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ABSTRACT

Among k independent normal populations with unknown means and
a common unknown variance, the problem of detecting the population
with the largest absolute value of mean is considered. This problem is
formulated in a manner close to the framework of testing hypotheses,
and the maximum error probability and the minimum power are con-
sidered. The power charts necessary to determine the sample size are
provided. The problem of detecting the population with the smallest
absolute value of mean is also considered.
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1. INTRODUCTION

We observe independent X;; (i = 1,---,k,7 = 1,---,n) from each of k
normal populations N(g;, 0?) with common variance, and let X:(t=1,---,k)
and &2 denote the sample means and the pooled sample variance, respectively.
Suppose we are interested in detecting the best population, that corresponds
to the largest 8; = |u;]/o, the so-called signal-to-noise ratio.

One would naturally order the values of Y; = |X;|/& (i = 1,---,k), and
make an inference

Oy > max0; if Y > maxY;+c\/2/n, 1.1
(v > max6; if Y > max v2/ (1.1)

where Y{;) < -+ < Y denote the ordered Y/s ( = 1,---,k). Then the
probability of a false inference is

Puo( By < max 0;, Yy > Y1) +¢yy2/n ), (1.2)
and the probability of a correct inference is
Pﬁ,a( Oy > 2%0;, Yy > Ye-1) + c\/2/n ). (1.3)

In the sequel, the probabilities in (1.2) and (1.3) will be simply called an error
probability and a power, respectively.

The goal of this paper is to find the maximum error probability in (1.2)
and to determine the sample size to guarantee the power in (1.3). The for-
mulation in this paper is that of Gutmann and Maymin (1987), who adopted
it in location parameters problem. Similar formulations have been adopted
in Gutmann (1985), Bofinger (1988), Kim (1988), and Jeon, Kim and Jeong
(1988) for various comparison problems.

Finally it should be mentioned that the selection problem in terms of |uil/o
was studied by Rizvi (1971) under the frameworks of Bechhofer (1954) and
Gupta (1956). Comparison with Rizvi’s (1971) will be given in section 3.
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2. MAIN RESULTS

We first find the maximum error probability of the procedure (1.1) using
the following two lemmas, whose proofs are deferred to section 4.

LEMMA 1. The error probability in (1.2) is maximized when at least two
0is are tied as the largest.

LEMMA 2. When exactly r (2 < r < k) @!s are tied as the largest, the
maximum error probability is given by

L[ rei y - Vaewde(y)dQu(w), (2.1)

where @ and @, denote the cdf’s of N(0,1) and /x?(v)/v with v = k(n —1).

It follows from the above lemmas that the maximum error probability is
found by taking the maximum of (2.1) with respect to r = 2,---, k. It can be,
however, easily observed that (2.1) is non-increasing in r. Thus we have the
next result.

THEOREM 1. For the procedure (1.1), the maximum error probability is
given by

nﬁle}’x Po Oy < gél% 0, Yy > Yiro1) + ¢4/2/n)

=2 /0 ~ /_ °; B(y — v/3cu)d® (y)dQ, (u). (2.2)

It turns out from Theorem 1 that the choice of ¢ = t,/3(v), the upper
a/2 quantile of t-distribution with v degrees of freedom, controls the error
probability below a. Next, let us consider the power in (1.3) of the procedure
(1.1). The region of interest, where the power is controlled, is taken as

8) = { (1,0) : (O — b)) 2 6 ) (2.3)

where § > 0 is specified by the experimenter and ;) < --- < 6 are the
ordered §;’s ( = 1,---, k). The region ©(§) given by (2.3) is the so-called pref-
erence zone introduced by Bechhofer (1954) in his indifference zone approach,
and represents the case where the detection of the best is really desired.
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For any (u,0) € ©(6), the power of the procedure (1.1) is given by
P,o( 0y > fg?lg)(ai, Yy > Yieo1) + cy/2/n )

= P&,o‘( )/[k] = }/(k) > }/(k-—l) + c\/Q/n ) ) (2.4)

where Yy is the Y; associated with Oy = max; <<k 0;.

By methods similar to Lemmas 1 and 2, it can be shown that the power
in (2.4) is minimized when 6 = 0 = -+ = O] = Oy — é and the common
value @ approaches +o0o. Thus we state the next result without proof.

THEOREM 2. For the procedure (1.1), the minimum power over Q($) is
given by

min  Fo (O > max6i, Y > Ye-r) + cy/2/n)

O —Ok-1128 =

_ /0 * /_ °:o *1(y + /nb — V2cu)d®(y)dQ, (u). (2.5)

For given k,a, and §, the minimum power (2.5) can be computed as a
function of sample size n. This has been done and the power charts are given

in Figure 1 for « = 0.05,6 = 0.5, 0.7, 1.0 and k =3, 4, 5, 6.



power

power

0.4

04 06 08 10

0.2

1.0

08

0.6

0.2

0.0

DETECTION OF THE LARGEST ABSOLUTE VALUE OF MEAN

o Figure 1
Minimum power vs sample size for alpha=0.05
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Figure 1 (continued)
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To construct Figure 1, numerical evaluation of the double integral in (2.5)
was done by using the 64 points Gauss-Hermite quadrature for the inner inte-
gral and 32 points Gauss-Laguerre quadrature for the outer integral, both in
the IBM Scientific Subroutine Package. The values of normal cdf in the inner
integral were obtained via IMSL’s subroutine MDNOR.
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3. CONCLUDING REMARKS

Rizvi (1971) considered the selection problem in terms of |u;|/o under
Gupta’s (1956) subset selection framework. His procedure is to

select population j if Y; > m;,xY; + c%y/2/n,
i#]

where ¢ is the Gupta’s constant for normal means problem. He showed that
his procedure guarantees the probability of including the best in the selected
subset to be at least 1 — a.

Due to different formulations, it is difficult to compare the procedure (1.1)
with Rizvi’s. But a comparison of the critical values t,/,(v) with ¢ (see, for
example, Gupta, Panchapakesan and Sohn (1985)) shows that t,/2(v) < €
for k > 3 and for a = 0.05, 0.01, regardless of the degrees of freedom v. Thus
it can be said that, in detecting only the best, the procedure (1.1) makes the
useful inference 0(x) > max;z(x) §; more often than Rizvi’s for k > 3.

Finally, it should be remarked that the same formulation and similar proce-
dure can be devised to detect the normal population with the smallest |u;|/o.
Such a problem is of interest when we wish to detect the population with the
least fraction defective in the presence of both upper and lower specifications.

With similar techniques, it can be shown that, for the procedure

0y < fi’%ﬁ 0; if Yy < gél(lﬁx —c/2/n 7,

the maximum error probability and the minimum power when Oy — Oy > 6
are given by (2.2) and (2.5), respectively. Thus the design constant t,/,(v)
and the power charts Figure 1 can be also used in such a problem.

4. PROOFS OF LEMMAS

First note that in proving Lemmas 1 and 2 we may assume 6/ /n =
o/+/n = 1 by considering the conditional error probability given the sam-
ple variance 6%. Thus we are assuming 6/+/n = 0/+/n = 1 in the sequel, and
let D = +/2¢ for notational convenience.
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LEMMA 1. By symmetry, we may assume that §; < --- < 0.. Note
that the event {f(x) < max;z(x) 9;} always occurs when 0 = 1. Thus the
maximum error probability when 6 = 8;_; is given by

sup PQ(Y(k) > Y(k—l) + D), (41)

00

where Qo ={0 : 6 < -+ < b1 = 0}.
When 6; > 0x_1, the error probability is given by
Py( max Y; =Yy >Yo-n+D)

=Y 1<Kk

which is clearly non-increasing in 8. Thus it is maximized as 0 decreases to
0,_1. Therefore the maximum error probability when 8, > 6;_; is given by

sup Po( max Y; = Y > Yu-y +D)

gee . 1<5<k-1

which is clearly not larger than (4.1). This completes the proof.
To prove Lemma 2, note that for any 8 € {1 the error probability is given
by

E o o0 k
Po(Yoo > Yuny+ D) =Y [ I Flu=D,6) fly.0)dy, (42
=1

i=1

i

where F(y,6;) and f(y,0;) denote the cdf and the pdf of Yi(z = 1,--, k),
respectively. Since we assumed &//n = o/+/n =1, the cdf and the pdf of ¥;
are given by

F(y,6;) = ®(y — 6;) — ®(—y — 6;) and f(y,6:) = é(y — 0:) + $(y + 6:).
Then, by observing that, forall§ > 6, > 0, {¢(y+6)— d(y—0)}/{o(y+61)+

#(y — 6,)} is non-increasing in y, which can be easily shown by differentiation,
and by simple differentiation, we have

2Py -D,0)f(4,0) ~ gpF@0 Sy =D,o) 20 (43)

for any D > 0.



DETECTION OF THE LARGEST ABSOLUTE VALUE OF MEAN

LEMMA 2. By symmetry we may assume §; < --- < ,_, < Ok—ry1 =
0x = 6. Then the error probability (4.2) is given by

Po( Y > Yy + D)
k—r

- r/D°° F~Yy~D,8) [] F(y— D,6:) f(y,8)dy

i=1
k—r .0 k—r
+3 [ F(y-D,0) [ F(y - D.6.) f(4,6;) dy.
::
By differentiating this expression w.r.t 8, we have

0
g97e(Yw > Yo-1+ D)

o k—r
= 10=1) [~ Py~ D,6) [] F(y— D,0)

i=1

(557~ 2,0) 1(4,.0) = 27,6 £y, 0] dy

k—r oy k—r
+¥r [ Fiy-D,0) [ Fy-D,6)
I=1 i=1

23

79

(557~ D.0)7(6,6) ~ 2 (0.0) 1ty — D,0,) .

Since the expressions in brackets are non-negative by (4.3), the error probabil-
ity is maximized as § approaches +o0o. Thus, it suffices to find the maximum
error probability when 8 approaches +co. When the largest r parameters are

tied, the error probability can be computed in the following way :

Po( Yy > Y1)+ D)
= r [ {®(y—D—06)—®(—y + D - 0)}
r [ e )= ®(~y+D-0)}

k—r
[[{®(y—D—06)—d(—y+D~6)} {$(y — 0) + p(y + 0)} dy

=1
k—r

+_§=jl /D°°{<1>(y—D_0)-q>(—y+D—e)}f
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k—r
I {®(y — D — 6:) — ®(—y + D — 0:)} {¢(y — ;) + $(y + 0;)} dy

=1

= r [ {2(y—D)~2(~y+D—20))"""

k—r

[[{®@w+6—D—6)—2(—y—6+D—0)}¢(y)dy

=1

+r [ {@(y—D—26) - ®(-y+ D))"

k—r
[T{®@y—0—-D—6)—3(-y+0+D—0)}ey)dy

=1

+l§ /D°°{<1>(y—p—o)—q>(-y+p—o)}f

k—r

Tl {@(y — D — 6;) — ®(—y + D — 6:)} {$(y — 0;) + &(y + 6;)} dy.

5
By sending 6 to +oo and by taking the expectation with respect to /0, we
can easily observe that the maximum error probability is given by (2.1).
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