DOI QR코드

DOI QR Code

A Theoretical Representation of Relaxation Processes in Complex Spin System Using Liouville Space Method

  • Kyunglae Park (College of Pharmacy, Chungnam National University)
  • Published : 1993.02.20

Abstract

For the study of relaxation processes in complex spin system, a general master equation, which can be used to simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum mechanics. The state of a nonequilibrium spin system in magnetic field is described by a density vector in Liouville space and the time evolution of the system is followed by the application of a linear master operator to the density vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interaction or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is possible to represent the final nonstationary spectrum using a frequency dependent spectral vector and intensity determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSIFORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

Keywords

References

  1. Mathematical Foundations of Quantum Mechanics J. von Neumann
  2. Density Matrix Theory and Applications K. Blum
  3. Adv. Magn. Reson. v.1 A. G. Redfield
  4. Adv. Magn. Reson. v.9 L. G. Werbelow;D. M. Grant
  5. Lectures on the Many-Body Problem v.2 U. Fano;E. R. Caianiello(ed.)
  6. Mol. Phys. v.6 C. N. Banwell;H. Primas
  7. Mol. Phys. v.15 G. Binsch
  8. J. Am. Chem. Soc. v.91 G. Binsch
  9. J. Magn. Reson. v.3 D. A. Kleir;G. Binsch
  10. J. Magn. Reson. v.68 S. Szymanski;A. M. Gryff-Keller;G. Binsch
  11. Ann. Rep. NMR Spectr. v.8 S. Szymanski;M. Witanowski;A. M. Gryff-Keller
  12. Adv. Magn. Reson. v.10 J. Jeener
  13. Adv. Magn. Reson. v.4 R. A. Hoffman
  14. Phys. Rev. v.73 N. Bloembergen;E. M. Purcell;R. V. Pound
  15. Phys. Rev. v.99 I. Solomon
  16. J. Chem. Phys. v.52 R. Freeman;S. Wittekoek;R. R. Ernst
  17. J. Magn. Reson. v.13 S. Schaublin;A. Hohener;R. R. Ernst
  18. Num. Math. v.12 R. S. Martin;J. H. Wilkinson
  19. Num. Math. v.12
  20. Num. Math. v.16 G. Peters;J. H. Wilkinson
  21. J. Magn. Reson. v.30 D. S. Stephenson;G. Binsch
  22. Principles of Nuclear Magnetic Resonance in One and Two Dimensions R. R. Ernst;G. Bodenhausen;A. Wokaun
  23. Mol. Phys. v.36 A. Wokaun;R. R. Ernst
  24. Two-dimensional Nuclear Magnetic Resonance in Liquids A. Bax