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Abstract

In computing the wave resistance numerically, satisfying the boundary condition(BC) on
the body surface is not so difficult, and then what form of the BC on the free surface(FS)
be used is a crucial question. To shed some light on this, we examine the various BC’s on
the FS, namely, the Poisson’s[l], the Ogilvie’s[2] and the Dawson’s[3] BC, using the same
panel method for submerged bodies in two-dimension. We also show the performance of the
Poisson’s BC for a submerged sphere and the Wigley hull. It seems that we are still in need
of a theory which gives a BC on the FS more accurate than those tested, and more pract-

ically applicable than the exact nonlinear BC.
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INTRODUCTION

Wind waves on the surface of lakes, ocean
waves coming endlessly towards the beach and
the waves generated by moving bodies have ever
attracted human minds. The Cauchy-Poisson pro-
blem, in which the displacement and the velocity
of the FS at the initial instant are given and the
evolution of the free surface at the later time is
sought, was perhaps the first one analyzed in terms
of hydrodynamics. We may regard Poission[l] as
the first who used the linearized free surface
boundary condition(FSBC).

Kelvin(4] started successfully the investigation
on the FS waves generated by a disturbance
moving either on or beneath the FS. And it was
Michell[5] who derived for the first time an integral
formula, which now bears his name, giving the
wave resistance of a ship that can be approximated
as thin. In the first half of this century, most
studies on the wave resistance of ships were done
around the Michell’s integral. However, as it bec-
ame evident that the prediction of the Michell’s
integral is inaccurate for the practical range of
the Froude number(F,) of most ships, the search
for the more accurate method for computing the
wave resistance began around early 1960’s.

The boundary value problem for the wave res-
istance acted on a ship moving with a uniform
speed(U) on the FS of an inviscid fluid consists
of the Laplace equation, which is the law of mass
conservation for an irrotational flow of an incom-
pressible fluid, subject to the suitable BC's on the
FS, on the body surface and on infinity. Since the
displacement of the FS is not known a priori, the
BC’s on the FS is essentially nonlinear, and there
are one kinematic and one dynamic BC. The
kinematic BC says that the fluid particle once on
the FS should remain there all the time, and the
dynamic BC demands the constancy of the pres-
sure on the FS. On the body surface must hold
the condition of impermeability, which requires that
the normal component of the fluid velocity vanish
there. The BC at infinity, often called the radiation
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condition, is due to the assumption of reaching
the steady state in a finite time, and imposes
limitations on the asymptotic behavior of the
solution both far upstream and far downstream.

Michell’s thin ship theory assumes that the ratio
of beam to length of a ship is so small that the
BC on the body surface can be applied at the
centerplane of the ship and that the BC on the
FS may be applied at the undisturbed FS both
in the linearized form. Therefore, the effort for
seeking more refined methods than the thin ship
theory was focused upon how to satisfy the above
two BC’s more accurately, and there have been
considerable developments since 1960’s along this
line.

At first, naturally there were higher order thin
ship theories, but people soon realized that going
for the higher order does not improve the situation
and that the higher order corrections yielded even
worse results for the Fn’s as was pointed out by
Ogilvie[6]. One of the significant lessons we learned
form the higher order theory seems due to Eggers
[7]. He asserted that the second order effect of
the FSBC is much smaller than that of the BC
on the body surface for a full ship at low Fn’s.
This finding appears to have given an encouraging
support for the later developments of the Neum-
ann-Kelvin approach. Satisfying the exact BC of
the Neumann type on the wetted surface of a
ship in her static equilibrium state, along with the
FSBC in linearized form, sometimes called the
Kelvin equation, Brard[8] derived the so-called
Neumann-Kelvin problem for computing the wave
resistance of a ship. Though this approach is inc-
onsistent from the viewpoint of the perturbation
method, it received a broad acceptance as giving
a practical tool for the numerical computation of
the wave resistance(see Baar & Price[9]). The low
Fn problem was taken up by Ogilvie(2], who made
use of the double-body flow as the basic one in
deriving the FSBC for the perturbation potential.
Using the double-body flow not the uniform flow
as the basic one was at least then rather an
unusual idea, which was to give a strong impact
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upon the way how to compute the wave resistance
afterwards. Furthermore, it was timely because
obtaining the double-body flow around a body of
arbitrary shape became easier and less expensive
owing to the fast development of computer and
of the panel method(see Hess & Smith[10]). Baba
& Takekuma(ll] extended Ogilvie’s argument to
a three-dimensional flow around a ship, and clai-
med to get good results. However, Inui & Kajitani
[12] pointed out that the Baba’s method failed to
eliminate the exaggerated humps and hollows of
the wave resistance curve.

By the end of 1970°s many different methods
were competing as a means of computing the
wave resistance of a ship, and the need to compare
them in a unified fashion resulted in the Workship
at the DTNSRDC(see Baifl13]). Two outcomes of
the Workshop are noteworthy. Firstly, the scatte-
ring between the participants’ results was too big
even when the same theoretical formula, for ins-
tance the Michell’s integral for the Wigley hull,
was used. Secondly, Dawson’s method looked most
promising because of its simplicity in implement-
ation and of its excellent performance for various
hull forms in the wide range of Fn’s. Taking the
double-body flow as the basic one, Dawson derived
a new form of the FSBC and used it in his panel
code which was evolved form the works of Hess
& Smith[10]. Throughout the 1980’s Dawson’s
method became very popular, but there were very
few basic studies on the characteristics of the
Dawson’s FSBC until very recently(see Raven{14).)

Furthermore, Raven[15] also reported that he
obtained almost the same values of the wave
resistance and the surface elevation, when he
implemented in the same panel code the Dawson’s
FSBC and the classical Poisson’s FSBC, which
is derived by taking the uniform flow as the basic
one and will be named after Poisson, not Kelvin,
in this study. This result is rather contrary to the
common belief, and it seems necessary on this
occasion that we compare the performance of the
various FSBC’s to attain more basic understandings.
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We chose the Poisson’s, the Ogilvie’s and the
Dawson’s FSBC, and implemented them in a panel
code for two-dimensional submerged bodies. We
also show the results given by Poisson’s BC for
a submerged sphere and the Wigley parabolic hull.

In the sequel, we first derive the above FSBC’s
not only for completeness but for showing their
differences as well as similarities. Then follows
a numerical aspect of the panel code we used, the
numerical results and the discussion, consecutively.

FREE SURFACE BOUNDARY CONDITIONS

As to the coordinate system we take the x-axis
on the calm water surface in the direction of the
uniform flow, the z-axis vertically upward, and
the y-axis so as to form a right-handed system.
In this section for convenience we restrict ourselves
to the two-dimensional case. We assume the exi-
stence of the total velocity potential ®(x,z), then
the kinematic BC on the FS z=¢(x) is given by

(I)IC’ — (I)z =0, 6
and the dynamic BC on the FS by
¢ 1
= 2g
Here, the superscript” to & denotes the differe-
ntiation with respect to x, and the subscripts x,
z the partial differentiation. g is the acceleration

of gravity. Eliminating §& from the above two
conditions, we get

(@2 4 &2 — U?). @

q’x@xx"‘ZQxqu’zx + szq’zz"" g¢z=0

on z==¢(x), 3

which may be called the combined FSBC.

Poisson’s FSBC

We decompose the total velocity potential into
the velocity potential of the uniform flow, u,, and
that of the perturbed flow, ¢(x,z), ie.,

®(z,2) = Uz + ¢(z, 2). o)
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With this decomposition, equations (1) and (2)
are rewritten as

(U+¢z)(1_¢z =0
1

on z=((z),

(=2, +¢2 + ¢7) on z=((x),

29

respectively. If we expand the above equations
around z==0, and neglect nonlinear terms in ¢
and €, we obtain

UC,—¢2=O

1
=_"'U.1:
p é

on z =0, (5)
on z=0. (6)

Eliminating ¢ from the above, we find the
Poission’s FSBC as

Ulppe +96.=0 on z=0. )
Once ¢ is obtained, £ can be computed from
6).

Ogilvie’s FSBC

If the double-body flow, given in advance, is
taken as the basic one, the total velocity potential
may be decomposed as

O(z,2) = é(z,2) + &(m, z), ®)

where ¢ is the velocity potential of the double-
body flow, and ¢; a new perturbation potential.
With this decomposition, equations (1) and (2) are
given in the form

(bs + )¢ — (6. + 6.) =0 ©

on z= C(x)s
(= —51;{(@ + 8+ (B + d)F - U?)

on z = ((z), 10
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respectively. We may also decompose the FS ele-
vation, §(x), into two parts

((z) = {(z)+((a), an
{(z) = —%{Jﬁﬁ(x,O)——U"’}, (12)

where & may be regarded as the FS elevation
resulting from the basic double-body flow. Ogilvie
[2] treated the low-speed limiting case, that is U~
0, others being fixed, and derived a linear FSBC
for the lowest order problem. Following him, we
assume that

= 0(U), ¢=0(U%), {=0(U?),
v,
20 d
Oz’ 9z’ dr
{ O(1), when operated on {S, (:,
O(U~?), when operated on ¢, (.

Ny O
T
&)

Substituting the decomposition of & given in
(1D) into (9) and (10), and expanding the partial
derivaties of ¢ around z=0, while those of é
around z=¢, and taking only the lowest order
terms of O(U®), we get

2(z,0)¢' = §,(z,0) = I, (13)
{= —:;ix(w,ﬂﬂx(w,f), (14)
h(z) = —¢s(z,0)((x). (15)

In deriving the above we made use of #:(x,0
y=0 and @, =~ @ .. There is a correspondence
between U in (5), (6) and @ (x,0) in the above.
We note that h(x) is equivalent to the pressure
distribution on the FS due to the basic double-body
flow. Eliminating ¢ from the above, and neglecting
the higher order terms than O(U®), we find
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‘Zi(x’o)&m(maz) + g‘Z’z(m,C_) =f, ae
f(z) = 3{U* = Bz, 0}3:(z,0). an

Since the derivatives of the unknown function
J are computed at z=EC, the above equation is
not a convenient form to apply. However, because
of the assumption on the order of magnitude of

the operator —:Z— applied on (f , it is not good to

simply expand (16) around z=0. Ogilvie got around
this difficulty by introducing the coordinate tran-
sformation

(2*,2") = (2,2 — (). (18)

Then the relation between the partial derivatives
in the new and the old variables is

g & a 5 0
(5;’5;) - (8:25* —¢ 32*’5;)'

19

Considering £&"=0(U?), the governing equation
in terms of the new variables to the leading order
is the same Laplace equation. And the FSBC is
given by

N R 1 ., o B
P2bos + 90, = §IU2 — 30 (x =B Tl =)

on z =20, (20)

where the superscript * to the new independent
variables is deleted for brevity. Here, the new
transformed coordinate system is used only for
obtaining ¢, not for #. We shall call (20) the
Ogilvie’s FSBC. Given the double-body potential
‘¢, € can be easily computed using (12). Then once
the perturbation potential (3 (x,z) is obtained, £(x)
can be found using (11) and

- 1- “
(= —E¢x($70)¢x (x6) @1)

A

W%, o] %2
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Dawson’s FSBC

Dawson[3] also took the double-body flow as the
basic one. Unlike Ogilvie, who obtained his FSBC
as a BC of the lowest order problem for the low-
-speed limiting case, Dawson tried to develop a
practical numerical procedure for solving the bou-
ndary value problem of the wave resistance of
a ship. This may explain why he need not make
any assumption on the order of magnitude of the
terms neglected in deriving his FSBC. As shown
by Kim(16] unwittingly, Dawson’s solution is equ-
ivalent to the result of the first iteration of Kim’s
iterative procedure which was set up to satisfy
the exact nonlinear FSBC’s (9) and (10).

Since z=0 is to be taken as the starting value
of the unknown FS elevation, (9) and (10) are now
satisfied on z=(. Then from these, eliminating
¢, we get the same equation as (3) but now sat-
isfied on z=0. For®=¢ is to be the initial guess
of the unknown total potential, neglecting all the
nonlinear terms in the derivatives of 41; , we obtain

on z=0.

(&iéx)x + g&z = "&Z-q;rz

(22)

Alternatively, replacing § by ®— ¢, we get

(qzicbx)z + gq)z = zégﬁgzz

on z =0,
(23)

which is the Dawson’s FSBC for two-dimensional
problems. For three-dimensional problems, he int-
roduced the directional derivative along the strea-
mline on the FS due to the double-body flow, and

.1if we replace x-derivative by the streamline deri-

vative in the obove equation, we obtain the equ-
ation (14) in Dawson[3]. Once ® is known, we can
get the FS elevation using (2) but now computed
on z==(.

Comparison of the Ogilvie’s FSBC (20) with the
Dawson’s (22) shows that the latter has on the
left an additional term proportional to J x and that
the right of the former, if U is equated approxi-
mately to 4 (x,0), is equal to that of the latter.
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Nevertheless, on the whole, effects of the basic
double-body flow are represented differently in the
two BC's. Which BC works better for a given
problem remains to be seen.

NUMERICAL METHODS

A panel method in the spirit of Hess & Smith
[10] and of Dawson[3] was used to solve the flow
around two- and three-dimensional bodies. Discretiz
ing the FSBC, we followed the fashion initiated
by Dawson. In this section all lengths are non-
dimensionalized by the length of the body L, and
all velocities by U, thus

(:L',Z) = (x*’Z*)L’ (u’w) = (¢xa¢z)

U? 1
= (u*,w*)U, g_L = FTL2 = 'E—, (24)

where K is the characteristic wave number. In
the sequel the superscript * to the dimensionless
variables is deleted for brevity. In Dawson[3], he
described two operators of four-point finite diffe-
rence for u,. One of them has no errors from u,,
and uyxe, called the first kind four-point upwind
differencing(4PUD) and gave a reasonable conse-
rvation of the wave amplitude. The other has no
errors from u,, and u,.,, called the second kind
4PUD and caused the excessive growth of the
wave amplitude downstream. For it is not so
messy to show why such amplification occurs, we
present a numerical error analysis on this using
the modified equation method(Fletcher[17]) in the
following(see also Van[18]). For convenience, we
take the Poisson’s FSBC, and rewrite it as

u, + Fn= 2w =0 on z=0. (25)

We assume that the panel size h on the FS is
constant, then the second kind 4PUD operator is
defined by

KEsEi e e Uik $30% 2% 1993F 5F
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1
D2uj = é—h-(llu]' — 18’U,J'_,1 -+ 9u]'_2
- 2“1—3)a (26)
u; = u(z;) = u(zo + jh), @7

where x, is the x-coordinate of the upstream
boundary of the computational domain. The disc-
retized FSBC using D, can be written as

Dyu; + Fn™w; = 0
on z=0, je[l:Ng], (28)

where Ny is the number of panels on the plane
z==0. u, with the leading order error term is exp-
ressed as

1
Ugz; = Dyu; + Zunmh:’. (29)

And we may suppose at far downstream that

n

u(z) ~ exp(iKz),

A = (1K) u, @
xn

where i=/ 1. Substituting (29) into (28), and
making use of (30), we obtain

1
Ug; + Fnw; — ZhBK4Uj =0

on z=0. 31

According to Lamb[19](see § 242), the last term
on the left hand side of the above equation corr-
esponds to the negative damping, proportional to
#®, of the Rayleigh’s type, which explains the
amplification reported by Dawson.

The first kind 4PUD operator is definded by

1
D]Uj = 6—];(1()“] — 15u;_1 + 6u;j_o — uj_3)

(32)
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and if we carry out the similar analysis, we can
find

L1
Uy + Fn~2w; + z(6h2K3 +‘—112~10— h*K®)u;

4K =0 on z=0. @

12

The last term on the left hand side of (33) has
now the positive damping, proportional to A%, of
the Rayleigh’s type, which shows why the first
kind 4PUD resulted in a ‘reasonable conservation’
of the wave amplitude downstream. It should be
clear that by the reasonable conservation what
Dawson really meant was a reasonable damping.
On the other hand, as the errors from 'the odd
order derivatives, being the imaginary part of the
left hand side in (33), affect the phase of the
waves, the first kind 4PUD may change the phase
of the solution more than the second kind.

In order to conserve the wave amplitude dow-
nstream as much as possible, we may use the
linear combination of the first and the second kind
4PUD operators. We define Dy=aD,+(1—a)D,,
where « is so determined that the resulting error
in the wave growing downstream is minimized.
The leading error for the combined operator D,
is

1 1
a(i—2—h5K6) + (1~ a)(—ZhSK“) =0.

34)
Therefore, we obtain
1 1 472
= — = —h2K2 = N 35
35 P73 gNze &

where N, is the number of panels per a charac-
teristic wavelength. « depends only on N,, and
for most two-dimensional computations reported
here we used the combined 4PUD operator and
Nw=16. Then the corresponding value of a pred-
icted by (35) is 0.951, and from our computations

B E, oz

we confirmed that the damping is the least when
a=(.94. Furthermore, through the simple analysis
abbve, we see why N, is an important parameter
determining the wave damping characteristic of
the numerical solution for two-dimensional problems,
and also why it is crucial to use a ‘good’ panel
arrangement for three-dimensional problems which
include waves of all wavelengths.

Discretizing the Ogilvie’s FSBC (20) and the
Dawson’s (23), we also utilized the combined 4PUD
operator with a proper value of a given by (35).

RESULTS & DISCUSSIONS

Making use of the panel method described in
the previous section, we first discuss the result
for the two-dimensional submerged bodies, namely
a circular cylinder and a foil used by Salvesen|l
9]. Then follows the discussion on two three-dim-
ensional bodies, which are a submerged sphere and
the parabolic Wigley hull.

Submerged circular cylinder

We consider the flow around a circular cylinder
whose center is at (0, —d) and diameter is L.
According to Lamb(19](see § 247, 249), a linear
solution satisfying the Poisson’s FSBC along with
an approximate body BC renders

R= ;—‘pgAz, A =nLFn %exp(—Kd),

(36)
™ -6
= = —2—Fn exp(—2Kd),

37
where R is the wave resistance, 4 the wave
amplitude far downstream, e the water density.
Fig.l shows Cup as a function of Fn given by
(37) and the numerical Poisson-solution when d=L.
Cw In the numerical computation is obtained by
integrating C, multiplied by the negative of the
x-component of the unit outward normal vector
along the body surface, and
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p
W, (38)

p= 5p(U? ~ 82— 83), 9

o Panel Method o

Fn

T ¥ b g

o T Al T Y ¥ T B
0.2% 0.3% 0.45 0.55 0.6% 0.75
Fig.1 For a submerged circular cylinder whose

1e.,

submerged depth is the same as its diameter,
Cw by the Poisson’s FSBC is compared with
the analytical resuits by the linear theory of

Lamb[19].

p Is the dynamic pressure. Noting that the

numerical solution satisfies the BC on the body

surface exactly with the possible numerical error

in discretization only, the agreement between two
predictions for Fn<(0.5 and the disparity for Fn>
0.5 is understandable. Because of the shallow

submerged depth, for higher Fn's we can anticipate

strong nonlinear effects which may cause the

increase of Cy In the numerical results. To com-

pare the performance of the various FSBC’s, we
show for Fn=0.4 and d=L in Fig.2 the surface
elevations predicted by them, and in Fig.3 the
values of —C, on the body surface. The difference

between the results is much bigger than that we
might expect, even if we take into account that
the Dawson’s FSBC as well as Ogilvie's are sup-
posed to work well for low Fn’s. In Table 1 the
values of 4 and Cw are also compared. When we
take the Poisson-solution as a reference, both the

KA RER S B30% 28 19935 57

61

Ogilvie- and the Dawson-solution are too big. There

is an inconsistency in the sense that 4 of the

Table 1. For a submerged circular cylinder whose
Fn=0.4 and submerged depth is the same
as its diameter, 4/L and Cy by three
models are compared.

FSBC AlL Cw
Poisson 0.037 0.13E-2
Ogilvie 0.24 0.52
Dawson 0.46 0.28
o £
sl L

Poisson FSBC
o AAANAAAAS
X UAATRTATATATATAY
2
51
Q) x
?‘ T T T H T T Al L
-5,00 -2.00 1.00 4.00 7.00 10.00
8, &
sl L
e Ogilvie FSBC
°
&
¢
g x
@ T T T T T T T T |L
-5.00 -~2.00 1.00 4.00 7.00 10.00
g &
s| L
24 Dawson FSBC
o
; |
cl,'— H
3| X
°. T T T T T T T L
[ T T 1
-5.00 ~2.00 1.00 4,00 7.00 10.00

Fig.2 Surface elevations given by three FSBC’s due
to a submerged circular cylinder, whose Fn=
0.4 and submerged depth is one diameter.
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w
8 upper surface
84
o lower surface
i
o
8
=4 Dawson FSBC X
T T T T T T T T T T \
-0.50 -0.30 -0.10 0.10 0.30 0.50Q

Fig.3 —C, given by three FSBC's due to a subm-
erged circulary cylinder whose Fn=0.4 and
submerged depth is one diameter.

Ogilvie’s model is smaller than that of the Daw-
son’s, while Cy of the former is large. Conseque-
ntly they do not satisfy the relation that Cw be
proportional to 4% Though this relation is based
upon the Poisson’s FSBC, it is correct upto the
third order, thus the inconsistency is still hard to
accept. No reasonable explanation can be afforded,
as long as the solutions are obtained without error.

2
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The numerical code used was checked by various
means so that a possibility for making error seemed
minimized. We only note that the C, curve by
the Ogilvie-solution has the least symmetry and
results in the largest value of Cy.

Submerged foil

Salvesen[20] measured surface elevations around
a foil, shown in Fig.4, obtained by a source-sink
combination. To compare with his results, we show
in Fig.5 surface elevations computed using various
FSBC’s(see Van([18]) for Fn=0.422 and d=0.017
43 L, where d is the submerged depth of the

"+

° max. thickness=0.343

24

o

2

o

i

o X
i T
< T T T T T T T T )
0.00 0.20 0.40 0.60 0.80 1.00

Fig.4 Shape of the foil used by Salvesen[20].

a &
ol L

1 Salvesen’s measurement
0
8-
(=]
[\']
8-
o
o Poisson FSBC .
Y Ogilvie FSBC
(=]

! Dawsonn FSBC
[7e]
e
o

t
g x
< T T T T T T T T T 1 L
0.00 0.60 1.20 1.80 2.40 3.00

Fig.5 Comparison of surface elevations given by
three models and the experimental data by
Salvesen[20], due to the submerged folil,
shown in Fig.4, whose Fn=0.422 and subm-
erged depth is 0.9174L.
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symmetric line of the foil being parallel to the
x-axis. First, surface elevations given by three
FSBC’s are not so different as for the circular
cylinder. Since the Poisson model satisfies the body
BC more accurately than the classical linear one,
one may expect some improvements, but the
Poisson-solution is almost the same as the first-
order result of Salvesen’s. We may interprete this
as higher-order effects of the body BC is not as
important as those of the FSBC, which was in
fact Salvesen's main theme. However, all of the
FSBC's tested do show large differences from the
measured results. Numerical solutions are worse
than te Salvesen’s second-order solution, though
the Dawson’s and the Ogilvie’s model work better
than the Poisson’s. We show 4 and Cw in Table
2 by three models. The Ogilvie’s model yields again
smaller 4 but larger Cy than the Dawson’s, alth-
ough now the differences are not so great.

Table 2. For a submerged foil of Salvesen{20]
whose Fn=0.422 and submerged depth
is 0.8174L, A/L and Cy by three models
are compared.

FSBC AJL Cw

Poisson 0.008 0.151E-2
Ogilvie 0.020 0.174E-2
Dawson 0.024 0.131E-2

Submerged sphere & Wigley huil

As reproted by Raven[15], and as we have seen
in the above, the Poisson’s FSBC may have the
equal applicability as the Dawson’s in solving wave
resistance problems. So in the following we present
numerical results obtained by using the Poisson’s
FSBC. We consider the flow around a submerged
sphere whose center is at(0, 0, —d) and diameter
is L. For this, Havelock[21] gave a formula for
Cw using a linear solution satisfying the Poisson’s
FSBC along with an approximate body BC as

R

Cw W (40)
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1 7 _» 3 9
= T :‘Z-EFn exp(—&){1+zg+3252

+0(673%)), foré=2Kd>1. (41)

Fig.6 compares values of Cy obtained numeri-
cally with those by the above formula. In numerical
computations, the number of panels on the FS
was 10 per wavelength both in the x- and in the
y-direction, and that on the body surface where
y>0 was 16 both in the polar and in the azimuthal
direction. The number of total panels on the FS
was varied from 600 to 800 for various Fr’s. The
agreement between two results is even better than
for the case of the circular cylinder, which is
comprehensible because the nonlinearity due to the
shallow submergence for high Fn’s may affect less
in the three-dimensional flow.

Next, we take the Wigley’s parabolic hull whose
hull surface, y=+f(x,z), is given by

= —31 - (— 1—(= , 42
fle.2) = 20~ CEPHI - ()%}, @
L L

= (—, —,0.14836 L?). 43)
(B’T?S‘W) (10’ 16’ )
& o
o« © Panel Method /
o)
h Havelock
"c,"_J
8 Fn
S'28 | 035  0.45 | 0.55  0.65  0.75

Fig.6 For a submerged sphere whose submerged
depth is the same as its diameter, Cyw by
the Poisson’'s FSBC is compared with the
analytical results by the linear theory of
Havelock[21].
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Typical arrangement of panels for the computa-
tion is shown in Fig.7, and in Fig.8 the compar-
ison of Cw obtained numerically with the thin
ship results by Lee{22]. The agreement is almost
the same as that of the Fig.7 in Dawson[3], who
computed for the Wigley model 1805A.

After we completed our computations, we bec-
ame aware of the further developments on the
FSBC of Ogilvie’s, namely Ogilvie & Chen(23] and
Chen & Ogilvie[24]. We believe their new findings
are in accordance with ours reported above.

Fig.7 Typical arrangement of panels for the Wigley
parabolic hull.

- Cw

g.

0.40
L

Lee(Thin ship)

O.?O

%1072

Panel Method

8 Fn

o T T ¥ T T T T H T 1

0.10 0.20 0.30 0.40 0.50 0.60

Fig.8 For the Wigley parabolic hull, Cy by the
Poisson’s FSBC is compared with the thin

ship results by Lee[22].

w43, oleE

CONCLUSION

As evidenced by the discussion presented so far,
the linearized FSBC’s tested here, which can be
regarded as the most well-known and widely used
ones, are not accurate enough to cover .the whole
range of body forms and speeds. There have been
some attempts to solve numerically the exact
nonlinear FSBC’s, but such a solution method may
not be regarded as practically useful because of
its long computation time. In order to make the
numerical computational method a reliable and
helpful tool in the field of wavemaking resistance,
it seems that we need develop a theory capable
of yielding a FSBC giving more accuracy than
those tested here and producing results with less
efforts and time than the exact nonlinear model.
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