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A LITTLE GENERALIZATION OF

HAHN-BANACH EXTENSION PROPERTY

SUNG Ho PARK

Let M be a linear subspace of a normed linear space X and let V be a
linear subspace of the dual space X·. In [11], 1. Singer gave some suffi
cient conditions for which M has the Hahn-Banach extension property
in V. In [10], R.R. Phelps studied the Wlique Hahn-Banach extension
property. In this paper, we are interested in a sufficient and necessary
condition for which M has the (unique) Hahn-Banach extension prop
erty in V by using best approximations and its applications. Here, first
we give the definition of the Hahn-Banach extension property in V.

DEFINITION 1. Let M be a linear subspace of a normed linear space
X, and V a linear subspace of the dual space X·. We say that M has
the Hahn-Banach extension property in V if for each I E V there exists
10 E V such that

(1) lo(x) = I(x) for each x E M, and
(2) 11/011 = II/IMII·

Here we give some examples which has the Hahn-Banach extension
property and which does not have the Hahn-Banach extension prop
erty.

EXAMPLES 2. (1) Let X = R3,M = [(1,1,0)], and V = [(0,1,2)]
with the usual norm, where [x] denotes the subspace generated by x.
Then M.L = [(1, -1,0), (0, 0,1)] and M.L n V = {O}. If I = (0,1,2),
then clearly 11/11 = VS, and II/IMII = 1/V'},. By Theorem 5, there exist
no the Hahn-Banach extensions of IIM in V.

More generally, we can choose a linear subspace M of a normed
linear space X and a linear subspace V of the dual space X· which
satisfy the following conditions:

(i) M.L n V = {O},
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(ii) there exists I E V such that II/IMII =1= 11l1I.
In this case, M does not have the Hahn-Banach extension property in
v.

(2) Let X = R3 , M = [(1,0,0), (0, 1,0)] and V = [(0,1,0), (0, 0, 1)]
with the usual norm. Then clearly M.l. n V = [(0,0,1)]. Let I =
(O,x,y) in V. Then IIM : (u,v,O) ---+ xv. Put 10 = (O,x,O). Then
10 E V, and IIM = 10 on M. Moreover, d(f,M.l. n V) = Ixl = III IM 11
and clearly M.l. n V is proximinal in V. Therefore, M has the Hahn
Banach extension property in V.

Throughout this paper, let M be a linear subspace of a normal linear
space X, M.l. the annihilator in the dual space X*, that is,

M.l. = {I E X* : I(rn) = ° for every m EM},

and MV the annihilator in a subspace V of the dual space X*, that is,

MV = {I E V : I(rn) =° for every rn EM}.

Further, let J : X ---+ X** denote the cannonial embedding of X into
its second dual X** : J(x) = X, where x(f) = I(x), I E X*.

LEMMA 3 [6],[11]. Let M be a linear subspace of a Donned linear
space X. Tben for ea.cb I E X*,

In particular, M.l. is proximinal in X*.

Proof. If gEM.l., then

II/IMII = sup{I(f - g)(x)1 : x EM, IIxll $ I}

$111 - gll,

so II/IMII $ d(f,M). On the other hand, by the Hahn-Banach theorem,
we can choose h E X* such that h = I onM and IIhlt = II/IMII. Then
I - h EM.l. and IIflMII = IIf - (f - h)1I ~ d(f,M.l.). Therefore,
d(f,M.l.) = II/IMII.

: We recall the following well-known results ([2],[11]) which we shall
use in the sequel.
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LEM MA 4. Let X be a normed linear space and V a total linear
subspace of the dual space X*. Then

~a) a linear subspace M of X is u(X, V)-c1osed if and only if for each
x (j. M there exists lE M.L n V with I(x) = l.

~b) every- finite-dimensional subspace M of X is u(X, V)-c1osed.
(c) if M is a u(X, V)-c1osed linear subspace of X and G is a tinite

dimensional subspace of X such that M n G = {O}, then M EEl G is
u(X, V)-c1osed.

Now we give a sufficient and necessary condition for Hahn-Banach
extension property.

THEOREM 5. Let M be a linear subspace of a normed linear space
X, and V a linear subspace of the dual space X*. Then the following
statements are equivalent:

(a) M has the Hahn-Banach extension property in V.
(b) (i) MV is proximinal in V,

(ll) for each I E V, d(j,MV) = III/MII.
Proof. (a) --+ (b) Suppose that (a) holds, that is, for each I E V,

there exists an element 10 E V such that lo(x) = I(x) for each x E M
and 11/011 = II/IMII· Then 1-10 E MV and d(j,MV) S 1I/-(j-10)11 =
II/IMII· Since clearly II/IMII Sd(j,MV), d(j,MV) = II/IMII. Thus (a)
implies (b).

(b) --+ (a) Suppose that MV is proximinal in V and that for each
I E V, d(j,MV) = II/IMII. Let I be a fixed element of V. Since
MV is proximinal in V, there exists an element 9 in MV such that
III ~ gll = d(j,MV) = II/IMII· Since 9 E MV and I E V, 1- 9 E V,
(j -g)(x) = I(x)(x E M) and III -gll = II/IMII. Therefore (b) implies
(a).

COROLLARY 6. Let X be a normed linear space, M a linear sub
space of X and V a linear subspace of X*, such that M.L C V. Then
M has the Hahn-Banach.extension property in V.

Proof. It follows from Lemma 3 and Theorem 5.

REMARK. Corollary 6 was proven in [11, Proposition 2].
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COROLLARY 7. Let M be a linear subspace ofa nonned linear space
X. Then M1. is proximinal in X* and dCf,M1.) = IIflMII for each
fEX*.

Proof. It follows from the Hahn-Banach Theorem.

LEMMA 8. Let X be a nonned linear space, V a total linear sub
space of X*, and M a u(X, V)-c1osed subspace of finite codimension
in X. Then M1. c V.

Proof. Since M is also norm-closed, let {Xi}f C X be linearly in
dependent such that M E9 {xilf=l = X. Then, since M is u(X, V)
closed and dim[xdi#i < 00, the subspace M E9 [Xi]i#i(j = 1,2,' .. , n)
are u(X, V)-c1osed [Lemma 4,(c)]. Hence, since Xi f/ At E9 [Xi]i#i,
there exists (by Lemma 4.(a» f E M1. n V(i = 1,2,'" ,n) such that
h(xi) = cii(i,j = 1,2"" ,n). But then !t,!2,'" ,fn are indepen
dent, so dim[!i]f=l = n, whence since [/i]f=l C M1. and dimM1. = n,
so we obtain [!i]i=l = M1.. Consequently, M1. = [fdf=l CV.

REMARK. The proof of Lemma 8 also can be found in the proof of
[11, Proposition 3]. .

COROLLARY 9. Let X be a nonned linear space, V a total linear
subspace ofX*, and M a u(X, V)-dosed subspace offinite codimension
in X. Then M has the Habn-Banach extension property in V.

Proof. It follows from Corollary 6 and Lemma 8.

It is well-known that if M1. or V has finite dimension, then MV is
proximinal in V, so we can have the following property.

COROLLARY 10. IfM 1. or V has finite dimension, then the following
statements are equivalent:

(a) M has the Hahn-Banach extension property in V.
(b) d(f,MV) = IIflMII for each f E V.

Proof. Since in either cases MV is proximinal in V, it follows from
Theorem 5.
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COROLLARY 11. Let X be a normed linear space X and M a linear
subspace of X·. Then the fonowing statements are equivalent:

(a) M has the Habn-Banach extension property in J{X).
(b) i) Mf is proximinal in J{X) where Mf = {x E J{X) : x(f) = 0,

for all f E V}
ii) For each x EX, d{x,Mf) = IIxIlM.
Proof. It follows from Theorem 5.

COROLLARY 12. Let X be a normed linear space and M a linear
subspace of X· such that MJ. c J{X), where J : X --+ X·· is
tbe cannonial embedding. Tben M has the Habn-Banach extension
property in J{X). That is, for each x E X there exists an element
Xo E X such tbat

(1) f(xo) = f(x) for each f in M,
(2) IIxoll = sup{lf(x)1 : f E M,lIfll $ I}.

In particular, if M is a u{X· ,X)-closed linear subspace of finite
codimension in X· , then for every x E X there exists Xo E X satisfying
(1) and (2).

Proof. It follows from Corollary 9 and Corollary 11.

DEFINITION 13. Let M be a linear subspace of a normed linear
space X, and V a linear subspace of X·. We say that M has the
unique Hahn-Banach extension property in V or the property U in V
if for each f E V there exists a unique element fo E V such that

(1) fo(x) = f(x) for each x E M, and
(2) IIfoll = IIfIMII·

REMARK. In [10], R.R. Phelps defined and studied the unique Hahn
Banach extension property or the property U.

Now we give a sufficient and necessary condition for which M has
the Hahn-Banach extension property in V.

THEOREM 14. Let M be a linear subspace ofa normed linear space
X, and V a linear subspace of X·. Tben the fonowing statements are
equivalent:

(a) M has tbe unique Habn-Bana.cb extension property in V.
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(b) MV is Chebyshev in V and for each I E V,d(j,MV) = II/IMII.

Proof. (a) ---+ (b) Suppose that M has the unique Hahn-Banach
extension property in V, that is, for each I E V there exists unique
10 E V such that lo(x) = I(x)(x E M) and 11/011 = II/IMII· Then 1
10 E MV, and II/1MI!5 d(j,MV) 511/011 = II/IMII· Then d(j,MV) =
II/IMII. Since 10 is unique, MV is Chebyshev in V.

(b) ---+ (a) Suppose that (b) holds. Then for each I E V there exists
unique go E MV such that III - go 11 = II/IMII· Let 10 = I - go. Then
10 E V, lo(x) = I(x)(x E M) and 11/011 = II/IMII. Thus (a) holds.

COROLLARY 15 [10]. A linear subspace M of X has the unique
Hahn-Banach extension property in X* if and only if its annihilator
M L is Chebyshev in X*.

Prool. It follows from Lemma 3 and Theorem 14.

COROLLARY 16 [10]. IfX is a re:Bexive space, then a closed linear
subspace M ofX is Chebyshev ifand only ifM L has the unique Hahn
Banach extension property in X** .

Prool. It follows from Theorem 14.

Now we reduce results relating approximative property of MV with
properties of extending continuous linear functionals in VIM to ele
ments of V.

DEFINITION 17. For a linear subspace M of X, a linear subspace V
of X* and m* in VIM, let N~(m*) denote the set of all Hahn-Banach
extensions of m* in Vj that is,

N~(m*) = {I E V/IIM =m*, 11/11 = IIm*II}·

REMARK. N~(m*)may be empty. But if M has the Hahn-Banach
extension propemy in V, then N~ is nonempty, so N~ : V/M ---+

2V \{0}.
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THEOREM 18. Let M be a linear subspace of X and V a linear
subspace of the dual space X*. H M has the Hahn-Banach extension
property in V, then for each I E V,

Proof. Since M has the Hahn-Banach extension property III V,
N~(JIM) -I 0 for each I E V. Then, for each I E V,

9 E N~(JIM) +-+ 9 E V,9IM == IIM and 11911 == II/IMII
+-+ m* :== f - 9 E MJ. and 11911 == d(J,M~)

+-+ 11911 == IIf - m*1I == dU, M~)
+-+ m* == 1-9 E PMJ.(J)·

V

Thus for each I E V,

DEFINITION 19. Let Y be a metric space, F : X ---. 2Y , and
xa EX. Then F is called:

(1) upper semicontinuous (u.s.c.) at Xa if for any set V :::> F(xa),
there exists a neighborhood U of xa such that F(x) C V for each x E U;

(2) lower semicontinuous (l.s.c.) at Xo if for any set V with F(xo) n
V -I 0, there exists a neighborhood U of Xo such that F(x) n V =1= 0
for each x E U;

(3) upper Hausdorff semicontinuous (u.H.s.c.) at Xo if for each € > 0
there exists a neighborhood U of Xa ~ch that F(x) C BE(F(xo» :==
{y E Y: d(y,F(xo» < €} for each x E U;

(4) lower Hausdorff semicontinuous (l.H.s.c.) at Xo if for each € > 0
there exists a neighborhood U of Xo such that F(xo) c BE(F(x» for
each x E U.

For equivalent formulations of these properties, as well as relation
ship holding between them, see. e.g. [6].
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LEMMA 20 [6]. Let M be a proximinal in X,xo E X, and T =
u, I, u.H., I.H. Then PM is T.S.C. at Xo if and only if1 - PM is T.S.C. at
xo·

THEOREM 21. Let M be a linear subspace ofa nonned linear space
X which has the Habn-Banach extension property in a linear subspace
V of the dual space X*,j E V and T = u,I,I.H.,u.H. Then PMJ.. isv
T.S.C. at j if and only if N); is T.S.C. at IIM.

Proof. Suppose that PMJ.. is u.s.c. at I and that W is an open setv
with W :::> N);(fIM). By Theorem 18, W :::> (1- PM J.. )(f). By Lemmav
20,1- PMJ.. is u.s.c. at I so there exists a neighborhood-U of I suchv
that (l - PMJ..)(g) c W for all 9 E U. Thus N);(gIM) C W for allv
9 E U. Then UIM is a neigh~o:rhood of IIM in VIM and N);(gIM) C W
for all glM E UIM. Thus N); is u.s.c. at IIM. .

Conversely, if Nl; is u.s.c. at IIM, let W be open and W :J (l
PMJ..)(f) = N);(fIM). Select a neighborhood fJ of IIM in VIM suchv
that N);(gIA.. , C W for all glM E U. Since RM : V --+ VIM, defined
by R(f) = IIM, is continuous, the set U = RAj(U) is open in V and
contains I. Moreover, for each 9 E U, glM E fr and (1 - PMJ..)(g) =. v
N);(gIM) C W. Thus I - PMJ.. is u.s.c. at I. By Lemma 20, PMJ.. isv v
u.s.c. at I.

The proofs when T = 1, l.H., or u.R. are similar.

The next theorem shows that the existence of continuous, Lipschitz
continuous, or linear selection for PMJ.. is equivalent to analogous prop-v
erty for Nl;. (Recall that a selection for the set-valued mapping
F : X --+ 2Y is any function I : X --+ Y with I(z) E F(z) for
all x. Moreover, a selection p for PM is called additive modulo M if
p(x + y) = p(x) + y whenever x E X,y EM).

THEOREM 22. Let M be a linear subspace ofa nonned linear space
X which has the Habn-Banach extension property in a linear subspace
V of the dual space X* .

(1) PM~ has a continuous (resp. linear) selection if and only if N);
has a continuous (resp. linear) selection.
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(2) PM~ bas a linear selection ifand only ifNI; bas a linear selectionv
witb norm one.

(3) PM~ bas a Lipscbitz (resp. pointwise Lipscbitz) continuous se-v
lection which is additive modulo MV if and only if NI; bas a Lipscbitz
(resp. pointwise Lipscbitz) continuous selection.

Proof. (1) IT PM~ has a continuous selection, then it has a con-
v

tinuous selection p which is also homogeneous and additive modulo
MV [3, Theorem 3.4]. Defin~ e on VIM by e(fIM) = 1- p(f). Then
e is well-defined since if IIM = glM, then m = 1- 9 E MV and
1- p(f) = 9 + m - peg + m) = 9 - peg). Moreover, by Theorem
18, e is a selection for NI;. Now if IIM and glM are in VIM, then
there exists h E V such that Il(f - g)IMIl = IIhll = III - (f - h)1I and
glM = (f - h)IM since M has the Hahn-Banach extension properly in
V. Then

lIe(fIM) - e(gIM) = lIe(fIM) - e«(f - h)IM)1I
= III - p(f) - (f - h - p(f - h)) 11

$ IIhll + IIp(f) - p(f - h)1I

= 1I(f - g)IMII + IIp(f) - p(f - h)lI·

Since p is continuous at I, given any £ > 0, choose 0 < 6 < £ such that
111- gll < 6 implies IIp(f) - p(g) 11 < f. Thus, if 9 E V is chosen so that
IIIIM-gIMII < 6, then III-(f-h)1I < 6 so that lIe(fIM)-e(gIM)1I < 2f.
This proved that e is continuous at IIM.

Conversely, suppose that NI; has a continuous selection e. Define
p on V by p(f) = 1- e(fIM). Then p is a selection for PM~ by
Theorem 18. Given £ > 0 and 1 E V, choose 0 < 6 < £ so that
lIe(fIM)-e(gIM)1I < fwhenever II/IM-gIMII < 6. Thus if II/-gl1 < 6,
then II/IM - glMII $ 11 f - gll < 6 so that

IIp(f) - p(g)1I ~ 11/ - gll + lIe(fIM) - e(gIM)1I
< 6 +f < 2£.

Thus p is continuous at I.
The proof that PM ~ has a linear selection if and only if NIt has a

linear selection is similar.
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(3) Suppose that p is a pointwise Lipschitz continuous selection for
PMv which is additive modulo MV. Then, just as in the proof of (1),
the function e defined on VIM by e(JIM) = I - p(J) is a selection for
NIt· Moreover, given IIM E VIM and glM E VIM, there exists h E V
such that II(J - g)IMII = IIh ll = III - (J - h)1I and glM = (J - h)IM
since M has the Hahn-Banach extension property in V. Thus

lIe(JIM) - e(gIM) = lIe(JIM) - e«(J - h)IM)1I

= III - p(J) - (J - h - p(J - h»1I

~ IIh ll + IIp(f) - p(J - h)1I

~ IIhll + A(f)lIhll

= (1 + A(J»II/IM - glMII·

Thus e IS pointwise Lipschitz continuous at IIM with Lipschitz constant
1 + A(J).

Conversely, let e be a pointwise Lipschitz continuous selection for
NIt. Defining p on V by p(/) =1-e(JIM), we see that p is a selection
for PM# such that for every I E V and m E MV

p(J+m) =1+m-e«(f+m)IM)

= I +m - e(JIM) = p(J) +m.

That is, p additive modulo M V. Then

IIp(f) - p(g) 11 ~ lit - gll + lIe(fIM) - e(gIM)1I

~ III - gll + A(JIM)lIflM - glMII

~ (1 + A(JIM»lIf - gll·

This shows that p is pointwise Lipschitz continuous at I with Lipschitz
constant 1 + A(JIM).

The proof of the global Lipschitz properties now follows immedi
. ate1y since in this case the Lipschitz constants are independent of the
. particular points.
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COROLLARY 23 [5]. Let M be a linear subspace of a normed linear
space X which has the Hab.n-Banach extension property in a linear
subspace V of the dual space X*. Suppose that MV is complemented
in V. Then PM~ has a Lipschitz (resp. pointwise Lipschitz) continuous
selection if and only if Nl; has Lipschitz (resp. pointwise Lipschitz)
continuous selection.

Proof. In [3], it was shown that, when MV is complemented, PM.!.v
has a Lipschitz (resp. pointwise Lipschitz) continuous selection if and
only if PM.!. has one which is also homogeneous and additive modulov
M V. An appeal to Theorem 22 completes the proof.

COROLLARY 24 [5]. Let M be a linear subspace of a normed linear
space X. Then

(1) For each f E X*,

PM.!.(J) = f - NM(JIM).

where NM(JIM) = {fo E X*lfolM = flM, 11/011 = II/IMII}·
(2) PM.!. is T.B.C. at I if and only if NM is T.B.C. at IIM. (Here,

T = 1, u, I.H., u.H.)
(3) PM.!. has a continuous (resp. linear) selection if and only if NM

has a continuous (resp. linear) selection.
(4) PM.!. has a linear selection ifand only ifN M has a linear selection

with norm one.
(5) PM.!. has a Lipschitz (resp. pointwise Lipschitz) continuous se

lection which is additive modulo M J.. if and only if N M has a Lipsb.itz
(resp. pointwise Lipscb.itz) continuous selection.

Proof. By Hahn-Banach theorem, M has the Hahn-Banach exten
sion properly in X*. Thus it follows from Lemma 20 and theorem
22.

COROLLARY 25 [5]. Let M be a subspace of X whose annihilator
MJ.. is comlemented. Then PM.l. has a Lipschitz (resp. pointwise
Lipschitz) continuous selection ifand only ifNM has a Lipschitz (resp.
pointwise Lipschitz) continuous selection.

Proof. H follows from Corollary 23.
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