Enantioselective Synthesis of (4S,E)-4-Methyl-hex-2-enoic Acid and (4R,E)-4-Methylhex-2enoic Acid

Suk-Ku Kang*, Jae-Hoon Jeon, and Young-Won Park

Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746

Received January 8, 1993
(+)-(4S,E)-4-Methylhex-2-enoic acid $[(+)-1]^{1}$ is the key constituent of the peptide antibiotics leucinostatines possessing antibiotic, antitumoral, antibacterial and phytotoxic activities. Three syntheses have been reported ${ }^{2}$ for $(+)-1$. In connection with our research programs to utilize optically active carbonates and sulfites as activating groups, ${ }^{3}$ we were interested in the synthesis of (+)-1. Here we report an enantioselective synthesis of (+)-1 and its enantiomer (-)-1 based on $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ addition of organocuprates to chiral allylic cyclic carbonates.

+ +1

(-)-1

The acetonide 3^{4} was prepared from ($2 S, 3 S$)-2,3-0-isopro-pylidenedioxy-1,4-butanediol 2^{5} in a three-step sequence via monosilylation, Swern oxidation ${ }^{6}$ and Wittig olefination reaction. Deprotection of the acetonide followed by carbonylation with carbonyl diimidazole afforded the allylic cyclic carbonate 4. Highly diastereoselective ($>99 \%$) $\mathrm{S}_{N} 2^{\prime}$ addition of 4 with $\mathrm{MeMgBr}, \mathrm{CuI}(3 \mathrm{~mol} \%)$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ afforded the allylated compound 5^{4}, which constitute the key step for the introduction of chirality. The diastereoselection was determined by NMR spectroscopy with a chiral shift reagent. [${ }^{1} \mathrm{H}-\mathrm{NMR}, 300$ MHZ , chiral $\mathrm{Eu}(\mathrm{tfc})_{3}$]. The exclusive (E)-stereochemistry was judged by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz) coupling constants of the two vinyl protons. Deprotection of the silyl group in 5 gave the diol 6^{4}, which was transformed into the target compound, $(+)-1^{5},[\alpha]_{D}^{25}=+47.8\left(c 0.12, \mathrm{CHCl}_{3}\right),\left(\mathrm{lit}{ }^{1 \mathrm{~b}}[\alpha]_{D}{ }^{20}=+49.7\right)$ by oxidative cleavage with NaIO_{4} followed by NaClO_{2} oxidation (Scheme 1).

Alternatively, the enantiomer (-)-1 was also synthesized

a) $\mathrm{NaH}, t \cdot \mathrm{BuPh}_{2} \mathrm{SiCl}, \mathrm{DME},-20^{\circ} \mathrm{C}, 3 \mathrm{~h}(91 \%)$; b) $\left(\mathrm{COCl}_{2}\right.$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}(91 \%)$; c) $n-\mathrm{BuLi}, \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Br}^{-}$, THF, $-78^{\circ} \mathrm{C}, 10 \mathrm{~h}(63 \%) ;$ d) $70 \% \mathrm{AcOH}, 40^{\circ} \mathrm{C}, 5 \mathrm{~h}$ (89%); e) $\mathrm{CO}(\mathrm{Im})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{rt}, 10 \mathrm{~min}(93 \%$); 0 MeMgBr (2 equiv), CuI ($3 \mathrm{~mol} \%$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1 equiv), $\mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}(87 \%$); g) (n - Bu$)_{4} \mathrm{NF}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}(96 \%)$; h) $\mathrm{NaIO}_{4}, \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$ (89%); i) NaClO_{2}, t - $\mathrm{BuOH}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, th, $8 \mathrm{~h}(68 \%)$.

Scheme 1.

a) n - $\mathrm{BuLi}, \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Br}^{-}$, THF, $-78 \mathrm{C}, 10 \mathrm{~h}(75 \%)$; b) $\mathrm{Do}-$ wex 50 W X 8 resin, $\mathrm{MeOH}, 45^{\circ} \mathrm{C}, 6 \mathrm{~h}\left(92 \%\right.$; c) $\mathrm{CO}(\mathrm{Im})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{rt}, 10 \mathrm{~min}(84 \%)$; d) $\mathrm{EtMgBr}\left(2\right.$ equiv), CuI ($3 \mathrm{~mol} \%$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1 equiv), THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}\left(75 \%\right.$); e) $\mathrm{Na}, \mathrm{NH}_{3}$ (1), THF, $-78^{\circ} \mathrm{C}, 3 \mathrm{~h}(91 \%) ;$ f $\mathrm{NaIO}_{4}, \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}(90 \%) ;$ g) NaClO_{2}, t - $\mathrm{BuOH}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{rt}, 8 \mathrm{~h}(67 \%)$.

Scheme 2.

from 4-O-benzyl-2,3-isopropylidene-L-threose 7^{56} by the similar methodology, which is shown in Scheme 2.

Acknowledgement. Generous financial support by Korea Science and Engineering Foundation (KOSEF)-the Organic chemistry Research Center (OCRC) is gratefully acknowledged.

References and Notes

1. (a) T. Arai, Y. Mikami, K. Fukushima, and K. Yazawa, J. Antibiotics, 26, 157 (1973); (b) Y. Mori, M. Tsuboi, M. Suzuki, K. Fukushima, and T. Arai, J. Chem. Soc. Chem. Commun., 94 (1982); (c) J. G. Stroh, K. L. Rinehart, J. Carter Cook, T. Kihara, M. Suzuki, and T. Arai, J. Am. Chem. Soc., 108, 858 (1986).
2. (a) V. Galamb, M. Gopal, and H. Alper, Organometallics, 2, 801 (1983); (b) L. Crombie and P. A. Jenkins, J. Chem. Soc. Chem. Commun., 870 (1967); (c) L. Crombie and P. A. Jenkins, J. Chem. Sac. Perkin Trans. I, 1090 (1975); (d) M. E. Hadrami, J-P. Lavergne, P. Viallefont, M. Y. Itto, and A. Hasnaoui, Tetrahedron Lett., 32, 3985 (1991).
3. (a) S-K. Kang, D-H, Lee, Y-S. Kim, and S-C. Kang, Synth. Commun., 22, 1109 (1992); (b) S-K. Kang, Y-W. Park, SG. Kim, and J-H. Jeon, J. Chem. Soc. Perkin Trans. I, 405 (1992); (c) S-K. Kang, Y-W. Paik, D-H. Lee, H-S. Sim, and J-H. Jeon, Tetrahedron: Asymmety, 3, 705 (1992); (d) S-K. Kang, S-G. Kim, and J-S. Lee, ibid., 3, 1139 (1992); (e) S-K. Kang, S-G. Kim, and D-G. Cho, ibid, 3, 1509 (1992); (f) S-K. Kang, S-G. Kim, D-G. Cho, and J-H. Jeon, Synth. Commun., 23, 681 (1993); (g) S-K. Kang, D-H. Lee, H-S. Sim, and J-S. Lim, Tetrahedron Lett., 34, 91 (1993); (h) S-K. Kang, S-G. Kim, D-C. Park, J-S. Lee, and W-J. Yoo, J. Chem. Soc. Perkin Trans. I, 9 (1993).
4. Satisfactory spectral and physical data were obtained for all new compound and are in accord with the assigned structure. Selected spectral data are as follows. (+)-1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, 3 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H})$, $1.45(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.89$ (dd, $1 \mathrm{H}, J=16.8 \mathrm{~Hz}$) 12.25 (s, 1 H). IR (neat) $3600-2400$, $1685,1640 \mathrm{~cm}^{-1} .[\alpha]_{D}^{25}=+47.8\left(c \quad 0.12, \mathrm{CHCl}_{3}\right)(-)-1$: $[\alpha]_{D}^{25}=-47.2\left(c 0.14, \mathrm{CHCl}_{3}\right)$ 5: TLC; $\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{hex}-$ ane $1: 3, R_{f}=0.71 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{t}$, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.26$ $(\mathrm{m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 4.20$ $(\mathrm{m}, 1 \mathrm{H}), 5.35(\mathrm{dd}, 1 \mathrm{H}, J=15.5,6.5 \mathrm{~Hz}), 5.62$ (dd, $1 \mathrm{H}, \mathrm{J}=15.5$,
7.5 Hz), 7.38-7.46 (m, 6H), 7.67-7.70 (m, 4H). IR (neat) $3400,3050,2950 \mathrm{~cm}^{-1},[\alpha]_{D}{ }^{25}=+8.0\left(c \quad 0.15, \mathrm{CHCl}_{3}\right)$. MS (m/e) 325 (M-tBu), 269, 247, 199 (base peak), 181, 139, 135, 109, 57. 6: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, 3 \mathrm{H})$, $0.95(\mathrm{~d}, 2 \mathrm{H}), 1.25-1.34(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H})$, $3.65(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{dd}, 1 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H})$. IR (neat) $3300,2950 \mathrm{~cm}^{-1},[\alpha]_{D}^{25}=+1.82\left(c 0.17, \mathrm{CHCl}_{3}\right)$. 10: TLC; $\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{hexane} 1: 5, R_{f}=0.33,{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.9$ Hz), $1.27-1.37(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.4,7.8 \mathrm{~Hz}$), 3.69 (dd, $1 \mathrm{H}, \mathrm{J}=10,3.6 \mathrm{~Hz}$), $4.22(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 5.38$ (ddd, 1H, $J=15.5,6.6,1 \mathrm{~Hz}$) 5.65 (ddd, $1 \mathrm{H}, J=15.5,6.6$, $1 \mathrm{~Hz}), 7.35(\mathrm{~s}, 5 \mathrm{H}) .11:[a]_{D}^{24}=-39.8\left(c 3.0, \mathrm{CHCl}_{3}\right)$.
5. (a) E. Hungerbuhler, and D. Seebach, Helv. Chim. Acta., 64, 696 (1981); (b) T. Mukaiyama, K. Suzuki, T. Yamada, and F. Tabusa, Tetrahediron, 46, 265 (1990).
6. K. Omura and D. Swern, Tetrahedron, 34, 1651 (1978).

Synthesis of Steroldal Cyclophosphamide, 2-Bis (2-chloroethyl)amino-2-ox0-6-(5 α-cholestanyl)-1, 3,2-oxazaphosphorinane

Jack C. Kim*, Hyoung-Do Paek, Sung-Hwan Moon ${ }^{\text { }}$, and $\mathrm{Si}-\mathrm{Hw}$ wn Kim^{\ddagger}

Department of Chemistry, College of Natural Science, Pusan National University, Pusan 609-735, Korea

Received January 8, 1993

Cyclophosphamide and its analogues are important clinical agents in the treatment of cancer. ${ }^{1}$ We have prepared steroidal cyclophosphamides (1a and 1b). The approach used for the synthesis of $\mathbf{1 a}$ and $\mathbf{1 b}$ is outlined in Scheme 1. Treatment of cholestanone (2) with n-butyllithium and acetonitrile gave a 72.5% yield of β-hydroxynitrile derivative 3^{2}, which was subsequently reacted with LiAlH_{4} to give aminoethyl derivative 4^{3} Cyclization of 4 with bis(2-chloroethyl)phosphoramidic dichloride (5) in the presence of 2 equiv. of $\mathrm{Et}_{3} \mathrm{~N}$ afforded crude mixtures of $\mathbf{1 a}$ and $\mathbf{1 b}$, which were chromatographed on silica gel with $\mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ hexane $=2: 2: 1$ to give analytically pure crystals of the faster (mp. 192-194 ${ }^{\circ} \mathrm{C}$) and slower (mp. $178-180^{\circ} \mathrm{C}$) eluting diastereomers of 1a and $\mathbf{1 b}$ in $\mathbf{5 8 \%}$ yield. Assignment of cyclophosphamide structures to the faster and slower eluting diastereomeric cyclization products has been suggested by the IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{31} \mathrm{P}-\mathrm{NMR}{ }^{4}$, and ${ }^{33} \mathrm{C}-\mathrm{NMR}$.

Our measurements of 1a and $\mathbf{1 b}$ indicated the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical-shift difference between the NH resonances at 2.73 and 2.50 ppm for the faster and slower eluting diastereomers of 1a and 1b, respectively. The substantial deshielding (0.23 ppm) of $\mathrm{N}-\mathrm{H}$ proton thus exhibited by the faster moving

[^0]
compound la, suggests more efficient intramolecular H -bonding to the adjacent $\mathrm{P}=0$ functionality. This difference in H -bonding was also founded in ${ }^{13} \mathrm{C}-\mathrm{NMR}$ by the deshielding of chemical shift[41.9 $\mathrm{ppm}\left(-\mathrm{NH}-\mathrm{CH}_{2}\right.$-) $]$ in the proposed 1a, as opposed by the shielding of chemical shift $[36.0 \mathrm{ppm}$ $\left.\left(-\mathrm{NH}-\mathrm{CH}_{2}-\right)\right]$ in the proposed $\mathbf{1 b}$. These compounds may have a greater impact as anticancer agents by their lipophilicity. Compounds 1a and 1b were found no activity against Hepatoma cells ${ }^{5}$.

Experimental

3-Cyanomethyl-5a-cholestan-3-ol (3). To a stirred solution of $1.6 \mathrm{M} n$-butyllithium in $9.5 \mathrm{~m} /$ (15 mmol) hexane, at $-80^{\circ} \mathrm{C}$ under nitrogen, was rapidly added a solution of 0.82 ml (15 mmol) of acetonitrile in 30 ml of anhydrous THF. After stirring for 1 hr , the resulting white suspension was treated with a solution of $3.0 \mathrm{~g}(7.5 \mathrm{mmol}) 2$ in 10 m of THF. The cold-ice bath was removed and stirred for additional 10 min before it was poured into ice-water hydrochloric acid. The aqueous layer was extracted with three 50 ml portions of $\mathrm{Et}_{2} \mathrm{O}$. The combined ether extracts were dried (MgSO) and evaporated in vaccuo, and the residual crude product was chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent, and obtained 2.4 g (73% yield) of white solids. mp. 158-159 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.6$ (s, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CN}$), $0.6-2.0$ (m, H steroid); IR (KBr) $3480(-\mathrm{OH}), 2930,2255(-\mathrm{CN}), 1460,1370$, 1080, $1050 \mathrm{~cm}^{-1}$.

3 β-Aminoethylene-5 α-cholestan- 3 -ol (4). To a stirred solution of $1.7 \mathrm{~g}(3.9 \mathrm{mmol})$ of 3 in 150 ml of anhydrous THF was added in small portions, 0.75 g (19.5 mmol) of lithium aluminum hydride. The mixture was refluxed with stirring for 17 hrs . After decomposing excess lithium aluminum hydride with $0.75 \mathrm{~m} /$ water and 2.3 ml of $20 \% \mathrm{NaOH}$, the mixture was filtered and filtrate was evaporated in vaccuo to obtain yellow oily residues (45% yield). All attempts

[^0]: ${ }^{\dagger}$ Present address : Suntory Institute for Bioorganic Research, Shi-mamoto-Cho, Osaka 618, Japan
 ${ }^{\text { }}$ Research Institute of Industrial Science \& Technology, Pohang 790-600, Korea

