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A Note on Estimation
under Discrete Time Observations
in the Simple Stochastic Epidemic Model 1

Chang-Hyuck Oh!

ABSTRACT

We consider two estimators of the infection rate in the simple stochas-
tic epidemic model. It is shown that the maximum likelihood estimator
of the infection rate under the discrete time observation does not have
the moment of any positive order. Some properties of the Choi-Severo
estimator, an approximation to the maximum likelihood estimator, are
also investigated.
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1. INTRODUCTION

In the simple stochastic epidemic model, we assume that there exists a
homogeneously mixing group of N individuals consisting of a infectives and
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N — a susceptibles. Let X(t) and Y (t) represent the numbers of susceptibles
and infectives, respectively, at time ¢ > 0. For this model the infinitesimal
transition probabilities are given by:

Bz(N — z)h + o(h) if i=z—-1
P{X(t+h)=iX@t)=z}= 1—pPz(N—-—z)h+o(h) if :=2
o(h) if i<z—1
and P{X(t+ k) = 0|X(t) = 0} = 1. Here B is the infection rate and z =
N—a, N—a—-1, ---, 1. We define P,(t) = P{X(t) = z|X(0) = N — a}.

Then the differential-difference equations associated with this model can be
obtained (see Bailey (1975)).

Bailey (1975) solved this system of differential-difference equations by a
Laplace transformation technique but the result was very complicated. Severo
(1967) developed an iterative solution for the state probabilities. Yang (1972)
and Billard, Lacayo and Langberg (1979) used interinfection times to get the
desired probabilities.

Since the obtained probabilities depend on the value of the infection rate
B, it is natural to carry out parameter estimation. For estimation in the
simple stochastic epidemic model, sampling at predetermined time points
to < t; < -+ <'t,is a practical sampling scheme. Under this sampling scheme,
an explicit form of the maximum likelihood estimator of 3 is not known. Here
we denote the data set as

{(thyO) = (Oaa)a(tlayl),"'a(tmyn)} (1.1)

where y; is the number of infectives at time ¢; and ¢y < ¢; < --- < t,, together
with yo < 1 < --- < yn. Because of the Markov property, the likelihood
function of g is then given by

L(B) = P{Y(t:) = 5:|Y (to) = 9o} - - - P{Y (tn) = ¢m|Y (tn-1) = yn} (1.2)

Let the maximum likelihood estimator of 3 with this discrete type data be
denoted by Byp. With the restriction y, < N, Hill and Severo (1969) and
Kryscio (1972) suggested approximations to Sarp. Without restriction of Hill
and Severo (1969) Choi and Severo (1988) suggested an approximation



ESTIMATION IN THE SIMPLE STOCHASTIC EPIDEMIC MODEL

Bos = 2(yn — @)/ D (ti — tim){wi(N — w:) + vica (N — yim1)},
i=1
which has some advantages over the previous approximations.
However very little is known on Bmp in Ehe literature. In the next section
we investigate some properties of Byp and Becs under the sampling scheme.

2. ESTIMATION OF g UNDER THE FIXED
SAMPLING SCHEME

For the observation of an epidemic process at a discrete set of time points,
we do not have an explicit form for Bup. Therefore the expectation and the
variance of the maximum likelihood estimator of  can not be obtained directly.
However we prove that the expectation of Byrp does not exist by showing that
the probability of all susceptibles becoming infectives by time ¢; 1s positive and
the value of BMD in that case is positive infinity. Indeed we show that BMD
possesses no moments of any positive order.

Lemma 1. For data {(0,a), (¢t1,N), -, (ts, N)}, Bup = o0

Proof. Let Z,,---,Zn_, be the interinfection times. Then Z;,---,Zn_,
are independent, exponentially distributed random variables with rate param-
eters By, = fla+t—1)(N—a—1+ 1), respectively. The likelihood function
of B then becomes L(B) = P{Z, + -+ + Zn-, < t1}. We consider two cases.

Case I: (N/2) < a < N. In this case it is clear that ¢; > --- > gn_,. From
Theorem 1 of Billard, Lacayo and Langberg (1979), it is easily shown that
BMD = 0o 1s a maximum likelihood estimate of 3. Clearly, this is the unique
such estimate.

Case I[I: 1 < a < N/2. Let m = [N/2] and r = N — a — [N/2] where
[z] is the greatest 1nteger not exceeding z. Let p; = g,+,~,i =1,---,m and
i = Groig1,t = 1,4, Thenp,:;é,u]forzaé],z—-l --ymandj=1,---,m
and fi; # fi; for ¢ 96 Jjy,t = 1,---,rand j = 1,---,r. Now we rearrange
pist = 1,--+-,m so that fi; = y; for t=1,---,r. Then by use of Theorem 2
of Billard, Lacayo and Langberg (1979), we can easily show that Bump = oo is
the unique maximum likelihood estimate of 3.
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Theorem 2. For any positive real number A, the moment of BMD of order
A does not exist.

Proof. It is clear that P{Y(¢¢) = a,Y(¢;) = N,---,Y(t,) = N} > 0 for
all t; > 0. Let b(so) be the value of the maximum likelihood estimator of 3
based on the data sy = {(t0,%0), (t1,¥1), - (tn,¥n)}. Then,

E(BY4p) = {(b(s0)}*P{Y(0) = a,Y(t1) = N,---,Y(t,) = N}.

Now the right-hand-side of the inequality is infinite, and thus the proof is
finished.

Due to the intractability of calculations, it is not attractive to try to get
the expectation of ﬂcg But in contrast to ,BMD, the expectation of ﬂc g exists
and can be bounded as in the following theorem.

Theorem 3. Let p and g be defined by p = P{Y(¢,) = a} = P(Z1 > t,)
and ¢ = P{Y(t;) = a} = P(Z, > t1). If 0 < a < N/2, then

2 -1 . -1
() a(N — a)ﬂﬁ’@ < E(fos) < 2(N - a)ﬂ%g—; (2.1)
If N/2< a< N, then
1 -1
5I;ogp < E(Bes) < 2(N - a)ﬂ%:}—. (2.2)

Proof. Since P(Z; > t) = exp(—a(N — a)Bt) for t > 0, p = exp(—a(N —
a)Bt,), and ¢ = exp(—a(N — a)Bt;), we have t, = —(log p)/(a(N — a)p) and
t; = —(logq)/(a(N — a)B). On the other hand, it is clear that E(Bcs) <
2(1 — p)/(t1a). By substituting t; = —(log ¢)/(a(N — a)B), we get the upper
bound of (2.1). For the lower bound we consider two cases. The first case is
for a < N/2. Since t, = —(logp)/(a(N — a)B), we have the lower bound in
(2.1). For the case a > N / 2, the result is easily obtained.

The following corollary tells us lower bounds and upper bounds of E (ﬂc s)
when ¢, converges to 0 or t, diverges to infinity.

Corollary 4.

(1) Let t, = Kt;, K > 1. Then, for 0 < a < N/2,
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b=V a(N — a)8 < Jim E(os) < 2K(N — a)f, 2.3)

and, for N/2 <a< N,
B < lim E(fos) < 2K(N — a)B. (2.4)

(2) Jlim B(Bos) =0.

Proof. (1) That ¢, approaches 0 implies p — 1. Since (p — 1)/logp is
monotone increasing in p and converges to 1 as p — 1 for 0 < p < 1, we easily
obtain the left hand inequalities in (2.3) and (2.4).

Since p = exp(—a(N — a)fKt;) and ¢ = exp(—a(N — a)Bt;), we have (p —
1)/ log ¢ = (exp(—a(N — a)BKt,) — 1)/(—a(N — a)Bt;) — K as t; — 0. Thus
we get the right hand inequalities in (2.1) and (2.2).

(2) That 0 <p<g<1, p— 0and ¢ — 0 as t; — oo, we have the result.
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