi_{1}, x(T)=\xi\right]=E\left[F\left(x(\cdot)+\xi_{1}\right) \mid x\left(T-t_{1}\right)=\xi-\xi_{1}\right],
$$

Theorem 2.1, and the change of variable formula.

3. Main Theorem

Let k be the covariance function of the pinned Wiener process $\{y(t)$: $t \in[0, T]$, that is, k is the function on $[0, T] \times[0, T]$ defined by

$$
\begin{equation*}
k(s, t)=\min \{s, t\}-\frac{s t}{T} \tag{3.1}
\end{equation*}
$$

Let A be the integral operator on $L^{2}[0, T]$ (the space of real valued square integrable function on $[0, T]$) defined by

$$
\begin{equation*}
A f(s)=\int_{0}^{T} k(s, t) f(t) d t, \quad s \in[0, T], \quad f \in L^{2}[0, T] \tag{3.2}
\end{equation*}
$$

Then it can be shown that the orthonormal eigen-functions $\left\{e_{n}\right\}$ of A are given by

$$
\begin{equation*}
e_{n}(s)=\sqrt{\frac{T}{2}} \sin \left(\frac{n \pi}{T} s\right) \tag{3.3}
\end{equation*}
$$

and the corresponding eigen-value $\left\{\alpha_{n}\right\}$ are given by

$$
\begin{equation*}
\alpha_{n}=\frac{T^{2}}{n^{2} \pi^{2}} \tag{3.4}
\end{equation*}
$$

Further, it can be shown that $\left\{e_{n}\right\}$ is a basis of $L^{2}[0, T]$, and that A is a trace class operator on $L^{2}[0, T]$. The Karhunen - Loeve theorem [1] shows that the Fourier series representation of the pinned Wiener process $\{y(t): t \in[0, T]\}$ is given by

$$
\begin{equation*}
y(t)=\sum_{n=1}^{\infty} z_{n} e_{n}(t), \quad 0 \leq t \leq T \tag{3.5}
\end{equation*}
$$

where z_{n} 's are orthogonal Gaussian random variables with $E\left[z_{n}\right]=$ 0 and $E\left[z_{n}^{2}\right]=\alpha_{n}$.

Lemma 3.1. For $\alpha>0, t \in[0, T]$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{T}{n^{2} \pi^{2}+\alpha T^{2}} \cos \left(\frac{n \pi}{T} t\right)=\frac{\cosh \sqrt{\alpha}(T-t)}{2 \sqrt{\alpha} \sinh \sqrt{\alpha} t}-\frac{1}{2 \alpha T} \tag{3.6}
\end{equation*}
$$

Proof. To proof this lemma, we use a known result that

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\cos (n x)}{n^{2}-a^{2}}=\frac{1}{2 a^{2}}-\frac{\pi \cos (a x)}{2 a \sin (a \pi)}, \quad-\pi \leq x \leq \pi
$$

where a is not an integer. If we let $a=i \sqrt{\alpha} T / \pi$ and $x=\pi(T-t) / T$, then

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\pi^{2}}{n^{2} \pi^{2}+\alpha T^{2}} \cos \left(n \pi-\frac{n \pi}{T} t\right)=\frac{\pi^{2} \cosh (\sqrt{\alpha}(T-t))}{2 \sqrt{\alpha} T \sinh \sqrt{\alpha} T}-\frac{\pi^{2}}{2 \alpha T^{2}}
$$

Hence we obtain

$$
\sum_{n=1}^{\infty} \frac{T}{n^{2} \pi^{2}+\alpha T^{2}} \cos \left(\frac{n \pi}{T} t\right)=\frac{\cosh (\sqrt{\alpha}(T-t))}{2 \sqrt{\alpha} \sinh \sqrt{\alpha} T}-\frac{1}{2 \alpha T}
$$

. Lemma 3.2. For $\alpha>0$, let

$$
R(s, t, \alpha)=\sum_{n=1}^{\infty} \frac{\alpha_{n}}{1+\alpha \alpha_{n}} e_{n}(s) e_{n}(t), \quad s, t \in[0, T]
$$

where α_{n} and e_{n} are as in (3.3) and (3.4). Then

$$
R(s, t, \alpha)= \begin{cases}\frac{\sinh \sqrt{\alpha}(T-t) \sinh \sqrt{\alpha} s}{\sqrt{\alpha} \sinh \sqrt{\alpha} T}, & s \leq t \tag{3.7}\\ \frac{\sinh \sqrt{\alpha}(T-s) \sinh \sqrt{\alpha} t}{\sqrt{\alpha} \sinh \sqrt{\alpha} T}, & s \geq t\end{cases}
$$

Proof. Using.(3.3), (3.4) and Lemma 3.1 we have

$$
\begin{aligned}
R(s, t, \alpha) & =\frac{T^{2}}{n^{2} \pi^{2}+\alpha T^{2}} \frac{2}{T} \sin \left(\frac{n \pi}{T} s\right) \sin \left(\frac{n \pi}{T} t\right) \\
& =\frac{T}{n^{2} \pi^{2}+\alpha T^{2}}\left[\cos \left[\frac{n \pi}{T}(s-t)\right]-\cos \left[\frac{n \pi}{T}(s+t)\right]\right] \\
& \left.=\frac{1}{2 \sqrt{\alpha} \sinh \sqrt{\alpha} T}[\cosh \sqrt{\alpha}(T-|s-t|))-\cosh \sqrt{\alpha}(T-|s+t|)\right] \\
& = \begin{cases}\frac{\sinh \sqrt{\alpha}(T-t) \sinh \sqrt{\alpha} s}{\sqrt{\alpha} \sinh \sqrt{\alpha} T}, & s \leq t \\
\frac{\sinh \sqrt{\alpha}(T-s) \sinh \sqrt{\alpha} t}{\sqrt{\alpha} \sinh \sqrt{\alpha} T}, & s \geq t\end{cases}
\end{aligned}
$$

Theorem 3.3. Let F be a measurable function on $C_{0}[0, T]$ defined by

$$
F(x)=\exp \left\{-\frac{1}{2} \alpha \int_{0}^{T} x^{2}(s) d s+\alpha \beta \int_{0}^{T} q(s) x(s) d s\right\}, x \in C_{0}[0, T]
$$

where $\operatorname{Re} \alpha>-\frac{\pi^{2}}{2 T^{2}}, \beta \in \mathbf{C}$, and $q \in L^{2}[0, T]$. Then for $\xi, \xi_{1} \in \mathbf{R}$,

$$
\begin{aligned}
& E\left[\left.\exp \left\{-\frac{\alpha}{2} \int_{t_{1}}^{T} x^{2}(s) d s+\alpha \beta \int_{t_{1}}^{T} q(s) x(s) d s\right\} \right\rvert\, x\left(t_{1}\right)=\xi_{1}, x(T)=\xi\right] \\
& \quad=\left(\frac{\sqrt{\alpha}\left(T-t_{1}\right)}{\sinh \sqrt{\alpha}\left(T-t_{1}\right)}\right)^{\frac{1}{2}} \cdot \exp \left\{\frac{\left(\xi-\xi_{1}\right)^{2}}{2\left(T-t_{1}\right)}\right\} \\
& \quad \cdot \exp \left\{-\frac{\sqrt{\alpha}}{2} \operatorname{coth} \sqrt{\alpha}\left(T-t_{1}\right)\left(\xi^{2}+\xi_{1}^{2}\right)+\frac{\sqrt{\alpha} \xi \xi_{1}}{\sinh \sqrt{\alpha}\left(T-t_{1}\right)}\right\} \\
& \quad \cdot \exp \left\{\alpha \beta\left(\xi-\xi_{1}\right) \int_{0}^{T-t_{1}}\left(\frac{\sinh \sqrt{\alpha} t}{\sinh \sqrt{\alpha}\left(T-t_{1}\right)}+\frac{\xi_{1}}{\xi-\xi_{1}}\right) q\left(t+t_{1}\right) d t\right\} \\
& \quad \cdot \exp \left\{\frac{\alpha^{2} \beta^{2}}{2} \int_{0}^{T-t_{1}} \int_{0}^{T-t_{1}} R(s, t, \alpha) q\left(s+t_{1}\right) q\left(t+t_{1}\right) d s d t\right\} .
\end{aligned}
$$

Proof. We first note that for $\operatorname{Re} \alpha>-\frac{\pi^{2}}{2 T^{2}}, \exp \left\{-\frac{1}{2} \alpha \int_{0}^{T} x^{2}(s) d s\right\}$ is square Wiener integrable, and that for any $z \in \mathbf{C}, \exp \left\{z \int_{0}^{T} q(s) x(s) d s\right\}$ is square Wiener integrable. Hence F is Wiener integrable for Rea $>$ $-\frac{\pi^{2}}{2 T^{2}}$ and any $\beta \in C$. So F is conditional Wiener integrable for the given $x\left(t_{1}\right)=\xi_{1}$ and $x(T)=\xi$. By Theorem 2.2, we have, for $\xi, \xi_{1} \in \mathbf{R}$

$$
\begin{aligned}
& E\left[\left.\exp \left\{-\frac{\alpha}{2} \int_{t_{1}}^{T} x^{2}(s) d s+\alpha \beta \int_{t_{1}}^{T} q(s) x(s) d s\right\} \right\rvert\, x\left(t_{1}\right)=\xi_{1}, x(T)=\xi\right] \\
& =\int_{C_{0}^{0}\left[0, T-t_{1}\right]} \exp \left\{-\frac{\alpha}{2} \int_{0}^{T-t_{1}}(y(s)+g(s))^{2} d s\right. \\
& \\
& \left.\quad+\alpha \beta \int_{0}^{T-t_{1}} q\left(s+t_{1}\right)(y(s)+g(s)) d s\right\} d m_{p}(y)
\end{aligned}
$$

where $g(t)=\frac{\xi-\xi_{1}}{T-t_{1}} t+\xi_{1}, t \in\left[0, T-t_{1}\right]$. Hence the proceeding equals

$$
\begin{equation*}
\int_{C_{0}^{0}\left[0, T-t_{1}\right]} \exp \left\{-\frac{1}{2} \alpha \sum_{n=1}^{\infty}\left[\left(z_{n}+g_{n}\right)^{2}-2 \beta\left(q_{n}\left(z_{n}+g_{n}\right)\right)\right]\right\} d m_{p}(y) \tag{3.8}
\end{equation*}
$$

where $y(t)=\sum_{n=1}^{\infty} z_{n} e_{n}(t)$ is the Fourier series representation of function y in $C_{0}^{0}\left[0, T-t_{1}\right]$ as in (3.5), $g(t)=\sum_{n=1}^{\infty} g_{n} e_{n}(t)$, and $q\left(t+t_{1}\right)=\sum_{n=1}^{\infty} q_{n} e_{n}(t)$. Since $z_{n}^{\prime} \mathrm{s}$ are independent Gaussian random variables with mean 0 and variance α_{n}, (3.8) equals

$$
\begin{aligned}
& \prod_{n=1}^{\infty} \int_{C_{0}^{0}\left[0, T-t_{1}\right]} \exp \left\{-\frac{\alpha}{2} z_{n}{ }^{2}+\alpha\left(\beta q_{n}-g_{n}\right) z_{n}+\alpha \beta g_{n} q_{n}-\frac{\alpha}{2} g_{n}{ }^{2}\right\} d m_{p}(y) \\
& =\prod_{n=1}^{\infty}\left[\left\{\frac{1}{\sqrt{2 \pi \alpha_{n}}} \int_{\mathbb{R}} \exp \left\{-\frac{\alpha}{2} u^{2}+\alpha \omega_{n} u-\frac{u^{2}}{2 \alpha_{n}}\right\} d u\right\} \cdot \exp \left\{\alpha \beta g_{n} q_{n}-\frac{\alpha}{2} g_{n}^{2}\right\}\right]
\end{aligned}
$$

where $\omega_{n}=\beta q_{n}-g_{n}$. Hence the preceding equals

$$
\begin{array}{r}
\begin{array}{l}
\prod_{n=1}^{\infty}\left[\frac { 1 } { \sqrt { 2 \pi \alpha _ { n } } } \operatorname { e x p } \left\{-\frac{1}{2}\left(\alpha+\frac{1}{\alpha_{n}}\right)\left(u^{2}-\frac{\alpha \alpha_{n} \omega_{n}}{\alpha \alpha_{n}+1}\right)^{2}+\frac{\alpha^{2} \alpha_{n} \omega_{n}^{2}}{2\left(\alpha \alpha_{n}+1\right)}\right.\right. \\
\left.\left.+\alpha \beta g_{n} q_{n}-\frac{\alpha}{2} g_{n}^{2}\right\}\right]
\end{array} \tag{3.9}\\
=\prod_{j=1}^{\infty}\left[(1 + \alpha \alpha _ { n }) ^ { - \frac { 1 } { 2 } } \operatorname { e x p } \left\{\frac{\alpha^{2} \beta^{2} \alpha_{n} q_{n}^{2}}{2\left(\alpha \alpha_{n}+1\right)}+\frac{\alpha^{2} \alpha_{n} g_{n}^{2}}{2\left(\alpha \alpha_{n}+1\right)}-\frac{\alpha^{2} \beta \alpha_{n} g_{n} g_{n}}{\alpha \alpha_{n}+1}\right.\right. \\
\left.\left.+\quad+\alpha \beta g_{n} q_{n}-\frac{\alpha}{2} g_{n}^{2}\right\}\right] \\
=\left[\prod_{j=1}^{\infty}\left(1+\alpha \alpha_{n}\right)\right]^{-\frac{1}{2}} \exp \left\{\frac{\alpha^{2} \beta^{2}}{2} \sum_{n=1}^{\infty} \frac{\alpha_{n}}{\alpha \alpha_{n}+1} q_{n}^{2}+\frac{\alpha^{2}}{2} \sum_{n=1}^{\infty} \frac{\alpha_{n}}{\alpha \alpha_{n}+1} g_{n}^{2}\right. \\
\left.-\alpha^{2} \beta \sum_{n=1}^{\infty} \frac{\alpha_{n}}{1+\alpha \alpha_{n}} q_{n} g_{n}+\alpha \beta \sum_{n=1}^{\infty} g_{n} q_{n}-\frac{\alpha}{2} \sum_{n=1}^{\infty} g_{n}^{2}\right\} .
\end{array}
$$

Using

$$
\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)=\frac{\sin z}{z}
$$

we have

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left[1+\alpha \frac{\left(T-t_{1}\right)^{2}}{n^{2} \pi^{2}}\right]=\frac{\sinh \sqrt{\alpha}\left(T-t_{1}\right)}{\sqrt{\alpha}\left(T-t_{1}\right)} . \tag{3.10}
\end{equation*}
$$

Observing that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\alpha_{n}}{1+\alpha \alpha_{n}} q_{n}^{2}=\int_{0}^{T-t_{1}} \int_{0}^{T-t_{1}} R(s, t, \alpha) q\left(s+t_{1}\right) q\left(t+t_{1}\right) d s d t \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\alpha_{n}}{1+\alpha \alpha_{n}} g_{n}^{2}=\int_{0}^{T-t_{1}} \int_{0}^{T-t_{1}} R(s, t, \alpha) g(s) g(t) d s d t \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\alpha_{n}}{1+\alpha \alpha_{n}} q_{n} g_{n}=\int_{0}^{T-t_{1}} \int_{0}^{T-t_{1}} R(s, t, \alpha) q\left(s+t_{1}\right) g(t) d s d t \tag{3.13}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{n=1}^{\infty} g_{n} q_{n}=\int_{0}^{T-t_{1}} g(t) q\left(t+t_{1}\right) d t \tag{3.14}\\
& \sum_{n=1}^{\infty} g_{n}^{2}=\int_{0}^{T-t_{1}} g^{2}(t) d t \tag{3.15}
\end{align*}
$$

and using Lemmas 3.1 and 3.2 with replacing T by $T-t_{1}$, one can show that
(3. 16)

$$
\begin{aligned}
& \frac{\alpha^{2}}{2} \sum_{n=1}^{\infty} \frac{\alpha_{n}}{\alpha \alpha_{n}+1} g_{n}^{2}-\frac{1}{2} \sum_{n=1}^{\infty} g_{n}^{2} \\
& \quad=-\frac{1}{2}\left\{\sqrt{\alpha}\left(\xi^{2}+\xi_{1}^{2}\right) \operatorname{coth} \sqrt{\alpha}\left(T-t_{1}\right)-\frac{2 \sqrt{\alpha} \xi \xi_{1}}{\sinh \sqrt{\alpha}\left(T-t_{1}\right)}-\frac{\left(\xi-\xi_{1}\right)^{2}}{T-t_{1}}\right\}
\end{aligned}
$$

$$
\begin{align*}
- & \alpha^{2} \beta \sum_{n=1}^{\infty} \frac{\alpha_{n}}{1+\alpha \alpha_{n}} g_{n} q_{n}+\alpha \beta \sum_{n=1}^{\infty} g_{n} q_{n} \tag{3.17}\\
& =\alpha \beta\left(\xi-\xi_{1}\right) \int_{0}^{T-t_{1}}\left(\frac{\sinh \sqrt{\alpha} t}{\sinh \sqrt{\alpha}\left(T-t_{1}\right)}+\frac{\xi_{1}}{\xi-\xi_{1}}\right) q\left(t+t_{1}\right) d t .
\end{align*}
$$

Putting (3.10),(3.11),(3.16) and (3.17) in the last equation in (3.9) we obtain the desired result in the theorem.

Colloary 3.4. Let α and F be as in Theorem 3.3. Let $0=t_{0}<$ $t_{1}<\cdots<t_{n}=T$. Then we have, for $\vec{\xi}=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right) \in \mathbf{R}^{n}$

$$
\begin{aligned}
& E\left[F(x) \mid x\left(t_{1}\right)=\xi_{1}, \cdots, x\left(t_{n}\right)=\xi_{n}\right] \\
& =\prod_{k=1}^{n}\left[\left(\frac{\sqrt{\alpha}\left(t_{k}-t_{k-1}\right)}{\sinh \sqrt{\alpha}\left(t_{k}-t_{k-1}\right)}\right)^{\frac{1}{2}} \cdot \exp \left\{\frac{\left.\xi_{k}-\xi_{k-1}\right)}{2\left(t_{k}-t_{k-1}\right)}\right\}\right. \\
& \cdot \exp \left\{-\frac{\sqrt{\alpha}}{2} \operatorname{coth} \sqrt{\alpha}\left(t_{k}-t_{k-1}\right)\left(\xi_{k}^{2}+\xi_{k-1}^{2}\right)+\frac{\sqrt{\alpha} \xi_{k} \xi_{k-1}}{\sinh \sqrt{\alpha}\left(t_{k}-t_{k-1}\right)}\right\} \\
& \cdot \exp \left\{\alpha \beta (\xi _ { k } - \xi _ { k - 1 }) \int _ { 0 } ^ { t _ { k } - t _ { k - 1 } } \quad \left(\frac{\sinh \sqrt{\alpha} t}{\sinh \sqrt{\alpha}\left(t_{k}-t_{k-1}\right)}\right.\right. \\
& \left.\left.\quad \quad+\frac{\xi_{k-1}}{\xi_{k}-\xi_{k-1}}\right) q\left(t+t_{k-1}\right) d t\right\}
\end{aligned}
$$

$$
\left.\cdot \exp \left\{\frac{\alpha^{2} \beta^{2}}{2} \int_{0}^{t_{k}-t_{k-1}} \int_{0}^{t_{k}-t_{k-1}} R(s, t, \alpha) q\left(s+t_{k-1}\right) q\left(t+t_{k-1}\right) d s d t\right\}\right]
$$

where $t_{0}=0, \xi_{0}=0$ and $R(s, t, \alpha)$ is as in (3.7) with replacing T by $t_{k}-t_{k-1}$.

Proof. Let $V(s, \xi)=\alpha \xi^{2}-2 \alpha \beta q(s) \xi$. Since the Wiener process $\{x(s): 0 \leq s \leq T\}$ is additive, it can be shown that

$$
\begin{aligned}
& E\left[\left.\exp \left\{-\frac{1}{2} \int_{0}^{T} V(s, x(s)) d s\right\} \right\rvert\, x\left(t_{k}\right)=\xi_{k}, k=1,2, \cdots, n\right] \\
& \quad=E\left[\left.\exp \left\{-\frac{1}{2} \sum_{k=1}^{n}\left\{\int_{t_{k-1}}^{t_{k}} V(s, x(s)) d s\right\}\right\} \right\rvert\, x\left(t_{k}\right)=\xi_{k}, k=1,2, \cdots, n\right] \\
& \quad=\prod_{k=1}^{n} E\left[\left.\exp \left\{-\frac{1}{2} \int_{t_{k-1}}^{t_{k}} V(s, x(s)) d s\right\} \right\rvert\, x\left(t_{k-1}\right)=\xi_{k-1}, x\left(t_{k}\right)=\xi_{k}\right] \\
& \quad=\prod_{k=1}^{n} E\left[\left.\exp \left\{-\frac{1}{2} \int_{0}^{t_{k}-t_{k-1}} W(s, x(s)) d s\right\} \right\rvert\, x\left(t_{k}-t_{k-1}\right)=\xi_{k}-\xi_{k-1}\right]
\end{aligned}
$$

where $W(s, x(s))=V\left(s+t_{k-1}, x(s)+\xi_{k-1}\right)$. Hence this, together with Theorem 3.3, gives the desired result.

If we let $q(t) \equiv 0$ in Corollary 3.4, we then have

Corollary 3.5. Let α be a complex number with Re $\alpha>-\frac{\pi^{2}}{T^{2}}$. Let $0=t_{0}<t_{1}<\cdots<t_{n}=T$. Then for $\vec{\xi}=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right) \in \mathbf{R}^{n}$,

$$
\begin{aligned}
E[& \left.\left.\exp \left\{-\frac{1}{2} \alpha \int_{0}^{T} x^{2}(s) d s\right\} \right\rvert\, x\left(t_{k}\right)=\xi_{k}, k=1,2, \cdots, n\right] \\
= & \prod_{k=1}^{n}\left[\left(\frac{\sqrt{\alpha}\left(t_{k}-t_{k-1}\right)}{\sinh \sqrt{\alpha}\left(t_{k}-t_{k-1}\right)}\right)^{\frac{1}{2}} \cdot \exp \left\{\frac{\xi_{k}-\xi_{k-1}}{2\left(t_{k}-t_{k-1}\right)}\right\}\right. \\
& \left.\cdot \exp \left\{-\frac{\xi_{k}^{2}+\xi_{k-1}^{2}}{2} \sqrt{\alpha} \operatorname{coth} \sqrt{\alpha}\left(t_{k}-t_{k-1}\right)+\frac{\sqrt{\alpha} \xi_{k} \xi_{k-1}}{\sinh \sqrt{\alpha}\left(t_{k}-t_{k-1}\right)}\right\}\right]
\end{aligned}
$$

Corollary 3.6. Let Rea $>-\frac{\pi^{2}}{2 T^{2}}$ and $\beta \in \mathrm{C}$. The function U defined on $\mathbf{R} \times[0, T] \times \mathbf{R}$

$$
\begin{align*}
U\left(\xi, t ; \xi_{0}\right) & =\sqrt{\frac{\sqrt{\alpha} \operatorname{csch} \sqrt{\alpha} t}{2 \pi}} \exp \left\{-\frac{\sqrt{\alpha}}{2}\left(\xi^{2}+\xi_{0}^{2}\right) \operatorname{coth} \sqrt{\alpha} t+\frac{\sqrt{\alpha} \xi \xi_{0}}{\sinh \sqrt{\alpha} t}\right\} \tag{3.19}\\
& \cdot \exp \left\{\alpha \beta\left(\xi-\xi_{0}\right) \int_{0}^{t}\left(\frac{\sinh \sqrt{\alpha} s}{\sinh \sqrt{\alpha} t}+\frac{\xi_{0}}{\xi-\xi_{0}}\right) q(s) d s\right\} \\
& \cdot \exp \left\{\frac{\alpha^{2} \beta^{2}}{2} \int_{0}^{t} \int_{0}^{t} R(s, \tau, \alpha) q(s) q(\tau) d s d \tau\right\}
\end{align*}
$$

is the solution of the partial differential equation

$$
\begin{equation*}
\frac{\partial U}{\partial t}=\frac{1}{2} \frac{\partial^{2} U}{\partial \xi^{2}}-\frac{\alpha}{2} \xi^{2} U+\alpha \beta q(t) U \tag{3.20}
\end{equation*}
$$

satisfying the condition $U\left(\xi, t ; \xi_{0}\right) \rightarrow \delta\left(\xi-\xi_{0}\right)$ as $t \downarrow 0$.
Proof. From a theorem of Kac[4], the function

$$
\begin{array}{r}
U\left(\xi, t ; \xi_{0}\right)=E\left[\left.\exp \left\{-\frac{\alpha^{2}}{2} \int_{0}^{t} x^{2}(s) d s+\alpha \beta \int_{0}^{t} q(s) x(s) d x\right\} \right\rvert\, x(0)=\xi_{0}\right. \\
x(t)=\xi] \cdot \frac{1}{\sqrt{2 \pi t}} \exp \left\{-\frac{\left(\xi-\xi_{0}\right)}{2 t}\right\}
\end{array}
$$

is the solution of the differential equation (3.20). So by Theorem 3.3, the function $U\left(\xi, t ; \xi_{0}\right)$ in the corollary is the solution of the differential equation (3.20).

References

1. R. B. Ash, Topics in Stochastic Processes, Academic Press, New York, 1975.
2. D. M. Chung and S. J. Kang, Evaluation Formulas for Conditional Abstract Wiener Integrals, Stochastic Anal. Appl. 7 (1989), 125-144.
3. Donsker M. D. and Lions J. L., Vollerra variational equations, boundary value problems and function space integrals, Acta Math. 109 (1962), 147-228.
4. M. Kac, Probability and Related Topics in Physical Sciences, Interscience Publishers, New York, 1959.
5. C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), 381-394.
6. C. Park and D. Skoug, Conditional Yeh-Wiener integrals with vector-valued Conditioning Functions, Proc. Amer. Soc. 105 (1989), 450-461.
7. H.-H Kuo, Gaussian measures in Banach Spaces, Lecture Note in Mathematics No.463, Springer-Verlag, NewYork/Berlin, 1975.
8. J. Yeh, Inversion of Conditional Wiener Integrals, Pacific J. Math. 59 (1975), 623-638.

Department of Mathematics
Sogang University
Seoul, 121-742, Korea.

