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ABSTRACT

A measuring instrument must be calibrated for accurate inferences of an
unknown quantity. Bayesian calibration designs with respect to squared error
loss based on a linear model are discussed in Kim and Barlow [1992]. In this
paper, we consider approximations of the optimal calibration designs using
the idea of Gaussian influence diagrams. The approximation is evaluated by
means of numerical calculations, where it is compared with the exact values
from the numerical integration.
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1. INTRODUCTION

A linear calibration problem consists of two experiments — the future measuring
experiments and the calibration experiments. Based on a linear model, one wishes
to make inference on a future (true) z; from the observation of future yr . To this
end, the information on the parameters (o, 3) of the linear model is obtained from
the calibration experiments [or, “training” data set (z;,yi), ¢ = 1,2, ..,n] in the form
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of the posterior distribution of (e, 3) which depends on the design vector x = (z,
.y T ). Our interest is to find an optimal design vector x with respect to some loss
function.

The calibration inference problem is discussed in the literature. Hoadley [1970]
considers univariate calibration and justifies the inverse estimator as a posterior
mean for z; with a ¢t prior density. Brown [1982] generalized Hoadley’s results with
a multivariate setup. Racine-Poon [1988] considers Bayesian nonlinear calibration,
where an approximation method is proposed for posterior distribution of z; . Opti-
mal design for linear regression model is discussed in Chaloner [1984], in which the
Bayesian optimal design for estimating linear combination of the regression param-
eters and a geometric interpretation of optimal one-point designs are given.

Optimal calibration designs are discussed in Barlow, Mensing and Smiriga {1991],
where they use Bayesian approach with univariate formulation. Kim and Barlow
[1992] consider the multivariate linear calibration and investigate the optimal design
with respect to squared error loss. They suggest the optimal calibration design as
a conjecture, based on the observation of information gained from the calibration
experiments along with the results of numerical calculations.

Howard and Matheson [1984] developed influence diagrams as a modelling tool
for decision problems, and Barlow [1987] discussed the operations in the influence
diagrams. An algorithm to solve Bayesian decision problems using influence dia-
gram manipulations was developed by Shachter [1986]. Shachter and Kenley [1989]
introduce the concept of the Gaussian influence diagrams and discuss the procedure
to make decisions with quadratic value function for the univariate case.

In Section 2, we describe the calibration experimental designs based on a linear
model and the Bayesian decision analysis for optimal design is summarized. In Sec-
tion 3, the Gaussian influence diagrams are introduced and the arc reversal theorem
is presented. The idea of the Gaussian influence diagrams are applied to the cal-
ibration problem in Section 4, where we obtain a near-optimal calibration design.
Numerical results are given to demonstrate the structure of the expected loss and
the approximation.

2. DESIGNING THE CALIBRATION EXPERIMENTS

Consider a linear model for the calibration and future experiments

Y =1a+ (x—z1)3' + E (2.1)
ye=a+ (zf—z0)B + €5, (2.2)

where z; is a scalar, a, 3, yr and € are ¢-vectors, and Y and E are (n x ¢) matrices.
The results of n calibration experiments consists of x(nx1) and Y(nxg¢). The center
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of the model is zq , which 1s a prior mean of z; . The error vectors ¢; are assumed to
be independent and distributed as N,(0,T') given I'. The error covariance matrix, I,
is assumed to be known. We also assume that z; is independent of (a, 3,x,Y), and
that yr is independent of (x,Y) given (o, 3). z; is independent of (x,Y) since the
calibration experiment provides no information on z; . We judged z; is N(zo,0¢?)

and (g) is Nog [(B) » [(]))algb] ], a priori. The loss function considered in this paper

is a squared error loss, i.e., {(d,z;) = (d — z;)?. It is also assumed that the set { of
feasible experimental designs is bounded.

Under the squared error loss, the Bayes estimator of z; is the posterior mean
E(z;lys, Y,x), and the posterior risk after observing yr is the posterior variance
Var(z¢|yr, Y,x). At the time of the decision regarding the experimental design, we
do not know yg nor the test result Y. Therefore, the overall expected loss R(x) is
the preposterior risk:

R(X) = EYIxEyfIY,x[V(lT(xfl}'faYax)] . (23)

We must minimize R(x) with respect to x = (21, ...,2,)".

Kim and Barlow [1992] characterized the structure of the expected loss function
R(x). They show that R(x) depends on x only through n, z —xzq = 37, (z; — z0)/n
and 5,2 = ¥.r_ (z; — z¢)*/n using the argument of sufficient statistics. It is also
shown that R(x) is symmetric in & — ¢ for fixed n and s, , so that the design space
can be reduced from an n-dimensional space to a smaller one: '

En = {(i' - 1120,81.); |T - 170‘ < '31:} ’
for fixed n. The posterior distribution of z; given (yr,Y,X) is derived:

p(mf|yfa Ya X)
x p(yelzs, Y, x)p(zy)

ox ’271'(AS‘1A' + l")l_l/'Z exp {—'/2((z5 — z0)?/00*
+[yr — po — (27 — 2o)pp) (AST'A' + )7 yr — pa — (25 — Zo)pg) ) }, (24)

where pto, pg and S7! are the parameters of the posterior distribution of (e, 3)
which is given in Kim and Barlow [1992]. As A = [I (z5 — z¢) I] depends on zy
, this distribution cannot be normal. This non-normality of posterior z; makes
the problem even harder, and we need a numerical (2¢ + 1) nested integration to
calculate R(x) for a given x. It is suggested that the structure of R(x) is following:
Forn > 1, R(x) = R,(& — zo, s;) is decreasing in s, and increasing in |& — zo| for
others fized. Details can be found in Kim and Barlow [1992].
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3. GAUSSIAN INFLUENCE DIAGRAMS

An influence diagram is a directed acyclic graph with nodes representing vari-
ables (probabilistic or decision), and arcs meaning possible statistical dependencies
or informations available at the time of decisions. Associated with each probabilis-
tic node in an influence diagram is a conditional probability function. Given the
network structure for the influence diagram together with conditional probabilities
of the nodes, there exists a unique joint distribution corresponding to the random
quantities in the diagram. The influence diagram is called Gaussian if this joint
probability distribution is multivariate normal.

Let N be a set of integers {1,...,n} which correspond to vector valued variables
X1,...,Xn. The conditioning variables for x; have indices in the set C(5) C N, i.e.,
“s € C(7)” means that x; is a conditioning variable for x;, or that x; is a direct
predecessor of x;. We will follow the Shachter and Kenley’s [1989] convention that
if J is a set of nodes then x3 denotes the vector of variables indexed by J stacked
columnwise. Thus in this convention, Xcyj) 1s the vector of the conditioning variables
for x;.

In the Gaussian influence diagram, xn has a multivariate normal distribution
charachterized by mean py = E(xn) and covariance matrix XnNN. Applying the
general results on the partition of multivariate normal vectors (see for example,
Press (1982, p73]), we have that X; given xcyj) is distributed multivariate normal
with mean

Elxjlxcg) = 15 + Bicg Begien ™ xep) — Hop) (3.1)
and covariance matrix

Vj = Varlxjlxeg) = i — Tich Ecgen ™ oy »
where x;j is (n; x1), p; is the (unconditional) mean of x5, and ¥ _ is the corresponding

submatrix of Enn. If we let Bjcg) Tcgog ™' = [Bi; Bj;...Bl,;|, where m is the
number of variables in x¢gj), the second term in (3.1) becomes

Eich Echch xeg — repy)] = D Bijlxi — ) -
keC(3)

Therefore, the conditional distribution of xj given xcyj) is characterized by the
unconditional mean p;, conditional covariance matrix Vj, and coefficient matrix
kj- The conditional mean of x; given x¢gj) is :

Elxjlxcgl = #i+ Y Bi(xa — m) , (3.2)
keC(5)
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which is expressed in terms of p; and By;. If the conditional distribution is specified
by its conditional mean and conditional covariance matrix, the coefficient matrix Bf;
can be derived by differentiating the conditional mean (3.2) with respect to x as :

2= E[xjlxcy] if k€ C>)
B/ = axk' J (J) 3.3
ko { 0 otherwise . (3-3)
Also p; can be found from (3.2) by :
p; = Elxjlxcg) = pep) - (3.4)

In the Bayesian analysis, the key operation is to apply the Bayes’ Theorem to
calculate the posterior distribution. This corresponds to the reversal of arc to calcu-
late the new conditional distribution in the influence diagram analysis. For jointly
normal variables, the new conditional distribution is also normal, so that new condi-
tional covariance matrices and cocflicient matrices are sufficient for specifying their
new conditional distributions. Shachter and Kenley [1989] has summarized the up-
dating formula when all the variables z; are scalar valued. Theorem 1, which is
proved in Kim [1988], is the multivariate version of the result of Shachter and Ken-
ley [1989).

Theorem 1. (Arc Reversal) Suppose node ¢ € C(j) and no other directed path
exists from ¢ to 7. Then we have

E[Xj|xK] = p; + Z [B;cj + B:’j kil (X — £k, (3.5)
kek
and
V(I.T‘(Xj|XK) = V.-,' -+ ijViB,-,-, (36)

where K = [C(:)UC(5)]\ {¢}. Il V;+ B};V;B,; is nonsingular and if we denote B;;
the new coefficient matrix for the arc from node 7 to node j, then we have

Var(xi|xj,xk) = V, — B},B,V,, (3.7)
and

E[Xi'Xj,XK] =p; + Blji(xi - ﬂi) + Z B;“-(Xk - ”'k)’ (38)
keK

where

B’ = V.B;[V, + B, V,B,;]"", (3.9)
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and

; i =Bl — B;‘i[ i, + BLBL]. (3.10)

As we see in Theorem 1, no integration is necessary to reverse an arc, and only
one matrix inversion is required in (3.9), computing the new coefficient matrix ﬁ;,
Theorem 1 also explains the operation of “integrating out” a variable, ¢.e., finding
a predictive distribution.

Corollary 2. (Node Removal) Suppose ¢ € C(y) and j is the only successor node
of 7. Then with the notation of Theorem 1, the conditional distribution of x; given
XK, after integrating out xj, is normal with mean (3.5) and covariance matrix (3.6).

4. APPROXIMATIONS FOR A NEAR-OPTIMAL
DESIGN

In this section, we apply the idea of the Gaussian influence diagrams to the
calibration problem to find a near-optimal design. Since our underlying model is
linear, we have to approximate some ol the parameters in the resulting diagram,
for our problem to satisfy the joint normality. Whenever the conditional covariance
matrix V; or the arc coefficient Bj; depends on any of the variables, we approximate
the parameter. No approximation, however, is necessary for the parameters that
depends on the design x. This is because the design is the preexperimental decision
so that x can be considered constant during the probability manipulation and other
decision making stages. Figure 1 shows the standard influence diagram for the
calibration problem.
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P

Yi= a#[x-xp)pte

x{"'N[xU:“[]z] ; a ~Nfa,D,] : ~Nq[b.D£]
ylef,ﬂ.ﬁ ~ Nq[‘*[x{ - xg]‘, rl
22121 %, a8 ~ Nf#p +[x-x)(Z1-4), £[x;-%)°T]

Figure 1. Influence diagram for calibration problem

To construct the Gaussian influence diagram for the calibration problem, we need
to assess (unconditional) mean g; and conditional covariance matrix V; for each
node, and coefficient matrix By, for each arc. Using the equations (3.2) through
(3.4), we can find the conditional means, coefficient matrix and unconditional means
for the Gaussian influence diagram. After two approximations on B;fy, and By, ,
we can have a multivariate Gaussian influence diagram for the calibration problem.
Since every arc reversal involves a matrix inversion and the matrices to be inverted
depend on x, the resulting expected loss should be a complicated function of matri-
ces which depend on x, even though no integration is necessary. Rather than trying
to minimize this complicated function of matrices, we will work on the univariate
problem in this section.

4.1 A near optimal design for the univariate case

If all the variables are scalar, then there is a significant simplification in updating
the parameters. Figure 2 shows the Gaussian influence diagram in this case. The
experimental design x has been removed from the diagram and will be considered
later to minimize the expected loss. For the univariate case, o2 is the error variance
('), and 0,2 and 0,2 are the prior variances of o and §(D, and D,), respectively.

Since a and f are not observable, we must find the posterior distribution of (e, 3)
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and integrate out into y; . However, the exact posterior distribution of (a, 8), which
is bivariate normal, is available, so that we can derive the distribution of y; given
(21, 22, %) rather than working directly on the diagram. Table 1 gives the parameters
of the posterior distribution of (a, #) for the univariate calibration, which are de-
rived in Barlow, Mensing and Smiriga [1991]. The utilization of the exact posterior
distribution should reduce the amount of error due to the approximation. Figure 3
is the Gaussian influence diagram after removing («, 8), where we approximate the
parameters for the first time. The distribution of (2, 2;) given X is

Table 1. Parameters of the Posterior Distribution of (e, 8)
given y and z for univariate calibration

(Ce)[X(zi — z0)® + 0% /03?] — [(z: — zo)][ei(z: — o))

B = O G o) [n(ws — wa)? + 07/ 0v7] — [ (i — 7o)
_ (n + 0?/0y?)[L eiwi — 20)] — (2 — zo))(X &)
po=b+ (n + 02/o,2) [T (2; — 20)? + 02/0p2] — [T (=i — 20))?
" oY (xi — z0)? + 0%/ 0,7

T (0t 02 /od) [Tz — 20)? + 02 /o8] — [(z:i — o)]?
o — o*(n + o0?/o,?)
p (n + 02/0a2)[E(Ii — $0)2 + 02/062] - [E(It - 150)]2

—0? Y (xi — xo)
(n + 0?/0.?)[E(zi — 20)? + 0%/ 0v?] — [Z(=:i — z0))?

cov(a, B) =

where

e; =y; —a— blz; — x0)

[0,5[x; - x)%62]

Figure 2. Gaussian influence diagram for univariate calibration
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Tos>

[0, 2 - ol o2 ) (a. 02402+ 6(120,82+2600a£] [Xu,ooz )
Figure 3. Starting Gaussian influence diagram
2 o
N(®. G oa)l
where

012 = n2o,2 + n%x — z0)%04* + no?
2

022 = n*(T — 20)%0,% + n*(s,.%)%0% + ns, %o
2

) 2
o1 = n¥(z — 20)0,? + n}(T — z¢)8.20%% + n(z — 30)0?.

It follows that the conditional variances of z; and z, in Figure 3 are
v, = Var(z;) = o,?
vy, = Var(z|z, z) = 0y — 015%/04?

And the arc coeflicient 1s

— 2
bzlzz = 012 01

The distribution of y, given (z;, z2, xy,Xx) 1s normal with
Elyslz1, 22,25, X] = o + pg(zs — 20), (4.1)

and
Var(yglz1, z2,25,X%) = o+ ol + Uf;(:cf —z0)2 + 20,p(Tf — z0), (4.2)

where po, pg, 02, 04 and 0,3 = Cov(a, ) are the parameters of the posterior

distribution of (a, 3) given (z1, =3, x) which are summarized in Table 1. If we let D
be the common denominator of the above parameters :

D = (n+ad?/o,*)ns.t+ o*/o?) — n*(z — z0)? ,

then the arc coefficients are :
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by, = [ns;? + 0% [0 — nle — xo)(x; — w0)]/ D (4.3)
bary, = [—n(T — x0) + 2y — 20) + (75 — 20)0%/0,%]/ D (4.4)
beyj = Hg- (45)

Since (4.2) through (4.5) involve x; or gz . we approximate them by :

vy, R ol 402 4 0500° + 20,500 (4.2.a)
baryy = [n522 + 020y — (i — 0)a0)/ D (4.3.2)
boyy, = [=n(Z — 10) + noy + 090 /a,?)/ D (4.4.2)
bz,y, = b. (4.5.2)

Note that the above four are the only approximations we made. We lose some
information from the calibration experiment by approximating the posterior mean,
pg , of B by the prior mean b. However, since the loss function will be averaged
against the experimental result and we keep using the posterior variance of 3 in
the analysis, the information lost by this approximation will not be significant. The
approximation of z; — zy by ¢ may change the sign as z; — zo can take negative
values while oy 1s always positive. The effect of it will be discussed later in this
section.

The decision d in Figure 3 can be made easily from the result of the Bayesian
decision analysis. The optimal decision d* with respect to a squared error loss is
the posterior mean of z; given (yy, 2y, z,,x), and the expected loss is the posterior
variance. Using the univariate results of Theorem 1 for arc reversal, we have

EI,[(d* — .'L'f)2|yf,21,2’2,)(] = Var(zs|ys, 21, 22, X)

= 'vvayf/(vyf + szyfvxf) ) (4.6)

Since the expected loss, (4.6), does not depend on yy, z; or z3, the approximated
overall expected loss R*(x) is

R*(x) = vrjvyf/(vyf + b2y, Un,)

-1

Ly b (4.7)
~\oo? 0%+ 02 + 0p20% + 200048 ’ '
where o2, ag and o,g, which depend on x, are the posterior variances and covariance
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of a and . Notice that R*(x) is not symmetric about z —z, = 0, while R(x) should

be so (see Barlow, Mensing and Smiriga [1991]). In the proof of the symmetric

property of R(x), oas which depends on Z — z¢ is multiplied by z§ — zg, so that

R(x) depends on Z — x4 only through (z —z0)% But in R*(X), 04p is multiplied by oy

which is the approximation for z y—xzy. As we pointed out earlier, this approximation

changes the sign when z; — x4 is negative, and it is why R?(x) is not symmetric.
Minimizing R?*(x) is equivalent to minimizing

0l + 00’05 + 2000,p - (4.8)
If we substitute 02, 05 and o, from Table 1 for the posterior distribution of (o, 8)

the optimization becomes to minimize f,(T — o, s;) over the region |z — zo| < s,
where:

b

o282 = 204(x — x0) + 0% + 0% [nok + olo?/nol]

n[(L + o%/no?)s? — (z — 20)* + (1 + 02/no?)(0?/no?)]’

(4.9)

fn(j — Zo, SZ) =

For fixed n > 2, as a function of & — 2o and s,2, fn(Z — 20, ;) is convex in the region
|T — zo| < 5. For a given s, fixed, it has a minimum at Z — zg = oo(1 + 0?/no,?).
And 1t 1s decreasing in s, for fixed  — zg except that it is constant in s, for
&—1z0 = 0o(l+0%/nc,*). Therelore, the minimum occurs at Z—xzo = go(1+0%/n0,?)
with any value of feasible s,. Notice that the quantity oo(1 + o?/no,?) is positive
unless 0o = 0. Considering the symmetry of R(x), this approximation should be
accurate for large n and small g, and o, in which case o4(1 + 0%/no,?) is close to
zero. The reason for the symmetry of R?%(x) is the possible sign changes due to
the approximation on the parameters of the influence diagram. Although R?*(x)
has the drawback of asymmetry, it generally supports the conjecture on the optimal
designs that Kim and Barlow [1992] suggested, that is, both R(x) and R?(x) are
nonincreasing in s, and having smaller values for small |T — z|.

4.2 Numerical Results

In this section, we consider three different situations of prior variance of a and
f, and investigate the approximation R*(x) given in (4.7). The values of R%(x) for
different designs x are calculated and they are compared with the values of R(x).
Kim and Barlow [1992] calculated R(x) for the univariate case using three-nested
subroutine of numerical integration. Table 2 shows R?*(x) along with R(x) for the
three situations.
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Table 2. Calculated values of R(z) and R*(x)

Each cell showing R(z) and R?*(z)

n=5o0c=120=0 go=1 a=1 b=1

(a) 0o =2 o0p = 0.1 Minimum R?(z) occurs at £ — o = 1.05

—0.5

0

0.5

1

0.546989
0.545553

0.5

0.547393
0.547972
0.546925
0.545527
0.547393
0.544049

0.548788
0.551268
0.547370
0.517812
0.546919
0.545455
0.547370
0.544028
0.548788
0.543483

0.554207
0.560257
0.548519
0.550269
0.547293
0.547269
0.546904
0.545208
0.547293
0.543959
0.548519
0.543482
0.554207
0.545162

0.562813
0.571942
0.552745
0.557026
0.548205
0.549074
0.547199
0.546615
0.546873
0.544911
0.547199
0.543876
0.548205
0.543482
0.552745
0.544829
0.562813
0.550409

4
0.574002
0.585630
0.558813
0.565020
0.551454
0.554149
0.547914
0.547967
0.547110
0.546004
0.546849
0.544633
0.547110
0.543797
0.547914
0.543481
0.551454
0.544536
0.558813
0.548660
0.574002
0.558794
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(b) 6, =1 0, = 1.2 Minimum R*(z) occurs at T — zo = 1.2

-0.5

0

0.5

0.735003
0.722736

0.5

0.707189
0.772196
0.615367
0.626998
0.707189
0.606855

0.656282
0.770992
0.568045
0.615090
0.557760
0.573065
0.568045
0.553532
0.656282
0.542302

0.620941
0.745688
0.541469
0.578064
0.535755
0.559236
0.534188
0.548530
0.535755
0.542121
0.541469
0.538819
0.620941
0.560828

0.614979
0.726849
0.543306
0.585345
0.531688
0.555082
0.529702
0.547841
0.529094
0.543077
0.529702
0.540079
0.531688
0.538604
0.543306
0.541700
0.614979
0.590373

4
0.613591
0.714716
0.547321
0.591881
0.533559
0.560966
0.528587
0.547631
0.527567
0.543767
0.527244
0.541086
0.527567
0.539369
0.528587
0.538539
0.533559
0.539935
0.547321
0.549297
0.613591
0.608578

231
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(¢) o, =0.1 0, =2 Minimum R*(z) occurs at Z — zo = 21

T —xo 0
—4
-3
—92
~1
—0.5
0 0.848897
0.833597
0.5
1
2
3
4

0.5

0.508839
0.634662
0.505219
0.626335
0.508839
0.625619

Sz

0.438494
0.551268
0.437832
0.547812
0.437027
0.545455
0.437832
0.544028
0.438494
0.543483

0.414412
0.517301
0.414052
0.515590
0.413966
0.514902
0.413937
0.514305
0.413966
0.513789
0.414052
0.513346
0.414412
0.512657

0.409482
0.509761
0.409337
0.508986
0.409254
0.508335
0.409233
0.508048
0.409227
0.507783
0.409233
0.507537
0.409254
0.507310
0.409337
0.506904
0.409482
0.506555

4
0.407711
0.506919
0.407632
0.506477
0.407578
0.506088
0.407547
0.505743
0.407538
0.505585
0.407536
0.505436
0.407538
0.505295
0.407547
0.505161
0.407578
0.504913
0.407632
0.504688
0.407711
0.504484
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For all three cases, we have fixed the error variance (o?), the prior mean (z,)
and variance (0¢?) of z; and the prior means (@ and b) of « and 3, as shown in the
table. As to the calculation of E(x), the number of grid points in one numerical
integration is 80. The selection of n = 5 is arbitrary, but when n is large, R(x) is
small and has little variation. The choice of ¢ and o are not major factors for the
comparison. The three cases are (a) 0, = 2, 0, = 0.1; (b)o, = 1, 0 = 1.2; and
(c)o, =0.1, 0p = 2.

The case (a) represents the situation where there is little uncertainty in 3, the
case (c) represents little uncertainty in «, and () in between them. The case (a)
gives better approximation than () because the posterior mean of 3, ug, has been
replaced by the prior mean, b, in the assessment of the coefficients of the Gaussian
influence diagram. Since we have, a priori, more information about 3 for the case (a),
the effect of the replacing uz should be smaller, hence R*(x) is more accurate for case
(a). Near-optimal designs using R*(x) are consistent with the result obtained in the
previous section for all three cases, namely the designs with 2 —z¢ = 0¢(1+02%/n0o,?).
Specifically, they are £ — g = 1.05 for (a), 2 — zg = 1.2 for (b) and T — zo = 21 for
(c). As mentioned in the previous section, both R(x) and R?*(x) are nonincreasing
in s, and having smaller values for small |z — z¢].
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