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On L Regression Coefficients!)

C. S. Hong, H. J. Choi?

Abstract

Consider minimizing the sum of absolute deviations for multiple regression
models. If a regression line is assumed to pass a given point, then we can find
that the L, regression coefficient can be defined in terms of the weighted medians
of the slopes from each data point to the given point. Therefore L1 method could
be regarded to find the optimal point which regression line passes over.

1. Introduction

Let’'s consider the general regression model. The vector tf sample observations Y is
expressed as a linear combination of k explanatory vectors X, plus an disturbance vector
U possessing some distributions :

Y = la+B1 Xy +B2Xp+  +Bx Xe + ut
= la+ XB+u ,
where each vector possesses n elements, 1 is a unit vector, (1,X) =
1, Xy, Xz, ~, Xx) is the (nX(k+1)) matrix and (a,8’) = (a,B;,Bz, ~,Bx) is a

vector of unknown parameters.

The method of minimizing the sum of absolute deviations from a predicted regression
model, which is called a L; regression model, has been studied for a long period of time.
The L, estimator (a,h’) = (a,b1,bz, ,b) of («,8’) is a solution to the problem

min S(a,B) = lgIY:-a-ng.;bjl. o

Kennedy and Gentle(1980) reported that there are two types of algorithms to compute L;
estimators. The first type is concerned as Simplex method. Wagner(1957), Davies(1967),
Appa and Smith(1973), Barrodale and Roberts(1973) and Gentle, Kennedy and Sposito(1977a,
1977b) etc. considered it as linear programming problems (See Sposito(1975) for more
details and a general discussion). The other type of algorithm uses iterative computing
methods. Schlossmacher(1973) gave an iterative method for L, estimator using iterative
reweighted least square. He obtained L; estimators using least square method with weights
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of absolute residuals, and mentioned that his method performed better than linear
programming. However, Armstrong and Frome(1976) discussed that this method is rather
inefficient. Bloomfield and Steiger(1980) proposed another efficient iterative method which
searches for a set of data points to make a corresponding deviation vanish.

In this paper, we suggest an alternative method for L estimators. Let

(Xa ', Y0) = (Xo1, Xz, =, Xy Yo) be a given point (optimal point) which the L,
regression line passes over. Then a L, problem in (1) might be replaced with

mna S(AI{(Xa’,Ye)) = 2
min 5 3 (¥: - Yo) - g’;bj(xﬁ—xw)l.

When the point (Xo,Yo) is given in a simple L; regression model, Karst(1958) developed
algorithms to compute L: estimator (L; regression coefficient) using order statistics of the
slopes {(Y;-Yp)/(Xi-Xo)}. Hereby we will extend Karst's algorithm and explain how

to obtain the L, estimators alternatively. Moreover, for multiple regression models, we will
show that L; regression coefficients are the convergent weighted medians of the slopes. In
this paper, it will be discussed an alternative method to find L estimators for general
regression models.

2. L, Regression coefficients

For a given point ( Xa ’,Yo) € R*", L regression coefficients b so as to minimize
S(hl( Xo ’,Yo)) in (2) could be obtained by certain iteration method. With initial values
of {bn;h = j)}, the estimate of the coefficient b; is the weighted median of the slopes

{((Yi-Yo) - gjbh(xm X))/ (Xi-Xo)ii=12,k}.

Since the coefficients {b;;j=1,2, =k} must be estimated simultaneously, we could use an
iteration method in order to obtain these with certain initial values. And these estimates are
convergent since the function of S(h|( Xa ’,Yo)) in (2) is well known to be piecewise
convex. Therefore the estimates of L; regression coefficient might be the values that the
weighted medians converge. And we could define such medians as the convergent weighted
medians.

Theorem. For a given point ( Xa ’,Yo) which a regression line passes on, the
estimates of the L; regression coefficients {b;;j=1,2, ~,k} are the convergent weighted
medians of the slopes

{((Yi-Yo) - gjbh(x.-.. -Xa))/ (Xi-Xg)ij=12~,k}.

With some Weights (IXU_XWI ;j= 1121 Ik} .

Also we can make a note about the well-known simple regression models as the
following:
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Corollary. L, estimate of the simple regression coefficient, b, is the weighted median of
the slopes, {(Y;-Yy)/(X:~Xo)}, with weights {LX;- Xl}.

If we knew the location of one point which L, regression line passed on, the estimators
could be defined and obtained by the above theorem. Hence L; method to estimate
regression parameters could be regarded as to find an optimal point on (k+I)th euclidian
space:

min (' pept S(AI(X',Y)) . &)

The optimal points might be said all points on the regression line. Since the response

variable Y is the functions of k-independent variables, we can reduce to the kth

dimensionality with a given value which is one of the response variable Y, for example

the first observation Y1 or the response variable mean, Y. Then this method (3) would
be substitute for finding an optimal point of the kth dimensional space rather than (k+I1)th
dimensional space as the following :
min XER: S(.b| (X ,,Yl)) .

The above method could be programmed with a golden section search technique(See
Kennedy and Gentle(1980)) to obtain the minimum value of S{(A| (X ‘,Y1)).

In order to demonstrate the alternative method, we extracted a multiple regression data
from Draper and Smith (1981, pp. 629-630). Here we list below the data in (Table 1).

(Table 1) data list

Y X1 Xz X3 X4
78.5 7 26 6 60
74.3 1 29 15 52

104.3 1 56 8 20
87.6 1 31 8 47
95.9 7 52 6 33

109.2 1 55 9 22

102.7 3 71 17 6
72.5 1 31 22 44
93.1 2 54 18 22

115.9 21 47 4 26
83.8 1 40 23 34

113.3 1 10 66 9 12

109.4 68 8 12

First of all, we may set the first observation Y; = 785 as a given value. Now, by
using some search method, we can find an optimal point on 4th dimensional space rather
than 5th dimension such as (Xn=7.0, X®=260, Xw®=6.0, X«=60.0), which fortunately
coincides the first observation of X's. With this optimal point, we could find the estimates
of L; regression coefficients through the iteration steps mentioned above. (Table 2) shows
the convergent step.



250 ¥4 ¥

(Table 2) Convergent Step

by bz ba by
0. 000004 0.735714| -0.499997| -0.118214
0.898431 0.681863| -0.094999! -0.048510
. 370500 0.677267 0.207422 0.007738
.703953 0.689240 0.318420 0.019268
. 729851 0.691543 0. 323840 0.021485
. 732556 0.691783 0. 324406 0.021710
. 732839 0.691808 0. 324465 0.021741
. 732860 0.691811 0.234471 0.021743
. 732871 0.691811 0.324472 0.021743
. 732869 0.691811 0.324470 0.021743

el el endla

Finally, we obtained the fitted L, regression line as
YV = 451314 + 17329 X; + 06918 X, + 03245 X3 + 0.0217 X, .

3. Conclusion

The main ideas of this paper are followed by quite simple facts. Suppose the simple L;
regression line intersects a point (Xy,Yo). Then regression coefficient is found to be the
weighted median of slopes from data points to a certain optimal point over which the
regression line passes. The weights could be defined as the distance of X-axis from
each explanatory value to a given optimal point, [Xi- Xol. And for the given first value
of the response variable, choose an optimal point with respect to the independent variable
such that the sum of absolute residuals should be minimized by iterative methods.

Moreover, we extend the above method to multiple regression models. In these cases,
each regression coefficient cannot be mentioned as the median of some slopes when a
multiple regression line has intersected a certain given point. Another fact we find for
general regression models is that L regression coefficients could be defined in terms of the
convergent weighted medians of some slopes. With these situations, we did the analogous
argument to find an optimal point on the kth dimensional space so that the sum of absolute
residuals would be minimized by iterative computations. But it is hard to think that this
alternative method is better than other methods (for example, Simplex method,
Schlossmacher’s method or Bloomfield and Steiger’'s method) to find L; estimators,
because it does matter of computing work with some search method.
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