Abstract
The reaction between methyl 2,3-di-O-benzyl-4,6-di-O-mesyl-${\alpha}$-D-glucopyranoside (1b) and potassium superoxide resulted in hydrolysis, and gave methyl 2,3-di-O-benzyl-${\alpha}$-D-glucopyranoside (1) as a sole product. When the reaction was performed with a vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-altropyranoside (4b), again the hydrolysis product, methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4) was obtained. However, the reaction of potassium superoxide with another vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-glucopyranoside (3b), nucleophilic displacement took place to afford methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4). Apparently different results from two trans vicinal dimesylates, 3b and 4b are explained by the transient formation of epoxides, methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-allopyranoside (8) and methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-mannopyranoside (9) by $KO_2$. The reaction between the allo epoxide 8 and $KO_2$ gave altro 4. The manno epoxide 9 also afforded altro 4 as the major product. Facile epoxide formation by the reaction of a vicinal dimesylate and superoxide was also observed with 3-O-benzyl-1,2-O-isopropylidene-5,6-di-O-mesyl-${\alpha}$-D-glucofuranose: 5,6-anhydro-3-O-benzyl-1,2-O-isopropylidene-${\beta}$-L-idofuranose was obtained.