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LAWS OF LARGE NUMBERS FOR PRODUCTS

OF SOME MEASURES AND PARTIAL

SUM PROCESSES INDEXED BY SETS

DUG HUN HONG AND JOONG SUNG KWON

1. Introduction

Let N and R denote the set of positive integers and real numbers
respectively. Fix d} , d2 E N with d = dl + d2 • Let X be a real random
variable and let {Xi: i E N dl} be a family of independent identically
distributed random variables with .c(X) = .c(Xi) and 0 < EIXI <
00. The partial sum processes SIn formed from {Xi} and indexed by
subsets of I dl, where I dl denotes the dl-dimentional unit cube, are

Sln(X, A):= :E Xi8ifn (A),
lil:5n

where, i - (i l ,i2,'" ,idl)' i/n - (i l /n,i2/n,··· ,idl/n),
lil = maxl~k$dl il; and 8ifn(A) = 1 or 0 depending on i/n E A or
not. For SIn many authors have studied laws of large numbers, central
limit theorems and laws of iterated logarithms under various conditions
on a sub-family of B(Id l). See Alexander and Pyke [1], Bass and Pyke
[2, 3], Gine and Zinn [5] and references therein. Denote

Gnij = {(Xl, X2,'" , Xd) E R d
:

(ik -1)/n < xl;:5 il;/n, k = 1,2"" ,dl

(j,-I)/n < Xd 1+' :5j,jn, 1= 1,2"" ,d2}.

Assume that {An} is a sequence of positive Borel measures on Id sat­
isfying

(1.1 )
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for some Cl > 0, C2 < 00 and for all n EN, and that A is a sub­
family of B(Id ). Now define the product of measures and partial sum
processes corresponding to {Xil and {An}, indexed by subsets of Id,
which is defined as

Sn(A):= Sn(X, 1,A):= L XiAn(A n GnU),
lil::;;n,LiI::;;n

where, j = (iI,h,··· ,id2) and UI = maxl<k<d2ik.
If An = n-d L:'il::;;n,LU::;;n o(i/nJ/n), then --

Sn(X, 1,A) = n-d L XiO(i/nJ/n)(A),
lil::;;n,lil::;;n

This product process can be viewed as not only a special case of depen­
dent partial sum processes but also a generalization ofusual partial sum
processes by taking a special class of sets (i.e.A = {A XI d

2 : A C Idl }).
If An = A, the Lebesgue measure, then

Sn(X, i, A) = L XiA(A n GnU)
lil::;;n,LU::;;n

which is the smoothed product of Lebesgue measure and partial sum
processes.

For strong law results in terms of metric entropy the following no­
tations and developments will be used, and we follow the work of Gine
and Zinn [5J, in which they studied the same problems for partial sum
processes. Let i = (ik) E Ndl,j = (j,) E Nd2 and nE N. Assume that
lil ~ n and UI ~ n.

Now define (pseudo)metrics on A associated with An as. follows: For
A, B E A, define

d An,co (A,B) =m1il<_a.; n d1 L [An(A n GnU) - An(B n Gnu)J
U1::;;n
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Set for 1 $ p $ 00, and 5 > 0

N~n,p(5,A) :=inf{m: there exist Al,A2,··· ,Am € A such that

sup mind~n,p(Ar,A)$ 5}
AEAr~m

the covering number of (A, d~n,p). Then we have the following: For
any 1 $p $ 00,

(1.2) d~n,l $ d~.. ,p $ d~n,oo.

In particular, for 5 > 0, N~n,1(5,A) $ N~n,p(5,A) $ N~.. ,oo(5,A).
Finally, let {ei : i e Nd1 } denote, always in what follows, a family of

independent symmetric Bernoulli (or Rademacher) random variables,
that is, P[e = 1] = P[e = -1] = 1/2, independent of any other set
of random variables that appear in the argument where they are used.
We will write

S~n(e,1,A)= L eiA,.(AnCnU),Ae.A, neN.
lil~n,lJl~n

Let {Xl} denote always an independent copy of {Xi} so that {Xi -Xl}
is a set of independent symmetric random variables that symmetrizes
{Xi}.

In section 2 it will be proved a law of large numbers for a sequence
of products of some measures and partial sum processes. This result
includes that of Gine and Zinn [5] as a corollary by taking a special
class of subsets of Id(i.e.A = {A X Id2 : A C Idl }).

2. Main results

Throughout this section we assume that 0 < EIXI < 00. Before
proceeding to the strong law results, we first make an observation about
measurability whose proof is similiar to that" of the corresponding result
of Gine and Zinn [5]. Let II·IIA denote the sup-norm defined by IItbllA =
sUPAEA Itb(A)I·

LEMMA 2.1. Let A be any collection ofmeasurable subsets ofId, let
{An} be a family offinite positive Borel measures on Id satisfying (1.1),
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and let {Xi : i E Ndl} be independent identica11y distributed random
variables witb tbe law of X. Tben for all nE N, IIS.\.. (X,1)1I.4 is a
Borel measurable function oftbe Rn"-valued random vectors (X, 1)n =
{Xi : lil ~ n, UI~ n}.

We now prove that, independently of the law of X as long as X is
integrable, the sequences IIS.\.. (X,1)1I.4 and IIS.\..(e,1)1I.4 both either
converge to 0 or do not converge to 0, where the convergence is either
a.s. or in probability. We begin with the case when EX =O.

THEOREM 2.2. Let {Xi: i E Ndl} be independent identically dis­
tributed random variables witb tbe same law of X such that 0 <
EIXI < 00 and EX = O. Let {An} be a sequence of positive Borel
measures on Id satisfying condition (1.1) and let A be a class of Borel
subsets of Id. Tben tbe fonowing are equivalent;

(i) limn_co 11 s.\.. (X, 1)11.4 =0 &.8.. (respectively, in probability)
(ii) limn_ co 11 S.\..(e, 1)11.4 = 0 &.8.. (respectively, in probability)

Proof. Since {Xn} converges in probability to X if and only if every
subsequence {Xnlo } contains a further subsequence that converges a.s.
to X, we need only to check the &.s. statements. For 0 < M < 00 and
i E Nlll. Let Xr = Xiluxll>M) and Xi,M = Xi - X i

M. Then, by the
classical law of large numbers, .

a.s.- lim limsup IIS.\.. (XM - EXM, 1)11.4
M-co n-co

~ C2 1im limsupn-dl L IXi" - Exf!1
M -co n-co lil~n

= C2 lim EIXM - EXMI = o.
M-co

Hence, by considering (Xi,M - EXi,M)/2M instead of Xi, i E Ndl,
we may assume that the random variables Xi in (i) are centered and
bounded by one.

Suppose (i) holds. Then, a.s.-

lim 11 s.\..(X-X', 1)11.4 ~ 1im IIS.\.. (X,1)1I.4+ 1im IIS.\.. (X',1)1I.4 = O.n-co n-co n-co
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Hence, limn_ooSUPn>N 11 SA.. (X -X' ,l)IIA = 0 in probability. By
Lemma 2.1, for all N-e N,

£, (sup IISA.. (X - X', l)I!A) = £, (sup 11 SA.. (elX - X'I, l)IIA) .
n~N n~N

So that limn_ooSUPn~N11 SA.. (elX - X'I, l)IIA =0in probability. Put

¥t.N = {<.IX. -XII eit. ,X.(A n cnu)) :n ;:: i V N,A EA}
Then, using this notation, we rewrite

lim E {sup 11 SA.. (elX - Xii, l)IIA}
N-oo n~N

= Nli~ E { sup IL eilXi - Xii· L An(A n Gnu)\}
n~N,AEA IIISn UISn

= Nli~E { L li,N } •
i t-(NxA)

By applying Hofi"mann-Jf6rgensen's inequality (Hoffmann and Jf6rgensen[7,
p.164-165]) to li,N,

E { sup L eilXI - Xii· L An(A n GnU) }
n~N.AEA IllS" UISn

$. 6E{~ SUp IXi - X:I (L An(A n Gnu») } + 24to,
IILn n~N.AEA UISn

where

to = inf{t > 0: p( sup IL ei!XI - XiiI· L An(A n Gnu)1 > t)
n~N,AEA IllSn UISn

$. 1/24}.
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E {!pax sup IXi - Xli (L An(A n Gnu») }
11ISn n~N.AeA liI~n •

:::; 2c2nd2/ndl+d2 ---+ 0,

as N -+ 00 or n -+ 00. Also we have

to = inf{t > 0 : P ( sup IL eilXi - X'il· L An(A n Gnu)1 > t)
n~NtAeA lil~n UI~n

:::; 1/24} ---+ 0,

as n ---+ 00 because limN_oo sUPn>NnS~.. (eIX - X'DIIA = 0 in prob­
ability. But by Fubini's theorem and Jensen's inequality,

E (SUp L eilXi - Xli· L An(A n GnU) )
n~NtAeA lil~n Lil~n

~ EIXi - XlIE (SUp L el L An(A n GnU) )
n~N.AeA lil~n Lil~n

= EIXi - X{lE (sup IIS>'n(e, l)IIA) ,
n~N

which shows that E(SUPn>N IIS~n(e, 1)IIA) -+ 0 as n -+ 00.

For the converse, a.ssume now that (ii) holds. Since An satisfies (1.1)
and

sup E {L Xi (L An(AnGnu»)}2 ~ sup n-ch E(Xi)2 = o.
n~N,.A lil:S;n UI:S;n n~N,.A

By a symmetrization lemma (for example, Gine and Zinn [4, Lemma
2.5J), we have

E ( sup IS~n(X,l)l) ~ 2E (SUp IS~n(X-XI ,l)l)
n~NtA n~N.A
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But, applying Hoffmann-J95rgensen's inequality,

E { sup IS-x" (X - X', 1)1}
n~N, ....

$ 2E (~IXi - Xli) E {sup Lei (L An(A n Gnu») }
IILn n~N,.... lilSn UISn

= 4E {sup IIS-x,,(e, 1)1I....}.
n~N

Hence IIS-x" (X, 1)11.... -+ 0 a.s., as n -+ 00.

The next result gives a necessary and sufficient condition for laws of
large numbers for products of some measures and partial sum processes
in terms of the metric entropy defined in section 1. Notice that our
metric, which will be used in the next Theorem, is d-x",p.

THEOREM 2.3. Let X, {Xi: i E N d1}, {An}, and A be as in Theo-
rem 2.2. Then the following are equivalent:

(i) ~n-+oo IIS.\.. (X, 1)11.... =0 a.s..
(ii) limn -+oo IIS.\" (X, 1)11.4 = 0 in probability.
(ill) limn-+oo n-d1 [InN.\"'I'(r,A)] = 0 for some pE [1,00] and

all r > O.
(iv) limn -+oo n-d1 [InN'\",,(r,A)] = 0 for every pE [1,00] and

all r:> o.
Proof. Due to (1.2) it suffices to prove the following two statements:
(I) limlrl-+OQ n -d1 [In N '\.. ,1 ( 'T, A)] =0 for all r > 0,

=> limn-+oo IIS.\.. (X,l)lI .... = 0 a.s..
and

(Il) 115.\.. (e, 1)11.4 =0 in probability,
=> limn-+oon-d1 (InN.\",co(r,A)] = 0 for

all r > o.
Proof of. (I). Given r > 0, let A.,./2 C A be the family of centers of a

minimal covering of A by d.\" 1 -balls of radius not larger than r /2 and
with center in A. Then •..4..,./2' =N'\",1 (r/2, A), and by hypothesis, for
all'T > 0, there exists N.,. such that if n ~ N.,., then, for some suitable
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Then, since, for each A E A, there is BEAT/2 such that

IS>... (e, I,A) - S~(e,1,B)1 $ d~.l(A,B) $ r/2,

we have

and

(2.2)
P(IIS>... (e, l)IIA > r) $P(IIS>... (e, 1)IIAr / 2 > r/2)

$Nl 1 (r/2,A) sup P(IS>... (e,A)1 > r/2).
". AeA

Since e is sub-Gaussian, by the standard sub-Gaussian estimate ([4],
inequality (2.17», (2.2) may be bounded as follow;

Hence, combining (2.1), (2.2) and (2.3), we obtain

Therefore, for all r > 0,

LP*(IIS>... (e,I)IIA > r) < 00.

n

Applying the Bore1-Cantelli lemma for outer measure version gives the
statement (1).
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Proof of. (11). First notice that if IIS.\,.(C:, 1)11..4. --+ 0 in probability,
then, since S.\,.(C:, 1) is bounded,

(2.4) lim EIIS.\,. (c:, 1)11..4. = O.n-oo

By adjusting by C2, ifnecessary, we may assume that n d1 Llil~n An(Gnij)

$ 1. Let L n•..4. be the convex hull of {x E I
nd1

: x = (Xj), lil <
n, Xi = ndl(Llil~n An(A n GnU)) A E A}. Then (2.4) becomes

lim E(2.5) L eiAn(A n GnU)
lil~n.lil~n ..4.

=,P-~ E { sup n-
d1 L C:iXi } = o.

:r:eL,.,A lil~n

Let Nn,oo(T, Ln,A) be the covering number of Ln,A for the distance
p(x,y) = maxlil~n IXi - Yil, x,y E In

41
. Then, for p, by Vapnik and

Cervonenkis [7, Lemma 4], there is t(T) < 00, independent of n, such
that, if

(2.6)

then,

E { sup n-d1

:r:eL,.,A

Since,

p(x,y) = ffl~ndl L An(A n GnU) - L An(B n GnU) ,
lil~n lil~n

for some A and B in A, we can embed A into Ln ,..4.. [The correspon­
dence A --+ n d1 Llil~n An(AnGnU) is one-to-one and isometric]. Hence
we have, for all T > 0,



88 Dug Hun Hong and Joong Sung Kwon

Suppose that (iii) does not hold with p = 00. Then for some r > °
there is a natural number N~ such that (2.6) is true for n ;::: N~. Then
for these values of n, (2.4) is true and it contradicts to (2.5).

Now consider the special case when An = n-d :Elil~n,UI~n 8(i/nJ/n)'
In this case, Theorem 2.2 gives:

COROLLARY 2.4. Under the same assumptions as in Theorem 2.2,
the following are equivalent:

(i) !In-dSn(X, l)IIA ---+ °a.s., as n ---+ 00.

(n) IIn-dSn(X, 1)IIA ---+ °in probability, as n ---+ 00.

(ill) for all r > ° and for some (all) p E [1,(0),
n-d1 [lnN(r,A, dn,p)] ---+ 0, as n ---+ 00.

From this we obtain the following result which covers the case when
EX-I0.

COROLLARY 2.5. Let X,Xi,i E Nd1 , be independent identically
distributed random variables such that °< EIXI < 00. Let A be a
family of Bore1 subsets of Id (d =d1 +d2 ). Then

(2.7) lim IIn-dSn(X, 1) - (EX)AIIA =°n-co

a.s. (or in probability) if and only if both
(i) any of the conditions (i)-(iii) in Corollary 2.4 holds for X - EX

and
(ii) limn_ co IIA - n -d Elil~n,LiI~n8(i/nJ/n) IIA = 0. where A denotes

the Lebesque measure on Id.

Proof. Notice that, for A E A

n-dSn(X,l,A) - (EX)A(A) = n-dSn(X - EX, 1, A)

+ (EX) (n-d L o(i/nJ/n)(A) - A(A»)
lil~n.UI::;n

Sufficiency is obvious. Let us assume that (2.7) holds with the con­
vergence in probability. Then (2.7) also holds with Xi replaced by its
symmetrization Xi - Xl. i.e.

in probability.
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Now since E/X - X'I :f: 0 we can use Corollary 2.4, in particular,
Corollary 2.4 is true for Xi - EXi. So IIn-dSn(X - EX)IIA -+ 0 in
probability and almost surely, as n -+ 00. The triangle inequality and
this observation imply (H).

We will show in what follows that the smooth boundary condition,
which is invented to show the strong law of large numbers for partial
sum processes by Bass and Pyke, is also a sufficient condition for our
product processes. Given a set A, let A(c5) = {p(x, aA) < c5} be the
c5-annulus of aA, where p(".) is the Euclidean distance and 8A is the
Euclidean boundary of A. We say that A satisfies the smooth boundary
condition, Assumption SBC, if r(c5) = sUPAEA IA(c5)1 --+ 0 as c5 --+ O.
Now define (pseudo)metrics on A associated with An as follows:

( )
l~

d~".p (A, B) =nd(l-l/p) L IAn(A n CnU) - An(B n Cnu)IP

lil$;ra,UI$;ra

if 1 =5 p < 00,

d~ (A,B)= max ndIAn(AnCnU)-An(BnCnU)I,
".- lil$;n,UI$;n

( )

IIp

d~,p(A,B) = L c5(i/nJ/n)(At:iB)jnd

lif$;n,UI$;n

d' (A B) = max c5('1 °1 )(AAB)ra,oo' lil$;n,UI$;ra I n,J n ,

1 =5 p < 00,

where AL\B = (A \B)U(B\A).1t is easy to see. that dra,l =5 d~,l' De­
note N~.l (T, A) the covering number of (A, d~,p)' The following lemma
shows that Assumption SBC on A implies (i) and (ii) of Corollary 2.5.

LEMMA 2.6 (GINt AND ZINN [4, PROPOSITION 1]). Let A be a
class of Borel subsets of Id satisfying Assumption SBC. Tben

(i) for all T. > 0, SUPra N~,l(T,A) < 00, and
(ii) limn_ oo IIA-n-d Elil$;n,UI$;ra tS(i/nJ/n)IIA = 0, wbereA denotes

the Lebesgue measure on Id.
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COROLLARY 2.7.
probability
as n -+ 00,

It A satisfies Assumption SBC, then, with
1,
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