A RESTRICTION THEOREM ON THE FOLLAND-STEIN SPACES

Yonne Mi Kim

1. The Heisenberg group

Definition. The heisenberg group H^{n} is the lie group of real dimension $2 n+1$, whose underlying space is $R \times C^{n}$, and whose group law is given by

$$
(t, z)\left(t^{\prime}, z^{\prime}\right)=\left(t+t^{\prime}+2 \operatorname{Im} z \overline{z^{\prime}}, z+z^{\prime}\right)
$$

Its Lie algebra is generated by the left invariant vector fields X_{j}, Y_{j}, T, $j=1, \ldots, n$, given by

$$
X_{j}=\frac{\partial}{\partial x_{j}}+2 y_{j} \frac{\partial}{\partial t}, Y_{j}=\frac{\partial}{\partial y_{j}}-2 x_{j} \frac{\partial}{\partial t}, T=\frac{\partial}{\partial t} .
$$

It is easy to verify the following commutation relations:

$$
\left[X_{j}, Y_{k}\right]=4 \delta_{j, k} T
$$

and all other brackets are zero. On H^{n} there are a family of dilations $\gamma_{r}(t, z)$ that gives rise to a one parameter group of automorphisms on H^{n} given by $\gamma_{r}(t, z)=\left(r^{2} t, r z\right)$.

The homogeneous dimension of H^{n} is $Q=2 n+2$.(Folland[3]) We define the norm on H^{n} by

$$
|(t, z)|=\left(t^{2}+|z|^{4}\right)^{1 / 4}
$$

2.The sublaplacian

Let

$$
\mathcal{L}=-\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

The operator \mathcal{L} is homogeneous of degree 2 , and $\mathcal{L}^{t}=\mathcal{L}$.
In the Euclidean space a fundamental solution to Δ is given by

$$
E=\frac{\Gamma(n / 2)}{2 \pi^{n / 2}(n-2)}|x|^{2-n}, \quad n \geq 3
$$

Analogously the fundamental solution to \mathcal{L} is given by

$$
\phi=C\left(|z|^{4}+t^{2}\right)^{-n / 2}, \quad C=\frac{2^{2-2 n} \pi^{n+1}}{\Gamma(n / 2)^{2}}
$$

(See Folland[3]). Thus \mathcal{L} is locally solvable. The convolution of two functions f and g in H^{n} is defined by

$$
f * g(u)=\int_{H^{n}} f(v) g\left(v^{-1} u\right) d v
$$

3. The Bessel potential and the spaces S_{α}^{p}

The definition of the Bessel potential is from Folland[3]. The principal tool is the diffusion semigroup H_{t} generated by $-\mathcal{L}$.

There is a unique semigroup $\left\{H_{t}, 0<t<\infty\right\}$ of linear opertors on $L^{1}+L^{\infty}$ satisfying the following:
(1) $H_{t} f=f * h_{t}$, where $h_{t}(x)=h(x, t)$ is C^{∞} away from 0 , and on $H^{n} \times(0, \infty), \int_{H^{n}} h_{t}(x) d x=1$ for all t . Also for all t and $\mathrm{x}, h(x, t) \geq 0$ and $h\left(r x, r^{2} t\right)=r^{-Q} h(x, t)$.
(2) If $u \in C_{0}^{\infty}$, then

$$
\lim _{t \rightarrow 0}\left\|t^{-1}\left(H_{t} u-u\right)+\mathcal{L} u\right\|_{\infty}=0
$$

(3) H_{t} is self adjoint, i.e., $\left.H_{t}\right|_{L^{p}}=\left.H_{t}\right|_{L^{q}}, \frac{1}{p}+\frac{1}{q}=1$
(4) $f \geq 0 \Longrightarrow H_{t} f \geq 0, H_{t} 1=1$. Now if we extend $h(x, t)$ to be 0 for $t \leq 0$, then h is the fundamental solution to $\mathcal{L}+\frac{\partial}{\partial t}$.

Now inspired from the classical case, we define the Bessel potential

$$
J_{\alpha}=\frac{1}{\Gamma(\alpha / 2)} \int_{0}^{\infty} t^{\alpha / 2-1} e^{-t} h(x, t) d t
$$

If $f \in L^{p}, 1<p<\infty$, then $(I+\mathcal{L})^{-\alpha / 2} f=f * J_{\alpha}$
So define S_{α}^{p} to be the immage of L^{p} under the operator $(I+\mathcal{L})^{-\alpha / 2}$. We have the following properties of J_{α}. (See [3])
(1) J_{α} is defined for all $x \neq 0$ and even for $x=0$ when $\alpha>Q$. J_{α} is C^{∞} away from 0.
(2) As $x \rightarrow 0$,

$$
\begin{aligned}
\left|J_{\alpha}(x)\right| & =O\left(|x|^{\alpha-Q}\right) \text { if } \alpha<Q \\
& =O\left(\log \frac{1}{|x|}\right) \text { if } \alpha=Q
\end{aligned}
$$

(3) As $x \rightarrow \infty, \quad\left|J_{\alpha}(x)\right|=O\left(|x|^{-N}\right)$ for all N. Hence, $J_{\alpha} \in L^{1}$ for all $\alpha>0$.

The spaces $\Lambda_{\alpha}^{p, q}\left(H^{n}\right)$ is defined to be the space of those functions in $L^{p}\left(H^{n}\right)$ for which the following quantity is finite.

$$
\begin{gathered}
\int_{H^{n}} \frac{1}{|u|^{Q+\alpha q}}\left[\int_{H^{n}}|f(u v)-f(v)|^{p} d v\right]^{q / p} d u<\infty, \quad 0<\alpha<1 . \\
\left.\int_{H^{n}} \frac{1}{|u|^{Q+\alpha q}}\left[\int_{H^{n}}\left|f(u v)+f\left(u v^{-1}\right)-2 f(v)\right|^{p} d v\right]^{q / p} d u\right)<\infty, \quad 1 \geq \alpha .
\end{gathered}
$$

We prove the theorem when the restriction is one of the hyperplanes of $R_{t} \times R^{2 n-1}$ of H^{n} and the case $\alpha \geq 1$ since the case $\alpha \leq 1$ is proved by Mekias [1]. First we want to introduce a theorem of Stein which has given the motivation for the study.

4. Restriction and Extention theorem for the spaces $L_{\alpha}^{p}\left(R^{n}\right)$

4.1. Theorem (Stein[7]). (A). The restriction map $R: L_{\alpha}^{p}\left(R^{n}\right) \rightarrow$ $\Lambda_{\beta}^{p, p}\left(R^{m}\right)$ is a bounded linear map as long as $\beta=\alpha-(n-m) / p>0$ and $1<p<\infty$.
(B).Conversely, there exists an extention map E

$$
\begin{gathered}
E: \Lambda_{\beta}^{p, p}\left(R^{m}\right) \rightarrow L_{\alpha}^{p}\left(R^{n}\right) \quad \text { such that } \\
R(E(g))=g \quad \forall g \in \Lambda_{\beta}^{p, p}\left(R^{m}\right), \quad \beta>0, \quad 1<p<\infty .
\end{gathered}
$$

Now we introduce our main theorem.
Theorem (A'). Let $1 \leq \alpha<2+\frac{1}{p}$. The restriction map

$$
R: S_{\alpha}^{p}\left(H^{n}\right) \rightarrow \Lambda_{\alpha-\frac{1}{p}}^{p, p}\left(R_{t} \times H^{n-1}\right)
$$

where $R_{t} \times R^{2 n-1}$ is one of the hyperplanes $\left\{t, x_{1}, \ldots, x_{i}=0, \ldots, x_{2 n}\right\}$ is a bounded map.

Proof. The proof is divided into two parts. At first, we will show that

$$
g=R(f) \in L^{p}\left(R^{2 n}\right), \text { for } f \in S_{\alpha}^{p}\left(H^{n}\right)
$$

But this follows immediately from the inclusion relation $S_{\alpha}^{p} \subset S_{\alpha^{\prime}}^{p}$ for $\alpha>\alpha^{\prime}$ (Folland[3]) once we show that $g=R(f)$ belongs to $L^{p}\left(R^{n}\right)$ for $f \in S_{\alpha}^{p}\left(H^{n}\right), \quad \alpha<1$. For this we will adopt a proof from Stein[8] and Mekias[1].

After that we will try to show that $g \in \Lambda_{\alpha-\frac{1}{p}}^{p, p}\left(R_{t} \times H^{n-1}\right)$.
Let's prove the first claim when $\alpha<1$. Let $f \in S_{\alpha}^{p}\left(H^{n}\right)$. Then there is $\phi \in L^{p}\left(R^{2 n+1}\right)$ such that

$$
f=\phi * J_{\alpha}, \quad\|f\|_{p, \alpha}=\|\phi\|_{p}
$$

We will restrict ourselves to the case $\mathrm{n}=1$ just for simplicity. Put

$$
g(t, y)=\int_{R^{3}} \phi\left(s, x^{\prime}, y^{\prime}\right) J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right) d s d x^{\prime} d y^{\prime}
$$

To prove that $g \in L^{p}\left(R^{2}\right)$ it suffices to show that

$$
\int g(t, y) h(t, y) d t d y
$$

is bounded for all $h \in L^{q}\left(R^{2}\right)$ where $\frac{1}{p}+\frac{1}{q}=1$ so that $\|g\|_{L^{p}}$ is finite.

$$
|g(t, y)| \leq \int\left|\phi\left(s, x^{\prime}, y^{\prime}\right) \| J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d s d x^{\prime} d y^{\prime}
$$

Let $h(t, y) \in L^{q}\left(R^{2}\right)$. Our claim is to show that

$$
\begin{gathered}
\|g\|_{L^{p}}=\sup _{\left\|^{\prime}\right\|_{L}, \leq 1} \int_{R^{2}}|g(t, y) \| h(t, y)| d t d y<\infty \text { here } \\
\int_{R^{2}}\left|g(t, y)\left\|h(t, y)\left|d t d y \leq \int_{R^{2}} \int_{R^{3}}\right| h(t, y)\right\| \phi\left(s, x^{\prime}, y^{\prime}\right) \|\right. \\
J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right) \mid d s d x^{\prime} d y^{\prime} d t d y
\end{gathered}
$$

Using Fubini's theorem the above equals
$\int_{R^{3}} \mid \phi\left(s, x^{\prime}, y^{\prime}\right)\left\{\left|\int_{R^{2}}\right| h(t, y)| | J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right) \mid d t d y\right\} d s d x^{\prime} d y^{\prime}$
Let's study the inner integral

$$
\int_{R^{2}}|h(t, y)|\left|J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d t d y
$$

Fix x^{\prime} and let

$$
T_{x^{\prime}} h\left(s, y^{\prime}\right)=\int_{R^{2}} h(t, y) J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right) d t d y
$$

If we could show that

$$
\begin{equation*}
\sup _{s, y^{\prime}} \int\left|J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d t d y \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t, y} \int\left|J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d s d y \tag{2}
\end{equation*}
$$

are both bounded, independently of (t, y) and (s, y) respectively, then we could use Young's Inequality to conclude

$$
\left\|T_{x^{\prime}} h\right\|_{q} \leq C\left(x^{\prime}\right)\|h\|_{q}
$$

Consider (1) first

$$
\sup _{s, y^{\prime}} \int\left|J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d t d y
$$

By the change of variables

$$
t-s+2 y x^{\prime}=\tau, \quad y-y^{\prime}=\eta
$$

the above equals

$$
\begin{equation*}
I n t=\int_{R^{2}}\left|J_{\alpha}\left(\tau,-x^{\prime}, \eta\right)\right| d \tau d \eta \tag{3}
\end{equation*}
$$

The estimate for this integral will be made for two separate cases (a) $\left|x^{\prime}\right|$ small $(|x| \leq 1)$, (b) $\left|x^{\prime}\right|$ large $\left(\left|x^{\prime}\right|>1\right)$. First we will estimate (a) and show Int $\leq C\left|x^{\prime}\right|^{\alpha-1}$. For this we devide the above integral into two parts.

$$
\begin{gathered}
\int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|<1}\left|J_{\alpha}\left(\tau,-x^{\prime}, \eta\right)\right| d \tau d \eta+\int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|>1}\left|J_{\alpha}\left(\tau,-x^{\prime}, \eta\right)\right| d \tau d \eta \\
=I_{1}+I_{2}
\end{gathered}
$$

Let's look at the main part I_{1} first. (There is a fast decrease for I_{2})

$$
\begin{aligned}
I_{1}\left(x^{\prime}\right) & =\int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|<1}\left|J_{\alpha}\left(\tau,-x^{\prime}, \eta\right)\right| d \tau d \eta \\
& \leq C \int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|<1}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-Q} d \tau d \eta \\
& \leq C \int_{|\tau|^{1 / 2}+|\eta|<1,\left|x^{\prime}\right|<1}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-Q} d \tau d \eta \\
& \leq(i)+(i i) \quad \text { where }
\end{aligned}
$$

$$
\begin{aligned}
(i) & =\int_{|\tau|^{1 / 2}+|\eta|<\left|x^{\prime}\right|<1}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-Q} d \tau d \eta \\
& \leq \int_{|\tau|^{1 / 2}+|\eta|<\left|x^{\prime}\right|}\left|x^{\prime}\right|^{\alpha-Q} d \tau d \eta \\
& \leq C\left|x^{\prime}\right|^{\alpha-Q} \int_{|\tau|<\left|x^{\prime}\right|^{2},|\eta|<\left|x^{\prime}\right|} d \tau d \eta \\
& =C\left|x^{\prime}\right|^{\alpha-Q+3}=C\left|x^{\prime}\right|^{\alpha-1}
\end{aligned}
$$

$$
\begin{aligned}
(i i) & =\int_{|\tau|^{1 / 2}+|\eta|>\left|x^{\prime}\right|}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-Q} d \tau d \eta \\
& \leq C \sum_{j=0}^{\infty} \int_{|\tau|^{1 / 2}+|\eta|<2^{j}\left|x^{\prime}\right|}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-Q} d \tau d \eta \\
& \leq C \sum_{j=0}^{\infty} \int_{|\tau|^{1 / 2}+|\eta|<2^{j}\left|x^{\prime}\right|}\left(2^{j}\left|x^{\prime}\right|\right)^{\alpha-Q} d \tau d \eta \\
& \leq C \sum_{j=0}^{\infty}\left(2^{j}\left|x^{\prime}\right|\right)^{\alpha-Q} \int_{|\tau|<\left(2^{j}\left|x^{\prime}\right|\right)^{2},|\eta|<\left(2^{j}\left|x^{\prime}\right|\right)} d \tau d \eta \\
& \leq C \sum_{j=0}^{\infty}\left(2^{j}\left|x^{\prime}\right|\right)^{\alpha-Q}\left(2^{j}\left|x^{\prime}\right|\right)^{3} \\
& =C\left|x^{\prime}\right|^{-1+\alpha} \sum_{j=0}^{\infty}\left(2^{j}\right)^{\alpha-1}
\end{aligned}
$$

Since $\alpha<1$, we see that $\sum_{j=0}^{\infty}\left(2^{j}\right)^{\alpha-1} \leq \infty$.
So $I_{1}\left(x^{\prime}\right) \leq C\left|x^{\prime}\right|^{-1+\alpha}$.
Now look at $I_{2}\left(x^{\prime}\right)=\int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|>1}\left|J_{\alpha}\left(\tau,-x^{\prime}, \eta\right)\right| d \tau d \eta$
Let N be any arbitrarily large number which is chosen as $N>4-\alpha$.

Then

$$
\begin{aligned}
I_{2}\left(x^{\prime}\right) & \leq C \int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|>1}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{-N} d \tau d \eta \\
& \leq C \int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|>1,|\tau|^{1 / 2}+|\eta|<\left|x^{\prime}\right|}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-4} d \tau d \eta \\
& +C \int_{|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|>1,|\tau|^{1 / 2}+|\eta|>\left|x^{\prime}\right|}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-4} d \tau d \eta \\
& \leq C\left|x^{\prime}\right|^{\alpha-4}+C \int_{|\tau|^{1 / 2}+|\eta|>\left|x^{\prime}\right|}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|\right)^{\alpha-4} d \tau d \eta
\end{aligned}
$$

By subdividing the range $|\tau|^{1 / 2}+|\eta|>\left|x^{\prime}\right|$ into shells

$$
2^{j}\left|x^{\prime}\right|<|\tau|^{1 / 2}+\left|x^{\prime}\right|+|\eta|<2^{j+1}\left|x^{\prime}\right|
$$

and following similar argument as in the previous case(ii) the last integral can be shown to be bounded by $C^{\prime}\left|x^{\prime}\right|^{\alpha-4}$. So we have showd that

$$
\begin{gathered}
I_{2}\left(x^{\prime}\right) \leq C^{\prime \prime}\left|x^{\prime}\right|^{-1+\alpha} \quad \text { and } \\
\int_{R^{2}}\left|J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d t d y \leq C\left|x^{\prime}\right|^{-1+\alpha} \quad\left|x^{\prime}\right| \leq 1
\end{gathered}
$$

Now let's study (2) and estimate the integral, i.e., show

$$
\sup _{t, y} \int_{R^{2}}\left|J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d s d y^{\prime} \leq C\left|x^{\prime}\right|^{-1+\alpha}
$$

But by the change of variables,

$$
\int_{R^{2}}\left|J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right)\right| d s d y^{\prime}=\int_{R^{2}}\left|J_{\alpha}\left(\tau,-x^{\prime}, z\right)\right| d \tau d z
$$

So exactly same computation as before yields

$$
\int_{R^{2}}\left|J_{\alpha}\left(\tau,-x^{\prime}, z\right)\right| d \tau d z \leq C\left|x^{\prime}\right|^{-1+\alpha}
$$

Hence, applying Young's inequality we see that

$$
\left\|T_{x^{\prime}} h\right\|_{q} \leq C\left|x^{\prime}\right|^{-1+\alpha}\|h\|_{q}
$$

From this we can conclude

$$
\begin{aligned}
\int_{R^{2}}|g(t, y) \| h(t, y)| d t d y & \leq \int_{R^{s}}\left|\phi\left(s, x^{\prime}, y^{\prime}\right) \| T_{x^{\prime}} h\left(s, y^{\prime}\right)\right| d s d x^{\prime} d y^{\prime} \\
& \leq\|\phi\|_{p}\left(\int\left|T_{x^{\prime}} h\left(s, y^{\prime}\right)\right|^{q} d s d x^{\prime} d y^{\prime}\right)^{\frac{1}{q}} \\
& \leq\|\phi\|_{p}\left(\int_{-\infty}^{\infty}\left[\int_{R^{2}}\left|T_{x^{\prime}} h\left(s, y^{\prime}\right)\right|^{q} d s d y^{\prime}\right] d x^{\prime}\right)^{\frac{1}{q}} \\
& \leq\|\phi\|_{p}\|h\|_{q}\left(\int\left|x^{\prime}\right|^{(-1+\alpha) q} d x^{\prime}\right)^{\frac{1}{q}}<\infty
\end{aligned}
$$

if $\int_{-\infty}^{\infty}\left|x^{\prime}\right|^{(-1+\alpha) q} d x^{\prime}$ is integrable near 0 if $(-1+\alpha) q>-1$ i.e. $\alpha>\frac{1}{p}$.
Next we will estimate the case (b). For this we go back and adopt the estimate of I_{2} (since $\left|x^{\prime}\right|>1$): Choose N^{\prime} be arbitrary large number such that

$$
\left(-N^{\prime}+3\right) q<-1
$$

Following same steps there it can be shown that

$$
\text { Int } \leq C\left|x^{\prime}\right|^{-N^{\prime}+3}<C\left|x^{\prime}\right|^{-\frac{1}{4}}
$$

In this case we can also show that

$$
\int_{R^{2}}\left|g(t, y)\|h(t, y) \mid d t d y \leq\| \phi\left\|_{p}\right\| h \|_{q}\left(\int\left|x^{\prime}\right|^{\left(-N^{\prime}+3\right) q} d x^{\prime}\right)^{\frac{1}{9}}<\infty\right.
$$

We have finally showed that $g \in L^{p}\left(R^{2}\right)$.
From now on we will show that $g \in \Lambda_{\alpha-\frac{1}{p}}^{p, p}\left(R^{2}\right)$, i.e., we want to show that

$$
\iint \frac{\left|g(u v)+g\left(u^{-1} v\right)-2 g(v)\right|^{p}}{|u|^{2+\alpha p}} d v d u<\infty
$$

First note that when $|u|>1$, the integral converges because

$$
\begin{aligned}
\int_{|u|>1} \int_{R^{2}} & \frac{\left|g(u v)+g\left(u^{-1} v\right)-2 g(v)\right|^{p}}{|u|^{2+\alpha p}} d v d u \\
& \leq C \int_{|u|>1} \frac{1}{|u|^{2+\alpha p}}\left[\int|g(v)|^{p} d v\right] d u \\
& =\|\left. g\right|_{p} ^{p} \int_{|u|>1} \frac{1}{|u|^{2+\alpha p}} d u
\end{aligned}
$$

and

$$
\int_{|u|>1} \frac{1}{|u|^{2+\alpha p}} d u<\infty \quad \text { since } \alpha p>1
$$

So it remains to show that

$$
\int_{|u|<1} \int_{R^{2}} \frac{\left|g(u v)+g\left(u^{-1} v\right)-2 g(v)\right|^{p}}{|u|^{2+\alpha p}} d v d u<\infty
$$

Set $u=(t, 0, y), v=(\tau, 0, z), w=\left(s, x^{\prime}, y^{\prime}\right)$. The function $g(t, y)$ can be written as

$$
g(t, y)=\int_{H^{1}} \phi\left(s, x^{\prime}, y^{\prime}\right) J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right) d s d x^{\prime} d y^{\prime}
$$

which can be expressed as $g(t, y)=\int_{-\infty}^{\infty} g_{x^{\prime}}(t, y) d x^{\prime}$, where

$$
g_{x^{\prime}}(t, y)=\int_{R^{2}} \phi\left(s, x^{\prime}, y^{\prime}\right) J_{\alpha}\left(t-s+2 y x^{\prime},-x^{\prime}, y-y^{\prime}\right) d s d y^{\prime}
$$

Now look at the quantity

$$
\begin{aligned}
& \left|g_{x^{\prime}}(t+\tau, y+z)+g_{x^{\prime}}(-t+\tau,-y+z)-2 g_{x^{\prime}}(\tau, z)\right| \\
& \quad \leq \int\left|\phi\left(s, x^{\prime}, y^{\prime}\right)\right| \mid J_{\alpha}\left(t+\tau-s+2 x^{\prime}(y+z),-x^{\prime}, y+z-y^{\prime}\right) \\
& +J_{\alpha}\left(-t+\tau-s+2 x^{\prime}(-y+z),-x^{\prime},-y+z-y^{\prime}\right) \\
& -2 J_{\alpha}\left(\tau-s+2 z x^{\prime},-x^{\prime}, z-y^{\prime}\right) \mid d s d y^{\prime}
\end{aligned}
$$

Let

$$
\begin{aligned}
K_{x^{\prime}, t, y}\left(s, y^{\prime}, \tau, z\right) & =J_{\alpha}\left(t+\tau-s+2 x^{\prime}(y+z),-x^{\prime}, y+z-y^{\prime}\right) \\
& +J_{\alpha}\left(-t+\tau-s+2 x^{\prime}(-y+z),-x^{\prime},-y+z-y^{\prime}\right) \\
& -2 J_{\alpha}\left(\tau-s+2 z x^{\prime},-x^{\prime}, z-y^{\prime}\right)
\end{aligned}
$$

So if we could show that

$$
\begin{equation*}
\sup _{\tau, z} \int_{R^{2}}\left|K_{x^{\prime}, t, y}\left(s, y^{\prime}, \tau, z\right)\right| d s d y^{\prime} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{s, y^{\prime}} \int_{R^{2}}\left|K_{x^{\prime}, t, y}\left(s, y^{\prime}, \tau, z\right)\right| d \tau d z \tag{5}
\end{equation*}
$$

are both dominated by a constant $C\left(x^{\prime} t, y\right)$, then we could conclude

$$
\begin{aligned}
&\left\|g_{x^{\prime}}(t+*, y+*)+g_{x^{\prime}}(-t+*,-y+*)-2 g_{x^{\prime}}(*, *)\right\|_{p} \\
& \leq \leq\left(x^{\prime}, t, y\right)\left\|\phi\left(*, x^{\prime}, *\right)\right\|_{p}
\end{aligned}
$$

and thus by the generalized Young's inequality

$$
\begin{aligned}
\| g(t+*, y+*)+g(-t+*,-y & +*)-2 g(*, *) \|_{p}^{p} \\
& \leq\left[\int C\left(x^{\prime}, t, y\right)\left\|\phi\left(*, x^{\prime}, *\right)\right\|_{p} d x^{\prime}\right]^{p}
\end{aligned}
$$

On making the change of variables

$$
\tau-s+2 z x^{\prime} \rightarrow \tau, \quad z-y^{\prime} \rightarrow z
$$

expression (5) becomes

$$
\begin{array}{r}
\int_{R^{2}} \mid J_{\alpha}\left(t+\tau+2 y x^{\prime},-x^{\prime}, y+z\right)+J_{\alpha}\left(-t+\tau-2 y x^{\prime},-x^{\prime},-y+z\right) \\
-2 J_{\alpha}\left(\tau,-x^{\prime}, z\right) \mid d \tau d z
\end{array}
$$

On the other hand, by the change of variables

$$
\tau-s+2 z x^{\prime} \rightarrow \tilde{s}, z-y^{\prime} \rightarrow \tilde{y^{\prime}}
$$

expression (4) becomes

$$
\begin{aligned}
\int_{R^{2}} \mid J_{\alpha}\left(t+\tilde{s}+2 x^{\prime} y,-x^{\prime}, y+\tilde{y^{\prime}}\right)+J_{\alpha}(-t & \left.+\tilde{s}-2 x^{\prime} y .-x^{\prime},-y+\tilde{y^{\prime}}\right) \\
& -2 J_{\alpha}\left(\tilde{s},-x^{\prime}, \tilde{y^{\prime}}\right) \mid d \tilde{s} d \tilde{y^{\prime}}
\end{aligned}
$$

Since they are equivalent, let's estimate (5)

$$
\begin{aligned}
\int_{R^{2}}\left|K_{x^{\prime}, t, y}\left(s, y^{\prime}, \tau, z\right)\right| d \tau d z & =\int_{R^{2}} \mid J_{\alpha}\left(t+\tau+2 y x^{\prime},-x^{\prime}, y+z\right) \\
& +J_{\alpha}\left(-t+\tau-2 y x^{\prime},-x^{\prime},-y+z\right) \\
& -2 J_{\alpha}\left(\tau,-x^{\prime}, z\right) \mid d \tau d z
\end{aligned}
$$

Setting $u=(t, 0, y), \quad v=\left(\tau,-x^{\prime}, z\right)$, the integrand becomes

$$
\begin{aligned}
\mid J_{\alpha}(u v)+ & J_{\alpha}\left(u^{-1} v\right)-2 J_{\alpha}(v) \mid \\
\leq & |u| \sup _{\rho \in[0,1]}\left|\nabla J_{\alpha}((\rho u) v)-\nabla J_{\alpha}\left(\left(\rho u^{-1}\right) v\right)\right| \\
= & |u| s u p_{\rho \in[0,1]} \mid \nabla J_{\alpha}\left(\rho^{2} t+\tau+2 \rho y x^{\prime},-x^{\prime} z+\rho y\right) \\
& -\nabla J_{\alpha}\left(\tau-\rho^{2} t-2 \rho y x^{\prime},-x^{\prime}, z-\rho y\right) \mid \\
= & |u| s u p_{\rho \in[0,1]} \left\lvert\, \int_{0}^{1} \frac{d}{d s} \nabla J_{\alpha}\left(\tau+\rho^{2} t+2 \rho y x^{\prime}-2 s \rho^{2} t\right.\right. \\
& \left.-4 s \rho y x^{\prime},-x^{\prime}, z+\rho y-2 s \rho y\right) d s \mid \\
= & |u| s u p_{\rho \in[0,1]} \mid \int_{0}^{1}\left(2 \rho^{2} t+4 \rho y x^{\prime}, 0,2 \rho y\right) \nabla^{2} J_{\alpha}\left(\tau+\rho^{2} t+2 \rho y x^{\prime}\right. \\
- & \left.2 s \rho^{2} t-4 s \rho y x^{\prime},-x^{\prime}, z+\rho y-2 s \rho y\right) d s \mid \\
\leq & |u| s u p_{\rho \in[0,1]}\left|\left(2 \rho^{2} t+4 \rho y x^{\prime}, 0,2 \rho y\right)\right| \int_{0}^{1} \nabla^{2} J_{\alpha}\left(\tau+\rho^{2} t+2 \rho y x^{\prime}\right. \\
- & \left.2 s \rho^{2} t-4 s \rho y x^{\prime},-x^{\prime}, z+\rho y-2 s \rho y\right) d s \mid
\end{aligned}
$$

From now on, we will focus on $\left|x^{\prime}\right|<1$, since when $\left|x^{\prime}\right|>1$, we have rapid decrease of J_{α} and hence no problems at ∞.

Let $A=\left|\left(2 \rho^{2} t+4 \rho y x^{\prime}, 0,2 \rho y\right)\right|=\left|2 \rho^{2} t+4 \rho y x^{\prime}\right|^{1 / 2}+|2 \rho y|$.
When $|t|^{1 / 2}+|y|$ is small compared to $\left|x^{\prime}\right|$,
e.g., say $|t|^{1 / 2}+|y|<\frac{1}{100}\left|x^{\prime}\right|$, then

$$
A=\left|\left(2 \rho^{2} t+4 \rho y x^{\prime}, o, 2 \rho y\right)\right|<C\left(|t|^{1 / 2}+|y|\right)=C|u|
$$

and the quantity

$$
\left|\tau+\rho^{2} t+2 \rho y x^{\prime}-2 s \rho^{2} t-4 s \rho y x^{\prime}\right|^{1 / 2}+\left|x^{\prime}\right|+|z+\rho y-2 s \rho y|
$$

is comparable to

$$
|\tau|^{1 / 2}+\left|x^{\prime}\right|+|z|
$$

and so

$$
\begin{aligned}
& \int_{R^{2}}\left|K_{x^{\prime}, t, y}\left(s, y^{\prime}, \tau, z\right)\right| d \tau d z \\
& \quad \leq C\left(|t|^{1 / 2}+|y|\right)^{2} \int_{R^{2}}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|z|\right)^{-Q+\alpha-2} d \tau d z \\
& \leq C\left(|t|^{1 / 2}+|y|\right)^{2} \int_{|\tau|^{1 / 2}+|z|<\left|x^{\prime}\right|}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|z|\right)^{-Q+\alpha-2} d \tau d z \\
& \quad+C\left(|t|^{1 / 2}+|y|\right)^{2} \int_{|\tau|^{1 / 2}+|z|>\left|x^{\prime}\right|}\left(|\tau|^{1 / 2}+\left|x^{\prime}\right|+|z|\right)^{-Q+\alpha-2} d \tau d z \\
& \leq C\left(|t|^{1 / 2}+|y|\right)^{2}\left|x^{\prime}\right|^{-3+\alpha}
\end{aligned}
$$

For the last inequality to hold we need $-Q+\alpha-2<-3$. But with our choice of $\alpha<2+\frac{1}{p}<3$, this holds all the time.

When $|t|^{1 / 2}+|y|>\frac{1}{100}\left|x^{\prime}\right|$, then we use triangle inequality and estimates on J_{α} as in the case of L^{p}-estimaate of g to get

$$
\int_{R^{2}}\left|K_{x^{\prime}, t, y}\left(s, y^{\prime}, \tau, z\right)\right| d \tau d z \leq C\left|x^{\prime}\right|^{-1+\alpha}
$$

Hence,

$$
\begin{aligned}
& \int_{|u|<1} \frac{\|g(t+*, y+*)+g(-t+*,-y+*)-2 g(*, *)\|_{p}^{p}}{|u|^{2+\alpha p}} d u \\
& \leq C \int_{|u|<1} \frac{1}{|u|^{2+\alpha p}}\left(\int_{\left|x^{\prime}\right|>100|u|}|u|^{2}\left|x^{\prime}\right|^{-3+\alpha}\left\|\phi\left(*, x^{\prime}, *\right)\right\|_{p} d x^{\prime}\right)^{p} d u \\
& \quad+C \int_{|u|<1} \frac{1}{|u|^{2+\alpha p}}\left(\int_{\left|x^{\prime}\right|<100|u|}\left|x^{\prime}\right|^{-1+\alpha}\left\|\phi\left(*, x^{\prime}, *\right)\right\|_{p} d x^{\prime}\right)^{p} d u
\end{aligned}
$$

Now passing to polar coordinates by setting $|u|=r=|t|^{1 / 2}+|y|$, we see that the above inequality is bounded by

$$
\begin{aligned}
& C \int_{r<1}\left(\int_{\left|x^{\prime}\right|>100 r}\left|x^{\prime}\right|^{-3+\alpha} r^{2-\alpha}\left\|\phi\left(*, x^{\prime}, *\right)\right\|_{p} d x^{\prime}\right)^{p} d r \\
& +C \int_{r<1}\left(\int_{\left|x^{\prime}\right|<100 r}\left|x^{\prime}\right|^{-1+\alpha} r^{-\alpha}\left\|\phi\left(*, x^{\prime}, *\right)\right\|_{p} d x^{\prime}\right)^{p} d r
\end{aligned}
$$

We see the function $K\left(x^{\prime}, r\right)=\left|x^{\prime}\right|^{-1+\alpha} r^{-\alpha}$ is homogeneous of degree -1 . Then after some computation and application of Young's inequality, we obtain

$$
\begin{aligned}
& \int_{|u|<1} \frac{\|g(t+*, y+*)+g(-t+*,-y+*)-2 g(*, *)\|_{p}^{p}}{|u|^{2+\alpha p}} d u \\
& \leq C\left(A^{p}+A^{\prime p}\right)\|\phi\|_{p}^{p}
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\int_{100}^{\infty}\left|K\left(1, x^{\prime}\right)\right| x^{-1 / p} d x^{\prime}=\int_{100}^{\infty}\left|x^{\prime}\right|^{-3+\alpha}\left|x^{\prime}\right|^{-1 / p} d x^{\prime} \\
& =\int_{100}^{\infty}\left|x^{\prime}\right|^{-3+\left(\alpha-\frac{1}{p}\right)} d x^{\prime}
\end{aligned}
$$

which is finite since $\alpha-\frac{1}{p}<2$.

$$
\begin{aligned}
A^{\prime} & =\int_{0}^{100}\left|K\left(1, x^{\prime}\right)\right| x^{\prime-1 / p} d x^{\prime}=\int_{0}^{100}\left|x^{\prime}\right|^{-1+\alpha}\left|x^{\prime}\right|^{-1 / p} d x^{\prime} \\
& =\int_{0}^{100}\left|x^{\prime}\right|^{-1+\left(\alpha-\frac{1}{p}\right)} d x^{\prime}
\end{aligned}
$$

which is finite since $-1+\left(\alpha-\frac{1}{p}\right)>-1$. Hence we showed that

$$
g \in \Lambda_{\alpha-\frac{1}{p}}^{p, p}\left(R^{2}\right)
$$

References

1. M.Mekias, "Restriction Theorem for Sobolev Spaces", M.I.T.thesis, 1987.
2. G.B. Folland and E.M. Stein, "Estimates for the \bar{b}_{b} Complexies and Analysiss on the Heisenberg Group", Comm. Pure Applied Math. Vol. XXVII (1974) pp.420-522.
3. G.B. Folland, "belliptic estimates and Function Spaces on Nilpotent Lie Groups".
4. N.Aronszajn and K.T.Smith, "Theory of Bessel Potentials I", Ann. Inst. Fourier 11 (1961) pp.385-475.
5. G.H.Hardy, J.E.Littlewood and G.Polya, "Inequalities", Cambridge University Press Cambridge, UK, 1934.
6. P.I. Lizorkin, "Characteristics of the Boundery Values of Functions from $L_{\alpha}^{p}\left(E^{n}\right)$ on Hyperplanes", Dok Akac. Nauk. SSSR 150 (1963) 986-989.
7. E.M.Stein, "The Characterization of Functions Arising as Potentials", Bull.Amer. Math. Soc. Vol.1, 76 (1961), 102-104, Vol.2, 68 (1962), 577-582.
8. E.M. Stein, "Singular Integrals and Differentiability Properties of Functions", Princeton Univ.Press (1970).

School of Engineering
Hong Ik University
Seoul, Korea

