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ABSTRACT

The purpose of this paper is to investigate the properties of order
statistics under various stochastic relations. We study the stochastic
comparison of order statistics in a single sample. And we consider two
sample case too. For example, F(t) > G(t) for t > 0 when X and Y
are random variables symmetric about 0, with c.d.f.s F and G. Two
examples are provided.

KEYWORDS: Peakedness, Stochastic ordering, Dispersive ordering, Ex-
changable random variables, Symmetric distribution, Student distribution

1. INTRODUCTION

Given a random sample, X;, X,,---,X,,, we can arrange the X’s in as-
cending order of magnitude and then write X;, < X5, < --- < Xy, or
(Xa) £ Xg) £ -+ £ Xn))- We call X,y the rth order statistic. If the dis-
tribution funtion of X is F(z), then F..(z) or F,(z) denotes the distribution
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funtion of the rth order statistics. We investigate some aspects of the stochas-
tic comparisons of the order statistics.

Section 2 defines and reviews various stochastic order ralations, including
stochastic ordering, peakedness ordering, r-ordering, dispersive ordering, star-
shaped ordering, r-ordering, dispersive ordering, and likelihood ratio ordering.
An extensive review of the literature is given in Kim(1988).

In Section 3, we first investigate the stochastic comparison of order stochas-
tic from exchangeable random variables in a single sample. And using various
stochastic orderings, we will investigate the comparisons of the reliabilities and
expected values of the order stochastic for two populations. For example, cor-
responding to the stochastic ordering between X and Y, we consider the case

F(t) > (<)G(t) respectively for t > (<)0 (1.1)
when X and Y are random variables symmetric about 0, with c.d.f.s F and G.

We consider the case, F' <, G (see Definition 2.5) with f(0) > ¢(0) > 0, which
is a stronger assumption than (1.1). Also examples are provided in each case.

2. STOCHASTIC ORDER RELATIONS

We introduce some stochastic order relations between random variables.
First we consider the concept of one random variable being stochastically larger
than another.

Definition 2.1. The random variable X is stochastically larger than Y,
written X < (st)Y.

if P{Y >t} <P{X >t} for allt. (2.1)
If X and Y are nonnegative random variables, then (2.1) implies E[X] > E[Y].
Definition 2.2. [Birnbaum (1948)] Y is more peaked than X,

if P{]Y| >t} < P{|X| >t} for all t > 0. (2.2)
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If X(Y') has symmetric random variable with distribution function F(G) about
0, (2.2) is equivalent to G(t) > F(t) for all t > 0.

In order to compare relative skewness, Van Zwet(1964) defined convex or-
dering.

Definiton 2.3. [Van Zwet(1964)] Let F and G be continuous distribu-
tions, with G strictly increasing on its support, an interval. Then F' is convex
with respect to G(written F' <¢ G) if G"'F(z) — « is a convex function of =
on the support of F.

In reliability theory, if F' is a life distribution, G(z) = 1—e~%, and F <¢ G,
then F is said to have increasing failure rate (IFR). Van Zwet(1964) also intro-
duced another orderings, s-ordering, that is restricted to the class of symmetric
distributions. The main purpose of this ordering is the comparison of relative
heaviness of tail among symmetric distributions.

Barlow and Proschan(1966) introduced star-shaped ordering, a weaker or-
dering than convex ordering.

Definition 2.4. [Barlow and Proschan (1966)] Let F' and G be continuous
distibutions, with G strictly increasing on its support, and F(0) = G(0) = 0.
Then, F is star-shaped with respect to G (wrltten F <, G) if G'F(z)/z is
increasing for = > 0.

Lawrence(1975) introduced f-ordering, a weaker ordering than s-ordering :

F <, Giff G'F(z)/z 1T (]) wr.t. 2> (<)0, and F(0) = G(0) = 1.

In order to compare relative dispersiveness, Lewis and Thompson (1981)
defined dispersive ordering.

Definition 2.5. [Lewis and Thompson(1981)] If any two quantiles of
G are more widely separated than the corresponding quantiles of F', Then

F <4isp G (i.e. F7Y (@) — F7Y(B) <G (a)—G(B) for any 0 < @ < B < 1).

Remark 2.5. Deshpande and Kochar(1983) and Shaked(1982) discussed
on the characterization of dispersive ordering: Shaked(1982) showed that when
F and G are two distribution functions which are strictly increasing and con-
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tinuous on their support [0, 00), then F <g4,, G iff (a) F(z) — G(z) > 0 for all
z € [0,00) and (b) for every ¢ > 0, the distribution functions of X + ¢ and Y
cross at most once and if there is a sign change, Fx4+. — Gy changes sign from
— to +.

Definition 2.6. [Karlin (1968)] Let X and Y denote continuous random
variables having respective densities f and g. We say X is larger than Y in
the sense of likelihood ratio, and write X >;p Y if

flz) _ f(y)

—~ < —forall z < y.
g(z) ~ g(y) Y

Remark 2.6. It can be shown that X >;p Y implies X >,, V. Also

fx(t) fr(t)
. > <
Ross( 1983, P.260) showed that X >;p Y = [~ @ = T= R for all
f(t)

1- F(2)

t 2 0, provided X and Y are nonnegative random variables. (Note

is the failure rate at time ¢.)

3. STOCHASTIC COMPARISONS OF ORDER
STATISTICS

Firstly, we will discuss the comparison of order statistics from one sample.
We need the following additional notation:

X, the rth order statistic in any subset of n exchangeable variates drawn
from a larger set X1, X3, -, Xu, (n' > n), each with marginal c.d.f. F(z).
Thus, the joint distribution of X, and X7, is not the same as that of X,.,
and X,.,.

Theorem 3.1. Let Xi,X,, -+, X, be exchangeable ramdom variables.
Then, for ny <ny <--- <nx <n,

X;m Sst X;m Sat e Sat X

n:mn’

(3.1)
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X:nk Sst X;:"k—l Sst ot Sst X;":nla (32)
and
;:1-—1':71.1 S-’t X:g—i:ng S-’t e —<—3t X;k—i:nk' (3'3)

Proof. Since X;,X3,---,X, are exchangeable, X7, =, X;, for i =
1,2,---,n. But P{X;, < Xju} = 1fori < j. Hence, (3.1) follows by
coupling (Ross(1983, P. 255)). Inequalities (3.2) and (3.3) follow similarly.

Theorem 3.2. Let X;, X3, --, X, be a random sample from a continu-
ous population with c.d.f. F. Let n, < n,. Then,

Xrimg 2LR Xsn, forr>s
and

Xrny SLR Xom, forr<s—mny+mny
where 1 <r<n;and1 <s < n,.

Since X >pr Y implies X >,, Y, we can replace likelihood ordering by
stochastic ordering in Theorem 3.1 if X;, X5, -+, X,, are a random sample.

Theorem 3.3. [Madreimov and Petunin (1985)] Let X;, X,,---,X,, bea
random sample from a population for which its distribution is symmetric and
unimodal continuous random variable with F(z), having finite expected value.

Then,

Xr Iin ™ Xr:'n Zst Xr:n - r—l:n] for M S r S n (3.4
* 2

and
1
[Xr+1:n —Xr:n] Sst [Xr:'n - r—-l:n] for 1 S r S '(%)' (35)

Remark. (3.4) and (3.5) imply
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(n+1)
2

E[Xr+1:n - Xr:n] Z E[Xr:n - Xr—-l:n] fOI‘ S r S n

and

1
E[Xr+1:n - Xr:n] S E[Xr:n - Xr-—l:'n.] for 1 S r S (th_l
Secondly, we will discuss the stochastic comparisons of order ststistics from
two sample. Let X;, Xs,---, X,(Y1,Y2,:-+,Y,) be random samples with c.d f.s
F(G). Since

(o0}

B{Yn)— E[X,a] = [ _n[G'F(a)-q] (:f B ;) F\(z)(1=F(z))""dF(z)

(3.6) )
- /_: n[G'F(z) — z]dF,.(X), (3.7)

for the comparison of expected values of order statistics from two different
populations, the function G~ F(z) — z play a prominent role. Doksum (1974)
calls the function G=!F(z) — z, the shift function. Note that the convexity of
G~'F(z) — z is equivalent to F' <¢ G. '

Similarly, for nonnegative random variables,

-1 N
G'_F_S::)_z T wrtex e F <, G.

Also, since (’::11) Fr=Y(z)(1 — F(z))""" is totally positive function in r and z,
(3.6) shows that the number of sign changes in E[Y,.,] — E [X,.n] With 7 is no
greater than the number of sign changes in G™'F(z) — z as 2 : —co — o0, by
the variation diminishing property of totally positive functions (Karlin (1968,

P.21); Boland and Proschan (1986)). For example, if no sign change occurs
(ie., GT'F(z) —z > 0 for all z), then E[Y;.,] > E[X,.]for r =1,2,--- n.

Theorem 3.4. [Oja (1981)] Let F and G be absolutely continuous dis-
tribution functions from random variables X and Y. If F <disp G, then

[Xs:n - Xr:n] Sst [)/s:n - Xr:n] fOI‘ any 1 S. r<s S n.
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Remark 3.4.1. This was shown by the characterization of dispersive or-
dering:

G 'F(z)—z1 wrtz & G 'F(z)—-z<G'F(y)—y (forany z <y)
& y—z<G'F(y) - G 'F(z)
& FYB)—F'Ya) <G YB) — G (a) with
F(r)=a and F(y)=p320<a<pf<]l,

d
G—IF(:L') —zlwrt.z e F <disp G (i.e.,E[G_lF(t) — t] > 0. & F <giyp G)
Deshpande and Kochar(1983) showed this.

Remark 3.4.2. If any two quantiles of G are more widely separated than
the corresponding quantiles of F, then spacings of the Y;., are stochastically
larger than the corresponding spacings of the X;.,.

Intuitively, the expected values of order ststistics depend on skewedness,
and peakedness or heaviness of tail. Let X and Y be random variables sym-
metric about zero with c.d.f.s F and G. If X is more peaked than Y, then
this is the one sign change of shift function, G"'F(t)—t > (<)0 w.r.t. t > (<)0.

Theorem 3.5. Let X and Y be random variables symmetric about 0,

with c.d.f.s F and G. If X is more peaked than Y (i.e. G(z) < F(z) for all
z > 0),then

ElY,.,) 2 E[X,.,] for

(n+ 1) <r<n.
9 =0 =
Proof. From David(1981, P.38),
E[K':n] Z E[Xr:n] = A [Gn—r+1:n(z)_F —r+l(a:)_Gr:n(x)+Fr:n($)]d$-

Now it suffices to show that

Fr:n(x) - Gr:n(x) Z Fn-—-r+1:n(x) - Gn—r+l:n(z) for r 2 %(n + 1) and
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x> 0.

LHS = IF(,,)(r,n -7+ 1) - Ig(z)(r,n —-r+ 1),

_ /F(x) tr—l(l _ t)n—r dt
- Jow) B(r,n—r+1) "

where I denotes on Incomplete Beta function.

Similarly,
F(x) t'n—r 1 —1 r—1
RHS = ( ) dt.
G B(r,n—r+1)
=11 —t)" t 1 1
Since t”—’((i — t;T_l = (1 — t)z"l‘" >1forr > E(n +1)and t > 2’ we have

E[Y,n] > E[X,.n] for %(n +1)<r<n
Remark 3.5.1. Since
Frn(z) 2 (<)Grn(z) iff F(z) > (<)G(z) r=1,2,---,n
ie., iff £ > (<)0.
It follows that neither of X,.,, nor of Y;., is stochastically larger than the other.

1 1
Corollary 3.5. For i(n +1)<s<nand1<r< §(n +1), E[Ygn —
Y,..] > E[X,.n — X,.n] under the same assumptions as Theorem 3.5.

The proof follows immediately from symmetry consideration.

Example 3.5. The T distribution with m degrees of freedom is symmet-
rically distributed about 0 with differentiable and unimodal p.d.f.,

I‘E‘_l 2 (m+1)
fm(t):——u(l+t_')— ; —o00 <t < oo.

Vmal(3)" ' m

If Froy1(z) > Fu(z) for all z > 0 (i.e. Try1 is more peaker than T}, ), then by
Theorem 3.3, Theorem 3.5 and Corollary 3.5, we have
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1
[Tn(a+1) = Ton(e)] 2ot [Tm(s) = Tom(s-n)] for 5(n+1) < s <, (3.8)

B[] > ElTmrco] for 5(n +1) <5 <, (3.9)
and

E[Tn+1(s) = Trti(n)] < E[Tm(s) — Tingn)]
for1<r< —;—(n+1) and 3(n+1) < s <n. ‘ (3.10)

Remark 3.5.2. (3.8) imply
1
E[Trn(s+1) — Tim(s)] 2 E[Tn(s) — Trm(s-1] for §(n +1)<s<n. (311

Before we prove F, 4 1(z) > F,.(z) for all £ > 0, we need the following two
lemmas.

Lemma 3.5.1. f,41(0) > f(0) for any m = 1,2,---

[‘(m;tl) 1
Proof. f,(0) = 2 = —-, where B(a,b) is a Beta
vmal(3) x/inB(%, 3) (&0)
function. Similarly, fn4+1(0) = \/—_B(l m|1)' It suffices to prove that

1 1

RORE A0 R VmB(3, %)~ Vm F1B(5, ") > 0).

VmB(z, )~V F1B(5, ") = [ X3 (1-X) [im—vim £ 1(1-2)3de.

Since v/m — v/m + 1(1 — X)? is strictly convex on (0,1), by Jensen’s inequality
the integral is greater than

1

Vim = Vm 11 - E(z)]? =0 (by B(z) = —+

Hence, frm4+1(0) > fn(0) for any m =1,2,---

).
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Lemma 3.5.2. f,41(1) > fm(1) for any m =1,2,---.
Similarly, it can be shown easily.

Claim. F, (z)> F,.(z) for all z > 0.

Proof.
d fu(t) | H#2—1)(m+2)5mV(m + 12 4 1)im
a[fmi-l(t)] =c [m + t2](m+1)
F[%l %(m+1)
where ¢ = p['m:g] [?] : .
(m +1)z(m+2)
v (m + 1)aT 28]
Hence
%?T)T wor.t.font > 1
and
fi—':jt(—)t—)-l wrt.ton0<t<l1.

(3.12)

(3.13)

From Lemma 3.5.1, Lemma 3.5.2, (3.12) and (3.13), we have F,,;,(z) > F,.(z)

forx >0and form=1,2,.--.



Using Tiku and Kumra(1985), we can see (3.9), (3.10) and (3.11) illustrated

in Table 3.5.

Table 3.5.

Expected values of order statistics of ¢t-distributions from m = 3
degrees of freedom to m = 19 and standard normal distribution in sample size,
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10(n = 10)(Tiku and Kumra(1985)).

E[Ts:10)

E[T7.10]

E[Ts:10)

E[T9:10]

E[TIO:IO]

0.1395858
0.1350104
0.1323781
0.1306693
0.1294709
0.1285844
0.1279020
0.1273606
0.1269207
0.1265561
0.1262493
0.1259869
0.1257604
0.1255630
0.1253892
0.1252351
0.1250975
0.1226678

0.4342024
0.4181056
0.4089456
0.4030378
0.3989131
0.3958706
0.3935343
0.3916840
0.3901824
0.3889395
0.3878938
0.3870019
0.3855608
0.3855608
0.3849705
0.3844473
0.3839803
0.3858647

0.7862594
0.7490249
0.7283123
0.7151333
0.7060142
0.6993311
0.6942235
0.6901936
0.6869328
0.6842404
0.6819797
0.6800546
0.6769510
0.6769510
0.6756820
0.6745581
0.6735561
0.6560591

1.2980512
1.2073913
1.5290206
1.1289959
1.1085582
1.0937537
1.0825376
1.0737472
1.0666731
1.0608576
1.0559925
1.0518625
1.0452289
1.0452289
1.0425251
1.0401351
1.0380073
1.0013570

2.5283165
2.5283165
2.0028543
1.9046147
1.8405509
1.7955165
1.7621470
1.7621470
1.7160262
1.6994301
1.6856720
1.6740820
1.6641855
1.6556368
1.6484783
1.6416140
1.6357924
1.5387527

Theorem 3.6. Let X and Y be random variables symmetric about 0,
with c.d.f.s F and G. Then, if F <, G and f(0) > ¢g(0) > 0, then [X,., —
Xr:n] Sst [}/s:n - Yr:n] for any 1 S r<s S n.

Proof. Deshpande and Kochar(1983) showed: Let F' and G be absolutely
continuous such that F(0) = G(0) = 0 and let the corresponding density func-

tions be such that f(0) > ¢(0) > 0. Then F <, G implies F <4;,, G.

23

Let X(Y) be a symmetric random variable with density f(g) about 0. From

the above argument, if f(0) > ¢g(0) > 0 and

G~1F(z)

T wr.t. £ >0, then
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FY(8) — F~Y(a) < G~'(8) — G~!(a) for any % ca<f<l. (314)

By symmetric consideration, (3.14) implies F' <g4,, G. Simply applying
Theorem 3.4, we have [X;.n — Xyn] <ot [Yorn — Xpm] forany 1 <r < s <n.

Example 3.6. Van Zwet(1964) showed that any symmetric U-shaped
density <, uniform <, normal <, logistic <, Laplace <, Cauchy (see Van
Zwet (1964, p. 70-73). Hence, if we change scale in order to meet the as-
sumption, f(0) > g(0) > 0, then U-shaped density <gis, uniform <4,, normal
<aisp logistic <giyp Laplace <4, Cauchy. (Note : By Theorem 3.6, these
relationships imply the stochastic ordering among the spacings.)

REFERENCES

(1) Barlow,R.E. and Proschan,F.(1966). Inequalities for linear combinations

of order statistics from restricted families. Annals of Mathematical
Statistics, 37, 1574-1592.

(2) Birnbaum,Z.W.(1948). On random variables with comparable peaked-
ness. Annals of Mathematical Statistics, 19, 76-81.

( 3) Boland,P.J. and Proschan,F.(1986). An Integral Inequality with Appli-
" cations to Order Statistics, in A.P.Basu, ed. Probability and Quality
Control, 107-116, New York, North-Holland.

(4) David,H.A.(1981). Order Statistics, 2nd ed., New York, John Wiley
and Sons.

( 5) Deshpande,J.V. and Kochar,S.C.(1983). Despersive ordering is the same
as tail-ordering. Advances in Applied Probability, 15, 686-687.

( 6) Doksum,K.A.(1974). Empirical probability plots and statistical inference

for nonlinear models in the two-sample case. Annals of Statistics, 2,
267-277.



ORDER STATISTICS 25

(7) Esary, J.D., Proschan,P. and Walkup,D.W. (1967). Association of ran-

dom variables,with applications. Annals of Mathematical Statistics, 38,
1466-1474.

( 8) Karlin,S. (1968). Total Positivity, Vol. I, Standford University Press,
Standford, CA.

(9) Kim, S.H.(1988). Stochastic comparisons of order statistics, Ph.D.Thesis,
Towa State University.

(10) Lawrence, M.J.(1975). Inequalities of s-orded distributions. Annals of
Statistics, 3, 412-428.

(11) Lewis,T.and Thompson, J.W.(1981). Dispersive distributions, and the
connection between dispersivity and strong unimodality. Journal of
Applied Probability, 18, 76-90.

(12) Madreimov,l. and Petunin, Yu. 1.(1986). A characterization of confi-
dence limits, with the help of order statistics, for the bulk of the distri-
bution of a general population. Theory of Probability and Mathematical
Statistics, 32, 57-68.

(13) Oja,H.(1981). On location, scale, skewness and kurtosis of univariate
distributions. Scandinavian Journal of Statistics, 8, 154-168.

(14) Ross,S.M.(1983).  Stochastic Processes, New York, John Wiley and
Sons.

(15) Shaked,M. (1982). Dispersive ordering of distributions. Journal of
Applied Probability, 19, 310-320. :

(16) Tiku,M.L. and Kumra,S.(1985). Expected values and variances and co-
variances of order statistics for a family of symmetric distribution(student’s
t). in the Institute of Mathematical Statistics, eds, Selected Tables in
Mathematical Statistics, 8, 141-270, American Mathematical Socity,
Providence, Rhode Island.

(17) van Zwet,W.R.(1964). Convex transformation of random variables. Math-
ematical Centre Tracts, 7, Mathematisch Centrum, Amsterdam.



