J. Korean Math. Soc. 30(1993), No. 1, pp. 139-150

A LITTLE GENERALIZATION OF HAHN-BANACH EXTENSION PROPERTY

SUNG HO PARK

Let M be a linear subspace of a normed linear space X and let V be a linear subspace of the dual space X^* . In [11], I. Singer gave some sufficient conditions for which M has the Hahn-Banach extension property in V. In [10], R.R. Phelps studied the unique Hahn-Banach extension property. In this paper, we are interested in a sufficient and necessary condition for which M has the (unique) Hahn-Banach extension property in V by using best approximations and its applications. Here, first we give the definition of the Hahn-Banach extension property in V.

DEFINITION 1. Let M be a linear subspace of a normed linear space X, and V a linear subspace of the dual space X^* . We say that M has the Hahn-Banach extension property in V if for each $f \in V$ there exists $f_0 \in V$ such that

(1)
$$f_0(x) = f(x)$$
 for each $x \in M$, and
(2) $||f_0|| = ||f|_M||$.

Here we give some examples which has the Hahn-Banach extension property and which does not have the Hahn-Banach extension property.

EXAMPLES 2. (1) Let $X = \mathbb{R}^3$, M = [(1,1,0)], and V = [(0,1,2)] with the usual norm, where [x] denotes the subspace generated by x. Then $M^{\perp} = [(1,-1,0),(0,0,1)]$ and $M^{\perp} \cap V = \{0\}$. If f = (0,1,2), then clearly $||f|| = \sqrt{5}$, and $||f|_M|| = 1/\sqrt{2}$. By Theorem 5, there exist no the Hahn-Banach extensions of $f|_M$ in V.

More generally, we can choose a linear subspace M of a normed linear space X and a linear subspace V of the dual space X^* which satisfy the following conditions:

(i) $M^{\perp} \cap V = \{0\},\$

Received March 14, 1992.

Supported partially by MOE basic Science Research Institute of Korea .

(ii) there exists $f \in V$ such that $||f|_M|| \neq ||f||$. In this case, M does not have the Hahn-Banach extension property in V.

(2) Let $X = \mathbb{R}^3$, M = [(1,0,0), (0,1,0)] and V = [(0,1,0), (0,0,1)]with the usual norm. Then clearly $M^{\perp} \cap V = [(0,0,1)]$. Let f = (0,x,y) in V. Then $f|_M : (u,v,0) \longrightarrow xv$. Put $f_0 = (0,x,0)$. Then $f_0 \in V$, and $f|_M = f_0$ on M. Moreover, $d(f, M^{\perp} \cap V) = |x| = ||f|_M ||$ and clearly $M^{\perp} \cap V$ is proximinal in V. Therefore, M has the Hahn-Banach extension property in V.

Throughout this paper, let M be a linear subspace of a normal linear space X, M^{\perp} the annihilator in the dual space X^* , that is,

$$M^{\perp} = \{ f \in X^* : f(m) = 0 \text{ for every } m \in M \},\$$

and M_V^{\perp} the annihilator in a subspace V of the dual space X^* , that is,

$$M_V^\perp = \{f \in V : f(m) = 0 \quad ext{for every} \quad m \in M\}.$$

Further, let $J: X \longrightarrow X^{**}$ denote the cannonial embedding of X into its second dual $X^{**}: J(x) = \hat{x}$, where $\hat{x}(f) = f(x), f \in X^*$.

LEMMA 3 [6],[11]. Let M be a linear subspace of a normed linear space X. Then for each $f \in X^*$,

$$d(f, M^{\perp}) = ||f|_M||.$$

In particular, M^{\perp} is proximinal in X^* .

Proof. If $g \in M^{\perp}$, then

$$\|f\|_M\| = \sup\{|(f-g)(x)| : x \in M, \|x\| \le 1\}$$

 $\le \|f-g\|,$

so $||f|_M|| \leq d(f, M)$. On the other hand, by the Hahn-Banach theorem, we can choose $h \in X^*$ such that h = f on M and $||h|| = ||f|_M||$. Then $f - h \in M^{\perp}$ and $||f|_M|| = ||f - (f - h)|| \geq d(f, M^{\perp})$. Therefore, $d(f, M^{\perp}) = ||f|_M||$.

: We recall the following well-known results ([2],[11]) which we shall use in the sequel.

LEMMA 4. Let X be a normed linear space and V a total linear subspace of the dual space X^* . Then

- (a) a linear subspace M of X is $\sigma(X, V)$ -closed if and only if for each $x \notin M$ there exists $f \in M^{\perp} \cap V$ with f(x) = 1.
- (b) every finite-dimensional subspace M of X is $\sigma(X, V)$ -closed.
- (c) if M is a $\sigma(X, V)$ -closed linear subspace of X and G is a finitedimensional subspace of X such that $M \cap G = \{0\}$, then $M \oplus G$ is $\sigma(X, V)$ -closed.

Now we give a sufficient and necessary condition for Hahn-Banach extension property.

THEOREM 5. Let M be a linear subspace of a normed linear space X, and V a linear subspace of the dual space X^* . Then the following statements are equivalent:

- (a) M has the Hahn-Banach extension property in V.
- (b) (i) M_V^{\perp} is proximinal in V,

(ii) for each $f \in V$, $d(f, M_V^{\perp}) = ||f|_M||$.

Proof. (a) \longrightarrow (b) Suppose that (a) holds, that is, for each $f \in V$, there exists an element $f_0 \in V$ such that $f_0(x) = f(x)$ for each $x \in M$ and $||f_0|| = ||f|_M||$. Then $f - f_0 \in M_V^{\perp}$ and $d(f, M_V^{\perp}) \leq ||f - (f - f_0)|| = ||f|_M||$. Since clearly $||f|_M|| \leq d(f, M_V^{\perp})$, $d(f, M_V^{\perp}) = ||f|_M||$. Thus (a) implies (b).

 $(b) \longrightarrow (a)$ Suppose that M_V^{\perp} is proximinal in V and that for each $f \in V$, $d(f, M_V^{\perp}) = ||f|_M||$. Let f be a fixed element of V. Since M_V^{\perp} is proximinal in V, there exists an element g in M_V^{\perp} such that $||f - g|| = d(f, M_V^{\perp}) = ||f|_M||$. Since $g \in M_V^{\perp}$ and $f \in V$, $f - g \in V$, $(f - g)(x) = f(x)(x \in M)$ and $||f - g|| = ||f|_M||$. Therefore (b) implies (a).

COROLLARY 6. Let X be a normed linear space, M a linear subspace of X and V a linear subspace of X^* , such that $M^{\perp} \subset V$. Then M has the Hahn-Banach extension property in V.

Proof. It follows from Lemma 3 and Theorem 5.

REMARK. Corollary 6 was proven in [11, Proposition 2].

COROLLARY 7. Let M be a linear subspace of a normed linear space X. Then M^{\perp} is proximinal in X^* and $d(f, M^{\perp}) = ||f|_M ||$ for each $f \in X^*$.

Proof. It follows from the Hahn-Banach Theorem.

LEMMA 8. Let X be a normed linear space, V a total linear subspace of X^* , and M a $\sigma(X, V)$ -closed subspace of finite codimension in X. Then $M^{\perp} \subset V$.

Proof. Since M is also norm-closed, let $\{x_i\}_1^n \subset X$ be linearly independent such that $M \oplus [x_i]_{i=1}^n = X$. Then, since M is $\sigma(X, V)$ -closed and $\dim[x_i]_{i\neq j} < \infty$, the subspace $M \oplus [x_i]_{i\neq j} (j = 1, 2, \dots, n)$ are $\sigma(X, V)$ -closed [Lemma 4,(c)]. Hence, since $x_j \notin M \oplus [x_i]_{i\neq j}$, there exists (by Lemma 4.(a)) $f \in M^{\perp} \cap V(i = 1, 2, \dots, n)$ such that $f_i(x_j) = \delta_{ij}(i, j = 1, 2, \dots, n)$. But then f_1, f_2, \dots, f_n are independent, so $\dim[f_i]_{i=1}^n = n$, whence since $[f_i]_{i=1}^n \subset M^{\perp}$ and $\dim M^{\perp} = n$, so we obtain $[f_i]_{i=1}^n = M^{\perp}$. Consequently, $M^{\perp} = [f_i]_{i=1}^n \subset V$.

REMARK. The proof of Lemma 8 also can be found in the proof of [11, Proposition 3].

COROLLARY 9. Let X be a normed linear space, V a total linear subspace of X^* , and M a $\sigma(X, V)$ -closed subspace of finite codimension in X. Then M has the Hahn-Banach extension property in V.

Proof. It follows from Corollary 6 and Lemma 8.

It is well-known that if M^{\perp} or V has finite dimension, then M_V^{\perp} is proximinal in V, so we can have the following property.

COROLLARY 10. If M^{\perp} or V has finite dimension, then the following statements are equivalent:

(a) M has the Hahn-Banach extension property in V.

(b) $d(f, M_V^{\perp}) = ||f|_M ||$ for each $f \in V$.

Proof. Since in either cases M_V^{\perp} is proximinal in V, it follows from Theorem 5.

COROLLARY 11. Let X be a normed linear space X and M a linear subspace of X^* . Then the following statements are equivalent:

- (a) M has the Hahn-Banach extension property in J(X).
- (b) i) M^{\perp}_{\wedge} is proximinal in J(X) where $M^{\perp}_{\wedge} = \{\hat{x} \in J(X) : \hat{x}(f) = 0,$ for all $f \in V\}$

ii) For each $x \in X$, $d(\hat{x}, M^{\perp}_{\wedge}) = \|\hat{x}\|_{M}$.

Proof. It follows from Theorem 5.

COROLLARY 12. Let X be a normed linear space and M a linear subspace of X^{*} such that $M^{\perp} \subset J(X)$, where $J : X \longrightarrow X^{**}$ is the cannonial embedding. Then M has the Hahn-Banach extension property in J(X). That is, for each $x \in X$ there exists an element $x_0 \in X$ such that

- (1) $f(x_0) = f(x)$ for each f in M,
- (2) $||x_0|| = \sup\{|f(x)| : f \in M, ||f|| \le 1\}.$

In particular, if M is a $\sigma(X^*, X)$ -closed linear subspace of finite codimension in X^* , then for every $x \in X$ there exists $x_0 \in X$ satisfying (1) and (2).

Proof. It follows from Corollary 9 and Corollary 11.

DEFINITION 13. Let M be a linear subspace of a normed linear space X, and V a linear subspace of X^* . We say that M has the unique Hahn-Banach extension property in V or the property U in V if for each $f \in V$ there exists a unique element $f_0 \in V$ such that (1) $f_0(x) = f(x)$ for each $x \in M$, and (2) $||f_0|| = ||f|_M||$.

REMARK. In [10], R.R. Phelps defined and studied the unique Hahn-Banach extension property or the property U.

Now we give a sufficient and necessary condition for which M has the Hahn-Banach extension property in V.

THEOREM 14. Let M be a linear subspace of a normed linear space X, and V a linear subspace of X^* . Then the following statements are equivalent:

(a) M has the unique Hahn-Banach extension property in V.

(b) M_V^{\perp} is Chebyshev in V and for each $f \in V, d(f, M_V^{\perp}) = ||f|_M||$.

Proof. (a) \longrightarrow (b) Suppose that M has the unique Hahn-Banach extension property in V, that is, for each $f \in V$ there exists unique $f_0 \in V$ such that $f_0(x) = f(x)(x \in M)$ and $||f_0|| = ||f|_M||$. Then $f - f_0 \in M_V^{\perp}$, and $||f|_M|| \le d(f, M_V^{\perp}) \le ||f_0|| = ||f|_M||$. Then $d(f, M_V^{\perp}) = ||f|_M||$. Since f_0 is unique, M_V^{\perp} is Chebyshev in V.

 $(b) \longrightarrow (a)$ Suppose that (b) holds. Then for each $f \in V$ there exists unique $g_0 \in M_V^{\perp}$ such that $||f - g_0|| = ||f|_M||$. Let $f_0 = f - g_0$. Then $f_0 \in V$, $f_0(x) = f(x)(x \in M)$ and $||f_0|| = ||f|_M||$. Thus (a) holds.

COROLLARY 15 [10]. A linear subspace M of X has the unique Hahn-Banach extension property in X^* if and only if its annihilator M^{\perp} is Chebyshev in X^* .

Proof. It follows from Lemma 3 and Theorem 14.

COROLLARY 16 [10]. If X is a reflexive space, then a closed linear subspace M of X is Chebyshev if and only if M^{\perp} has the unique Hahn-Banach extension property in X^{**} .

Proof. It follows from Theorem 14.

Now we reduce results relating approximative property of M_V^{\perp} with properties of extending continuous linear functionals in $V|_M$ to elements of V.

DEFINITION 17. For a linear subspace M of X, a linear subspace V of X^* and m^* in $V|_M$, let $N_M^V(m^*)$ denote the set of all Hahn-Banach extensions of m^* in V; that is,

$$N_M^V(m^*) = \{ f \in V | f|_M = m^*, ||f|| = ||m^*|| \}.$$

REMARK. $N_M^V(m^*)$ may be empty. But if M has the Hahn-Banach extension property in V, then N_M^V is nonempty, so $N_M^V : V|_M \longrightarrow 2^V \setminus \{\emptyset\}.$

THEOREM 18. Let M be a linear subspace of X and V a linear subspace of the dual space X^* . If M has the Hahn-Banach extension property in V, then for each $f \in V$,

$$P_{M_{\underline{v}}^{\perp}}(f) = f - N_{\underline{M}}^{V}(f|_{\underline{M}}).$$

Proof. Since M has the Hahn-Banach extension property in V, $N_M^V(f|_M) \neq \emptyset$ for each $f \in V$. Then, for each $f \in V$,

$$g \in N_M^V(f|_M) \leftrightarrow g \in V, g|_M = f|_M \text{ and } ||g|| = ||f|_M||$$

$$\leftrightarrow m^* := f - g \in M^\perp \text{ and } ||g|| = d(f, M_V^\perp)$$

$$\leftrightarrow ||g|| = ||f - m^*|| = d(f, M_V^\perp)$$

$$\leftrightarrow m^* = f - g \in P_{M^{\frac{1}{2}}}(f).$$

Thus for each $f \in V$,

- -

$$P_{M_{\mathcal{U}}^{\perp}}(f) = f - N_{\mathcal{M}}^{\mathcal{V}}(f|_{\mathcal{M}}).$$

DEFINITION 19. Let Y be a metric space, $F : X \longrightarrow 2^{Y}$, and $x_0 \in X$. Then F is called:

(1) upper semicontinuous (u.s.c.) at x_0 if for any set $V \supset F(x_0)$, there exists a neighborhood U of x_0 such that $F(x) \subset V$ for each $x \in U$;

(2) lower semicontinuous (l.s.c.) at x_0 if for any set V with $F(x_0) \cap V \neq \emptyset$, there exists a neighborhood U of x_0 such that $F(x) \cap V \neq \emptyset$ for each $x \in U$;

(3) upper Hausdorff semicontinuous (u.H.s.c.) at x_0 if for each $\epsilon > 0$ there exists a neighborhood U of x_0 such that $F(x) \subset B_{\epsilon}(F(x_0)) := \{y \in Y : d(y, F(x_0)) < \epsilon\}$ for each $x \in U$;

(4) lower Hausdorff semicontinuous (l.H.s.c.) at x_0 if for each $\epsilon > 0$ there exists a neighborhood U of x_0 such that $F(x_0) \subset B_{\epsilon}(F(x))$ for each $x \in U$.

For equivalent formulations of these properties, as well as relationship holding between them, see. e.g. [6].

LEMMA 20 [6]. Let M be a proximinal in $X, x_0 \in X$, and $\tau = u, l, u.H., l.H.$ Then P_M is τ .s.c. at x_0 if and only if $I - P_M$ is τ .s.c. at x_0 .

THEOREM 21. Let M be a linear subspace of a normed linear space X which has the Hahn-Banach extension property in a linear subspace V of the dual space $X^*, f \in V$ and $\tau = u, l, l.H., u.H.$ Then $P_{M_V^{\perp}}$ is τ .s.c. at f if and only if N_M^V is τ .s.c. at $f|_M$.

Proof. Suppose that $P_{M_{V}^{\perp}}$ is u.s.c. at f and that W is an open set with $W \supset N_{M}^{V}(f|_{M})$. By Theorem 18, $W \supset (1-P_{M_{V}^{\perp}})(f)$. By Lemma 20, $I - P_{M_{V}^{\perp}}$ is u.s.c. at f so there exists a neighborhood U of f such that $(I - P_{M_{V}^{\perp}})(g) \subset W$ for all $g \in U$. Thus $N_{M}^{V}(g|_{M}) \subset W$ for all $g \in U$. Then $U|_{M}$ is a neighborhood of $f|_{M}$ in $V|_{M}$ and $N_{M}^{V}(g|_{M}) \subset W$ for all $g|_{M} \in U|_{M}$. Thus N_{M}^{V} is u.s.c. at $f|_{M}$.

Conversely, if N_M^V is u.s.c. at $f|_M$, let W be open and $W \supset (I - P_{M_V^{\perp}})(f) = N_M^V(f|_M)$. Select a neighborhood \tilde{U} of $f|_M$ in $V|_M$ such that $N_M^V(g|_{h_{-}} \subset W$ for all $g|_M \in \tilde{U}$. Since $R_M : V \longrightarrow V|_M$, defined by $R(f) = f|_M$, is continuous, the set $U = R_M^{-1}(\tilde{U})$ is open in V and contains f. Moreover, for each $g \in U$, $g|_M \in \tilde{U}$ and $(I - P_{M_V^{\perp}})(g) = N_M^V(g|_M) \subset W$. Thus $I - P_{M_V^{\perp}}$ is u.s.c. at f. By Lemma 20, $P_{M_V^{\perp}}$ is u.s.c. at f.

The proofs when $\tau = 1, 1.H.$, or u.H. are similar.

The next theorem shows that the existence of continuous, Lipschitz continuous, or linear selection for $P_{M_{\nabla}^{\downarrow}}$ is equivalent to analogous property for N_M^V . (Recall that a selection for the set-valued mapping $F: X \longrightarrow 2^Y$ is any function $f: X \longrightarrow Y$ with $f(x) \in F(x)$ for all x. Moreover, a selection p for P_M is called additive modulo M if p(x+y) = p(x) + y whenever $x \in X, y \in M$).

THEOREM 22. Let M be a linear subspace of a normed linear space X which has the Hahn-Banach extension property in a linear subspace V of the dual space X^* .

(1) $P_{M_V^{\perp}}$ has a continuous (resp. linear) selection if and only if N_M^V has a continuous (resp. linear) selection.

(2) $P_{M_V^{\perp}}$ has a linear selection if and only if N_M^V has a linear selection with norm one.

(3) $P_{M_V^{\downarrow}}$ has a Lipschitz (resp. pointwise Lipschitz) continuous selection which is additive modulo M_V^{\downarrow} if and only if N_M^V has a Lipschitz (resp. pointwise Lipschitz) continuous selection.

Proof. (1) If $P_{M_V^{\perp}}$ has a continuous selection, then it has a continuous selection p which is also homogeneous and additive modulo M_V^{\perp} [3, Theorem 3.4]. Define e on $V|_M$ by $e(f|_M) = f - p(f)$. Then e is well-defined since if $f|_M = g|_M$, then $m = f - g \in M_V^{\perp}$ and f - p(f) = g + m - p(g + m) = g - p(g). Moreover, by Theorem 18, e is a selection for N_M^V . Now if $f|_M$ and $g|_M$ are in $V|_M$, then there exists $h \in V$ such that $\|(f - g)|_M\| = \|h\| = \|f - (f - h)\|$ and $g|_M = (f - h)|_M$ since M has the Hahn-Banach extension property in V. Then

$$\begin{aligned} \|e(f|_M) - e(g|_M) &= \|e(f|_M) - e((f-h)|_M)\| \\ &= \|f - p(f) - (f - h - p(f - h))\| \\ &\leq \|h\| + \|p(f) - p(f - h)\| \\ &= \|(f - g)|_M\| + \|p(f) - p(f - h)\|. \end{aligned}$$

Since p is continuous at f, given any $\epsilon > 0$, choose $0 < \delta < \epsilon$ such that $\|f-g\| < \delta$ implies $\|p(f)-p(g)\| < \epsilon$. Thus, if $g \in V$ is chosen so that $\|f|_M - g|_M \| < \delta$, then $\|f-(f-h)\| < \delta$ so that $\|e(f|_M) - e(g|_M)\| < 2\epsilon$. This proved that e is continuous at $f|_M$.

Conversely, suppose that N_M^V has a continuous selection e. Define p on V by $p(f) = f - e(f|_M)$. Then p is a selection for $P_{M_V^{\pm}}$ by Theorem 18. Given $\epsilon > 0$ and $f \in V$, choose $0 < \delta < \epsilon$ so that $\|e(f|_M) - e(g|_M)\| < \epsilon$ whenever $\|f|_M - g|_M\| < \delta$. Thus if $\|f - g\| < \delta$, then $\|f|_M - g|_M\| \le \|f - g\| < \delta$ so that

$$\|p(f) - p(g)\| \le \|f - g\| + \|e(f|_M) - e(g|_M)\| < \delta + \epsilon < 2\epsilon.$$

Thus p is continuous at f.

The proof that $P_{M_V^{\perp}}$ has a linear selection if and only if N_M^V has a linear selection is similar.

(3) Suppose that p is a pointwise Lipschitz continuous selection for $P_{M_V^{\perp}}$ which is additive modulo M_V^{\perp} . Then, just as in the proof of (1), the function e defined on $V|_M$ by $e(f|_M) = f - p(f)$ is a selection for N_M^V . Moreover, given $f|_M \in V|_M$ and $g|_M \in V|_M$, there exists $h \in V$ such that $\|(f-g)|_M\| = \|h\| = \|f - (f-h)\|$ and $g|_M = (f-h)|_M$ since M has the Hahn-Banach extension property in V. Thus

$$\|e(f|_{M}) - e(g|_{M}) = \|e(f|_{M}) - e((f-h)|_{M})\|$$

= $\|f - p(f) - (f - h - p(f - h))\|$
 $\leq \|h\| + \|p(f) - p(f - h)\|$
 $\leq \|h\| + \lambda(f)\|h\|$
= $(1 + \lambda(f))\|f|_{M} - g|_{M}\|.$

Thus e is pointwise Lipschitz continuous at $f|_M$ with Lipschitz constant $1 + \lambda(f)$.

Conversely, let e be a pointwise Lipschitz continuous selection for N_M^V . Defining p on V by $p(f) = f - e(f|_M)$, we see that p is a selection for $P_{M_V^{\perp}}$ such that for every $f \in V$ and $m \in M_V^{\perp}$

$$p(f+m) = f + m - e((f+m)|_M) = f + m - e(f|_M) = p(f) + m.$$

That is, p additive modulo M_V^{\perp} . Then

$$\begin{aligned} \|p(f) - p(g)\| &\leq \|f - g\| + \|e(f|_M) - e(g|_M)\| \\ &\leq \|f - g\| + \lambda(f|_M)\|f|_M - g|_M\| \\ &\leq (1 + \lambda(f|_M))\|f - g\|. \end{aligned}$$

This shows that p is pointwise Lipschitz continuous at f with Lipschitz constant $1 + \lambda(f|_M)$.

The proof of the global Lipschitz properties now follows immediately since in this case the Lipschitz constants are independent of the particular points.

COROLLARY 23 [5]. Let M be a linear subspace of a normed linear space X which has the Hahn-Banach extension property in a linear subspace V of the dual space X^* . Suppose that M_V^{\perp} is complemented in V. Then $P_{M_V^{\perp}}$ has a Lipschitz (resp. pointwise Lipschitz) continuous selection if and only if N_M^V has Lipschitz (resp. pointwise Lipschitz) continuous selection.

Proof. In [3], it was shown that, when M_V^{\perp} is complemented, $P_{M_V^{\perp}}$ has a Lipschitz (resp. pointwise Lipschitz) continuous selection if and only if $P_{M_V^{\perp}}$ has one which is also homogeneous and additive modulo M_V^{\perp} . An appeal to Theorem 22 completes the proof.

COROLLARY 24 [5]. Let M be a linear subspace of a normed linear space X. Then

(1) For each $f \in X^*$,

$$P_{M^{\perp}}(f) = f - N_M(f|_M).$$

where $N_M(f|_M) = \{f_0 \in X^* | f_0 |_M = f|_M, ||f_0|| = ||f|_M||\}.$

(2) $P_{M^{\perp}}$ is $\tau.s.c.$ at f if and only if N_M is $\tau.s.c.$ at $f|_M$. (Here, $\tau = 1, u, l.H., u.H.$)

(3) $P_{M\perp}$ has a continuous (resp. linear) selection if and only if N_M has a continuous (resp. linear) selection.

(4) $P_{M\perp}$ has a linear selection if and only if N_M has a linear selection with norm one.

(5) $P_{M\perp}$ has a Lipschitz (resp. pointwise Lipschitz) continuous selection which is additive modulo M^{\perp} if and only if N_M has a Lipschitz (resp. pointwise Lipschitz) continuous selection.

Proof. By Hahn-Banach theorem, M has the Hahn-Banach extension property in X^* . Thus it follows from Lemma 20 and theorem 22.

COROLLARY 25 [5]. Let M be a subspace of X whose annihilator M^{\perp} is comlemented. Then $P_{M^{\perp}}$ has a Lipschitz (resp. pointwise Lipschitz) continuous selection if and only if N_M has a Lipschitz (resp. pointwise Lipschitz) continuous selection.

Proof. If follows from Corollary 23.

References

- 1. P.C. Curtis, N-parameter families and best approximation, Pacific J. Math. 9 (1959), 1013-1027.
- 2. M.M. Day, Normed linear spaces, 3rd ed. (Ergebnisse der Mathematik und ihrer Grenzebiete, 21, Springer-Verlag, Berlin, Heidelberg, New York, 1973)..
- 3. F.Deutsch, W.Li, and S.H. Park, Characterizations of continuous and Lipschitz continuous metric selections in normed linear spaces, J. Approx. Theory 58 (1989), 297-314.
- 4. F. Deutsch, W. Li, and S.H. Park, Tietze extensions and continuous selections for metric projections, J. Approx. Theory 64 (1991), 55-68.
- 5. F. Deutsch, W. Li, and S. Mabizela, Hahn-Banach extensions, Tietze extensions, Lipschitz extensions, and best approximation. (to appear)..
- F. Deutsch, W. Pollul, and I. Singer, On set-valued metric projections, Hahn-Banach extension maps, and spherical image maps, Duke Math. J. 40 (1973), 355-370.
- 7. N. Dunford and J.Schwartz, "Linear operators", Part I: Genaral theory (Pure and Applied Mathematics, Interscience), New York, London, (1958).
- 8. S.R. Foguel, On a theorem by A.E. Taylor, Proc. Amer. Math. Soc. 9 (1958), 225.
- 9. J.C. Mairhuber, On Haar's theorem concerning Chebyshev approximation problems having unique solutions, Proc. Amer. Soc. 7 (1956), 609-615.
- 10. R.R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Tran. Amer. Math. Soc. 95 (1960), 238-255.
- 11. I.Singer, Some extensions of a dual of the Hahn-Banach theorem, with a applications to separation and Helly type theorems, Bull. Austral. Math. Soc. 15 (1976), 277-291.
- 12. A.E. Taylor, The extension of linear functionals, Duke Math. J. 5 (1939), 538-547.

Sogang University Department of Mathematics CPO 1142 Seoul, 121-742, Korea