Journal of the Korean
Statistical Society
Vol. 22, No. 1, 1993
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ABSTRACT

An approach to make the information bound sharper in median-
unbiased estimation, based on an analogue of the Cramér-Rao inequality
developed by Sung et al.(1990), is introduced for continuous densities
with a nuisance parameter by considering information quantities con-
tained both in the parametric function of interest and in the nuisance
parameter in a linear fashion. This approach is comparable to that of
improving the information bound in mean-unbiased estimation for the
case of two unknown parameters. Computation of an optimal weight
corresponding to the nuisance parameter is also considered.

KEYWORDS: Diffusivity, Information inequality, L; estimation, Lower
bound, Median-unbaised estimator, Nuisance parameter.

! Statistics Department, Ewha University, Seoul, 120-750, Korea.
1 Research was supported by Korea Science Foundation Grant 913-0105-003-2.



2 Nae-Kyung Sung

1. EXPONENTIAL FAMILIES AND
INFORMATION INEQUALITY

We shall suppose that X = (Xj,--,X,) is a random sample from a pop-
ulation with distribution function F characterized by an unknown parametric
vector 8 € O, where the parameter space O is either the Euclidean r-space R"
or a rectangle in ®7. We are interested in estimators for 7(6), a real-valued
function on ©, which is partial-differentiable with respect to any component
of §. Let Y = §(X) be an estimator of 7(8).

To determine a good estimator §(X) for 7(8), we need a well-defined crite-
rion under which the perfomance of the estimator can be assessed. In choosing
a criterion of estimation, one attempts to provide a measure of closeness of a
parametric function of interest, usually restricted to a smaller class of estima-
tors. An optimum estimator in the restricted class is determined by minimizing
the measure of closeness.

A general approach given by Lehmann (1951) to this problem is to find
a risk-unbiased estimator. The class of risk-unbiased estimators includes the
class of L -unbiased estimators which minimizes the Minkowsky metric. Under
the classical mean-unbiased estimation or L,-unbiased estimation, the con-
centration of an estimator around 7(6) is measured by the variance. It is,
however, well-known that many statisticians stressed the arbitrariness of re-
stricting the class of estimators and of comparing efficiencies of estimators 1n
terms of variance. It is therefore worthwhile to look for other conditions such
as median-unbiasedness. See Pfanzagl (1970) for an application of comparisons
of efficiency utilizing median-unbiased estimators. We remark that the class
of median-unbiased estimator corresponds to that of L;-unbiased estimators.

Definition. §(X) is called median-unbiased for 7(0) if
Prg [6(X) < 7(8)] = Prg [6(X) > 7(0)] =1/2 forall 0 € 0.

The exponential families in mean-unbiased estimation share a number of
optimal properties which enables a proper statistical analysis feasible. In the
same connection, several approaches has been made as well to establish and
identify the exponential families in median-unbiased estimation.

As Lehmann (1986) (p.95) pointed out for the single parameter case in that
7(8) = 0, some families of probability distributions with monotone likelihood
ratios admit median-unbiased estimators which are optimum in the sense that
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among all median-unbiased estimators they minimize the expected loss for
any monotone loss function, that is, any loss function which for fixed § has
a minimum of 0 for the true parameter value and is nondecreasing as the
parameter moves away from the true value in either direction. The usual
convex loss functions are necessarily monotone loss functions. In particular, it
can be verified under suitable assumptions on the random loss that an optimal
median-unbiased estimator minimizes the probability of differing from 8 by
more than any given amount. That is, an optimal median-unbiased estimator
is stochastically closer to  than any other median-unbiased estimators. This
kind of stochastic ordering is a special case of the stochastic dominance given
by Hwang (1985).

Pfanzagl (1971) extended Lehmann’s result to the cases of the binomial
families and the Poisson families by introducing randomized estimators.

For the problem of estimating a single parameter # from a probability
distribution with many nuisance parameters, Pfanzagl (1979) also showed that
given a density of the type

C(0,n)h(z)H(T (=), 0)G(S(<),6,7), (1.1)

where 7 are nuisance parameters, there exists a median-unbiased estimator of
# of minimal risk, or, equivalently, of maximal concentration about 6, under
the monotone loss functions. Pfanzagl’s result applies to certain exponential
families with density

C(0,m)h(z) expla()T(z) + 3 a:(6, 1) Si(=)]

for every sample size if a is increasing and continuous in #. Though Pfan-
zagl’s existence theorem is analogous to the Lehmann-Scheffé theorem (1950)
developed in the class of median-unbiased estimators, it is not easy to find a
median-unbiased estimator of minimal risk directly.

Sung et al. (1990) identified, in the course of establishing the informa-
tion bound for median-unbiased estimators, the following form of the location
family as an L, exponential family:

explh(z — 0)], (1.2)

where h is strictly concave.
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This family of distributions is a special case of (1.1) and gives optimal
median-unbiased estimators in the sense that diffusivity defined by Sung (1990),
a measure of dispersion, is minimized among all possible median-unbiased es-
timators. Noting that the problem of estimating a location parameter can be
always converted to a scale problem and median-unbiasedness is invariant un-
der strictly monotone transformations, we remark that (1.2) can be generalized
to the following form:

¢'(z) exp[h(q(z) — 0))],

where q is strictly monotone.

It is assumed from now on that the random sample were drawn from a pop-
ulation with continuous density function f. Let §(X) be a median-unbiased
estimator having a continuous density gs. Then, as was shown by Sung et al.
(1990), under certain regularity conditions, the following information inequal-
ity holds:

1/2g5(7(9);0) = |7'(0)l/ 1n(9), (1.3)

where I; is the first absolute moment of the sample score:
1,(8) = E4|(9/06) log f(z;0)|.

The left-hand side term in (1.3) is called diffusivity, which is the reciprocal
of twice the median-unbiased estimator’s density height evaluated at its median
point.

Diffusivity could be regarded as a local version of the risk curve introduced

by Birnbaum (1961):

] Prglé(X) < ]:Fg(u6) for u < 6,
a(u,0,6) = { Prg[6(X) > u] =1~ Fy(u—,8) for u> 6.

The risk curve a(:, 8, §) is monotone increasing to the left of § and monotone
decreasing to the right. It measures tail size of the distribution of § with
respect to § and the dispersion of § about @ is measured by the elevation
of this curve. That is, estimators are compared only on the basis of their
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complete distribution functions for each § € O rather than on the basis of
certain functionals such as mean squared error. That diffusivity is a local
version of the risk curve was first observed by Stangenhaus and David (1977).

When 6 is median-unbiased for § and possesses a density gs(-;6), then
a(0,0,6) =1/2 and a'(6—,0,6) = |a’(6+,0,6)| = g5(8,8), so that diffusivity is
indeed a natural scalar summarization of the elevation of a(-, 8, §).

Birnbaum'’s risk function is, in fact, a special form of stochastic dominance.
Hence, it can be seen that diffusivity is a limiting measure of concentration
of a median-unbiased estimator around the true parametric value of interest.
Stangenhaus (1977) arrived the same conclusion in essence from a different
point of view.

The L, exponential family given in (1.2) leads to optimal median-unbiased
estimators which attains the information bound in (1.3) in terms of diffusivity.
Typically, the normal family and the double-exponential family belong to the
L, exponential family. Once one can show that a family of distributions of
interest belongs to the L, exponential family given in (1.2), it is very easy to
find an optimal median-unbiased estimator of 8. Further, it can be shown that
such an optimal median-unbiased estimator is a maximum likelihood estimator
(See Sung et al. (1990)). However, this exponential family does not cover
many other frequently occurred distributions in statistics. Furthermore, the
L, exponential family cannot be extended to the multi-parameter case.

In this paper we deal with a method of improving the L, information in-
equality in (1.3) and making the lower bound sharper in the presence of a
nuisance parameter for distributions which do not belong to the L; exponen-
tial family, but to the Pfanzagl’s family (1.1). Motivation of the method is
summarized in Section 2.

2. CRAMER-RAO BOUND IN THE PRESENCE OF
A NUISANCE PARAMETER

In this section an approach to make the Cramér-Rao bound sharper in the
presence of a nuisance parameter is introduced by inserting the information
quantity involving the nuisance parameter in a linear fashion. The result is,
of course, identical to the classical Cramér-Rao inequality for the 2-parameter
case (see Cramér (1946)).
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Assume that § = (6,6;) and we are interested in estimating 7(61). In
this case, 0, plays a role of the nuisance parameter. Let f(x;0) be the joint
continuous density function, where z represents the observations z1,- -, Zn.
This restriction will be required in the sequel. Let §(X) be mean-unbiased for

7(0,), i.e.,
/ §(z) f(z; 0)dz = (6)-

Under the usual regularity conditions, we have

cov (8(X), -al)%fé—“;ﬁ) = 7'(8y), (2.1)
and
cov (§(X), Qlﬁ%f;iﬁo—)) = 0. (2.2)

Let k be a fixed value. The relations (2.1) and (2.2) lead to

Olog f(z;6) | 9log f(z;6)

cov (8(X), 50, 56,

) = 7'(6,). (2.3)

From the equation (2.3), the following inequality can be obtained:

var §(X) > [r'(61)]*/E [ag’oglf -kala"ong ] . (2.4)

It can be easily verified that the denominator of (2.4) is minimized for

. . [0logfdlog f dlog f1°
k ‘E[ 90, 00, ]/E[ 50, ] !

since it is a quadratic function of k.

Remark. If the covariance between (8log f/96,) and (0log f/80;) is zero,

we cannot make any improvement on the lower bound.
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3. IMPROVING L; INFORMATION BOUND

Following similar steps to those in Section 2, we develop a method to im-
prove the L; information bound when a nuisance parameter is present.

For convenience sake, let §(X) be a median-unbiased estimator of 8,. As
was in Section 2, 6, is considered to be a nuisance parameter. Let gs be the
continuous density function of §.

By the definition of median-unbiasedness, we have

/_0; 95(y; 0)dy = /000 9s(y; 6)dy, (3.1)

1

or, equivalently, in terms of f,

10)dz = ;0)dz. _
/[5(3)501] f(=;0)de /[6(z)291] f(z;6)dz (3:2)

Applying the mean value theorem to (3.1) on the domain [z : §(z) < 6]
and [z : 6(z) > 6,] separately and combining them, we obtain

295(61 + hAp; 0, + h,0,)

f(z;00 + h,02;)l — f(z; 64, 02)d:1:

- / sign(8(z) — 6;) (3-3)

for some h > 0and 0 < Ap, < 1.

Differentiating (3.2) with respect to 62 and allowing interchanging the in-
tegral and the derivative signs, we have

[ sign(6(z) - 91)&5:2"0—2)@ 0. (3.4)

Let k be an arbitrary constant. After multiplying k to (3.4), we subtract
the result from (3.2), take the absolute values to both sides, and take the limit
as h — 0 to obtain

dlog f(z:6) _ , dlog f(236)
801 602

295(01; 0) < / f(z:0)ds. (3.5
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Suppose that
/ Olog f f
06,
Then, the right-hand side of (3.5) could be written as

/ dlog f(z; ) (9logf(x;0) k dlog f(z;0)
801 602 602

f)dz = ¢ < oo.

If (z;6)dz. (3.6)

Therefore, the right-hand side in (3.5) is minimized for

. . Olog f(z;0) ,Olog f(z;0)
k* = median ( 56, / 20, (3.7)
with respect to the density of the form
dlog f(z;6
Dlog 112i9)) 11 9)/c. (3.8)
00,

Such a k* always exists since the integrand of (3.6) is strictly convex in k.

When §(X) is, in general, a median-unbiased estimator for 7(6,), the L,
information inequality in the presence of a nuisance parameter can be expressed
as follows:

Olog f(z;0) _ .0log f(z;0)

1/296(7(01;0)2IT’(Gl)I/E) S o, [(3.9)

The equality in (3.9) holds if and only if both (3.10) and (3.11) below hold:

504
[6(z)<r(61)] OOy [B(z)<r(6:)]

dlog f *alogf
50, —k |fd (3.10)

and

dlog f .
00, k

54
[B(z)>r(61)] OO [6(2)>7(61)]

. (3.11)
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Remark. Besides utilizing information contained in a nuisance parameter
to improve the lower bound, one may consider an information inequality on
a general L, space. Barankin (1949) dealt with the problem of minimizing
the sth absolute central moment to give a best L,-unbiased estimator, where
1/s+1/p=1, and p > 1. In this case the Fisher information I is changed to
I,. Ignoring the nuisance parameter and applying the Holder’s inequality to
(3.3), we have

o Iy
2g5(7(6,);0) — [E|Dlog f/00,[]\/»

for a given value of p. In particular, one can observe that squared diffusivity
cannot exceed the Fisher’s bound in median-unbiased estimation when p = 2.
This fact can be seen as a special case of the result given by Pfanzagl (1970)
for median-unbiased estimation with squared diffusivity as a measure of con-
centration.

4. EVALUATION OF &k

In Section 3 we derived a formula for k, given in (3.7) and (3.8), which
makes the lower bound, that is, the denominator of the right-hand side of (3.9),
sharper. Unfortunately, computation of (3.7) may in fact be problematical.
Analytical solutions cannot be expected except for a few cases.

In order to obtain an optimum value of k, we must identify the form of the
density given in (3.8) and find the median value of the statistic given in (3.7).
In many cases evaluation of £ seems to be not easy.

In some cases, however, a simple computational algorithm given below for
the univariate density may help. Consider (3.6). Given an interval (—M, M) on
the domain, we partition the interval to m subintervals with indices j;, -, jm.
The value of M depends on the density given in (3.8). Let p; be the value of

Olog f(z;0) ,dlog f(z;0)
00, 00,

evaluated at a point on the ith subinterval. Also, let h; be the area of curve

i3

00,
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evaluated on the ith subinterval, where 3_; h; = 1/c.
Then (3.6) can be represented approximately as follows:

M
(3.6) = c)_ |pi — klhs. (4.1)
-M

Assume, for simplicity, that p; — k < 0 for ¢ = j;,---,J;, and p; — k > 0 for
1= Jis1,"*,Jm- LThen (4.1) can be written as

el 3 (3 = Kb+ 3500 — R)bi 2)

Jig1

Therefore, one can find an optimum k which makes (4.2) to be 0 approxi-
mately by varying input values of k.

In case that evaluation of multiple integrls is required, one may use a nu-
merical integration technique such as the Monte Carlo importance sampling
scheme (see, e.g., Rubinstein (1981)).

Example 1. Let X be a random variable with a density of the form
f(z;6,0) =2(z —¢)[o*, {E<z<E+o

X —0/+/2 is median-unbiased for ¢. Diffusivity at £ is .3540. Without utilizing
the nuisance parameter o, the L; lower bound is .250 and it does not attain
the equality. But, if we consider the information contained in the nuisance
parameter, the bound turns out to be the same as the value of diffusivity. In

this case k* = 1//2.

Example 2. Let X;,---,X, be a random sample from N(u,0?). It is
well-known that X is an optimum median-unbiased estimator of x. In this
case the optimum value of k is zero, that is, no more improvement is possible
even though we consider the information quantity contained in the nuisance
parameter o.
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