DOI QR코드

DOI QR Code

Formation of Cadmium(II) Nitrate Complexes with Macrocycles

  • Ho-Doo Kim (Koryo Cement Co.) ;
  • Hak-Jin Jung (Department of Environmental Engineering, Dong-sin University) ;
  • Oh-Jin Jung (Department of Environmental Science, College of Natural Science, Chosun University)
  • Published : 1993.10.20

Abstract

The twelve macrocycle (L) complexes of cadmium(II) nitrate have been synthesized: $CdL(NO_3)_2$. All the complexes have been indentified by elemental analysis, electric conductivity measurements, IR and NMR spectroscopic techniques. The molar electric conductivities of the complexes in water and acetonitrile solvent were in the range of 236.8-296.1 $cm^2{\cdot}mol^{-1}{\cdot}ohm^{-1}$ at 25$^{\circ}$C. The characteristic peaks of macrocycles affected from Cd(II) were shifted to lower frequencies as compared with uncomplexed macrocycles. A complex with 1,4,8,11-tetrakis(methylacetato)-1,4,8,11-tetraaza cyclodecane (L4) exhibited two characteristic bands such as strong stretching (1646 $cm^{-1})$, and weaker symmetric stretching band (1384 $cm^{-1})$. NMR studies indicated that all nitrogen donor atoms of macrocycles have greater affinity to cadmium(II) metal ion than do the oxygen atoms. The $^{13}$C-resonance lines of methylene groups neighboring the donor atom such as N and S were shifted to a direction of high magnetic field and the order of chemical shifts were $L_1 < L_2 < L_3 < L_6 < L_4$. Also the chemical shifts values were larger than those of methylene groups bridgeheaded in side-armed groups. This result seems due to not only the strong interaction of Cd(Ⅱ) with nitrogen donors according to the HSAB theory, but weak interaction of Cd(Ⅱ) and COO- ions or sulfur which is enhanced by the flexible methylene spacing group in side-armed groups. Thus, each additional gem-methyl pairs of L_3, L_4\;and\; L_6$ macrocycles relative to $L_1, L_2,\;and\;L_5$ leads to an large enhancement in Cd(II) affinity. ^{13}C$-NMR spectrum of the complex with $L_{12}$ (1,5,9,13-tetracyclothiacyclohexadecane-3,11-diol) reveals the presence of two sets of three resonance lines, and intensities of the each resonance line have the ratio of 1 : 2 : 2. This molecular conformation is predicted as structure of tetragonal complex to be formed by coordinating two sulfur atoms and the other two sulfur atoms which is affected by OH-groups.

Keywords

References

  1. Inorg. Chem. v.27 L. H. Chen;C. S. Chug
  2. Pure and Appl. Chem. v.58;11 R. D. Hancock
  3. Inorganic Chemistry v.12 F. K. Barefield;F. Wanger
  4. Helviw Chemica Acta. v.65 M. Micheloni;P. Paoletti;S. Burki;T. A. Kaden
  5. J. of the Chemical Society, Dalton Transaction N. W. Alcock;N. Herron;P. Moor
  6. Inorganic Chemistry v.22 V. B. Pett;L. L. Diaddario;E. R. Dockal;P. W. Corfield;C. Cecarelli;M. D. Ochrymowycz;D. B. Rorabacher
  7. J. Am. Chem. Soc. v.112 J. M. Desper;S. H. Gellman
  8. Inorg. Chem. L. S. W. L. Sokol;L. A. Ochrymowynowycz;D. R. Rorabacher
  9. J. Am. Chem. Soc. v.113 J. M. Desper;S. H. Gellman
  10. Acc. Chem. Res. v.21 S. R. Cooper
  11. J. Chem. Soc., Dalton Trans. M. Micheloni;P. Paoletti;L. L. Sigfried-Hertli;T. A. Kaden
  12. Helview Chemica Acta v.67 L. Siegfried;T. A. Kadan
  13. Tranta v.27 H. Gampp;M. Maedel;A. D. Zuberbuhler;Th. A. Kadan
  14. J. Chem. Soc. Perkin Trans. v.2 C. J. Broan;J. P. L. Cox;A. S. Craig;R. Kataky;D. Parker;A. Harrison;A. M. Ramdall;G. Ferguson
  15. Tetrahedron Lett. v.29 H. Tsukube;K. Yamashita;T. Iwachido;M. Zenki
  16. Chem. Rev. v.85 Reed M. Izatt;J. S. Bradshaw;S. A. Nielson;J. D. Lamb;J. J. Christensen
  17. J. Chem. Soc. Dalton Trans. M. Kodama;E. Kimura;S. Yamakuchi
  18. The chemistry of Macrocyclic Ligand Complexes L. F. Lindoy
  19. J. Chem. Dalton Trans. N. W. Alcock;K. P. Balakrishnan;Peter Moor
  20. Inorg. Chem. v.14 P. K. Chan;D. A. Isabirye;C. K. Poon
  21. Inorg. Chem. Acta. v.39 A. Seminar;A. Musumeci
  22. Coord. Chem. Rev. v.7 W. J. Gear
  23. J. Chem. Soc. Daton Trans. M. Kodama;E. Kimura
  24. Taranta v.29 R. Delgado;J. J. R. Frausto Da Silva
  25. Taranta v.30 D. T. Sawer;P. J. Paulsen
  26. Can. J. Chem. v.62 T. M. Fyles;D. M. Whitfield
  27. Bull. Kor. Chem. Soc. v.12 Ohjin Jung;Chilnam Choi;Hakjin Jung
  28. Inorg. Chem. v.19 J. F. Desreux
  29. Ph. D. Thesis. Chosun Univ. H. D. Kim
  30. J. Am. Chem. Soc. v.112 J. M. Desper;S. H. Gellman
  31. Angew. Chem. Int. Ed. Engl. v.25 D. J. Cram
  32. J. Am. Chem. Soc. v.85 R. J. Pederson
  33. J. Am. Chem. Soc. v.92 K. H. Wong;G. K. Konizer;J. Smid