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The functionalization of heterocyclic ketal 1 in the 6,8-di- 
oxabicyclo[3.2.1]octane series is essential since the application 
of this ketal system to the direct syntheses of 5f£-unsaturated 
ketone (2)1, 1,5-diketone (3)2, 2,6-disubstituted pyridine (4)3, 
2,3,6-trisubstituted pyridine (5)4 and Ws-L2・cyclopentanedi이 

derivatives (6)5 are developed (Scheme 1).
The position at C-4 of bicyclic ketal 1 is important to the 

synthesis of multistriation 66 and a^-substituted cyclohexe- 
none.7 I report herein the facile functionalization at C-4 of 
bicyclic ketal compound.

There are two possible ways to introduce functional groups 
at C-4 of bicyclic ketal compound. Scheme 2 shows the in
troduction of acrolein or methyl vinyl ketone (MVK) at C- 
4 of bicyclic ketal during the cyclization of alcohol 8. MVK 
dimer 7 was methylated with MeLi to the carbinol 8 (98% 
yield). Hg(OAc)2 was used for the formation of C4-Hg bond 
of bicyclic ketal 9 which was reacted with NaBHt and acro
lein to give Michael adduct 10 in 1: 2 ratio of axial and 
equatorial isomers (42% yield).8 MVK was also used instead 
of acrolein to give the ketal 11 which shows 1: 2 mixture 
of axial and equatorial isomers (58% yield). The configura
tional assignments of isomers of 10 and 11 are based on 
the chemical shift of the proton at C-4. The chemical shift 
of equatorial proton is more deshieled than axial proton.9 
Irradiation of the 1.50 ppm signals for major-10 gave triplet 
at 1.78 and 1.34 from multiplet. Also, irradiation of the 1.63 
ppm signals of minor-10 gave triplet at 1.70 and 1.35. This 
indicates that major-10 have axial proton and minor-10 have 
equatorial proton at C-4. Thus, major-10 can be assigned 
as equatorial-10 and minor-10 as axial-10 which is sterically
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Scheme 2.

unfavorable because of lr3-synaxial interaction. The chemical 
shift of 1.64 and 1.52 ppm signals at C-4 of isomers 11 indi
cate axial-11 (minor) and equatorial-11 (major) respectively.

Scheme 3 shows the introduction of bromine at C-4 of 
bicyclic ketal from the bicyclic ketal 1 directly. Bromination 
of acyclic acetals is shown to occur on the carbon atom a 
to the functional group.10 Accordingly, 1 was brominated with 
one equiv. of bromine in carbon tetrachloride for 7 hrs stir
ring at room temperature to obtain mono-brominated ketal 
12 in 88% yield. With the addition of NazCO* the reaction 
was completed within 1 hr in quantitative yield. The product 
showed single peak on the capillary gas-liquid chromatogram. 
The chemical shift of 4.01 ppm signals at C-4 of this single 
isomer 12 could not indicate the exact configuration. But 
the single isomer 12 could be an equatorial-12 because of 
steric effect.

All of the functionalized ketals (10, 11 and 12) are useful 
intermediate for the C-C bond formation and other transfor
mation reactions such as the synthesis of mouse Mus mus- 
culus pheromone.11
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