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Adjustments of Dispersion Statistics in Extended
Quasi-likelihood Modelsl)

Choongrak Kim and Meeseon Jeong?

Abstract

In this paper we study numerical behavior of the adjustments for the
variances of the Pearson and deviance type dispersion statistics in two
overdispersed mixture models; negative binomial and beta-binomial
distribution. They are important families of an extended quasi-likelihood model
which is very useful for the joint modelling of mean and dispersion.
Comparisons are done for two types of dispersion statistics for various mean
and dispersion parameters by simulation studies.

1. Introduction

Generalized linear models (Nelder and Wedderburn, 1972) have been widely used
in regression modelling. Let the i-th response Y; belongs to an exponential
family of the canonical form

Ay:8,0)= exp{(y08-b(8))/a(e)+c(y,¢))
for some specific function a(-:),b(-), and c(:), where 6 is canonical
parameter and ¢ is dispersion parameter. To specify the generalized linear models,
we have to define a linear predictor n;= x; B and a link function g(*:) such
that n;=g(u;), where u;=E(Y;)in addition to the distribution of Y; It is

often, however, that we have limited information for the complete specification of
the generalized linear model. To avoid this difficulty, Wedderburn (1974) suggested
a quasi-likelihood model requiring the first two moments of the responses. To be
specific, the variance of a response has been assumed to take the form

var(Y ;)=¢V(u;)

where Y; is a response, ¢ is dispersion parameter, and V(u) is a known
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variance function. In the simplest of generalized linear models the dispersion
parameter ¢ is a constant, usually unknown, however, there are many cases those

¢’s vary in a systematic way with other measured covariates. To come up with
these Pregibon (1984) suggested joint model specification in terms of the
dependence on covariates of the first two moments. For the mean we have the
usual specification

E(Y )=u;, T|i=g(l1i)=§x"iﬂj,Var(Yi)=¢iV(u i)

where m; is the linear predictor, g is the link function, x; is the element of the
nXp design matrix. Also, for the dispersion, it is assumed that
E(di)=¢;, ci=h(¢.~)=12_uw,-, var (d;) =<V p(¢,).

In this specification, d; is a suitable statistic chosen as a measure of dispersion;
h(-) is the dispersion link function; { is the dispersion linear predictor, < is
dispersion parameter for d;, and Vp(¢) is the dispersion variance function. The
dispersion covariates u; are commonly, but not necessarily, a subset of the
regression covariates Xx;.

Two possible choices for the dispersion statistic are the generalized Pearson
contribution 75=(Y;-1;)?/V(4;) and the contribution to the i-th deviance

=22 {y;( 6;- 8;)-b( 8;)+b( 8;)}/al(s)

where 6; and #8; are estimates of 6; under the maximal model and current
model, respectively. The pros and cons for the performance of r% and % as

goodness-of-fit measure in the generalized linear models were discussed by Pierce
and Schafer (1986). If Y is normal d; has ¢} distribution, so that a gamma
model with Vp(¢)=202would be chosen. If Y is non-normal, adjustments to the
dispersion model may be necessary to account for the bias in rb or for the

excess variability of 72. Recently, McCullagh and Nelder (1990) suggested

adjustments of the estimating equations for the dispersion parameters in each
ways that

var(r2)=202(1+p4/2) 1)
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and
var(rbh)=20%(1+b)? 2
where b=(50%-3p4)/12 is the Bartlett adjustment, and p3 and ps denotes the
standardized third and fourth cumulant, respectively. Note that the nominal
variance is 202
In this paper, we study numerical behavior of the adjustments for var(r2) and
var(r’) in two over-dispersed mixture models; negative binomial distribution and

beta-binomial distribution which are standard mixture of Poisson and binomial
distribution when the overdispersion exist. Also, they are important classes of an
extended quasi-likelihood models (Nelder and Pregibon, 1987). Definition and
examples of overdispersion can be found in Cox(1983), Efron(1986),
Jorgensen(1987) and Gelfand and Dalal(1990).

2. Model Specification

We assume that, conditional on the sampling mean 6; the data y; have
independent distributions belonging to a natural exponential family (NEF) with
quadratic function (Morris, 1982, 1983), and that the means 6; are independent
with conjugate mixture (CM) distributions. Let [n, V(u)] denote a distribution
with mean p and variance function V(u).

2.1 Negative binomial distribution

When we have gamma-Poisson mixture, the resulting marginal distribution is
negative binomial. To be more specific, let
yl6~ Poisson (8)= NEF [6,6],

e~r( —¢“—,¢)= CMIuoul,

V(u)=u,
and

, y~NB({;—,—1%)= marg [u, (1+¢)u]
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where T'(«,8) denotes a gamma distribution with parameters o and B, and
NB(a,8) denotes a negative binomial distribution with probability function

p(y)=(a+z— 1)3’(1-3)“,y=o,1,

and y~marg[8,02] denotes the random variable y has mean 6; and variance 63
marginally. In this set up, two types of dispersion statistics are
2= (yi- W¥u
and
rb=-2{ (yilog u- W)~ (yilogyi-y)}.
Also, the adjusted variances for 5 and r% given by McCullagh and Nelder
(1990) are

var(r)=2(1+9)*(1+ 152

and

2
var(rh)=2(1+0)%(1+ L2 )

respectively. Note that the nominal variance is just 2(1+¢)2.

2.2 Beta-binomial distribution

A beta-binomial mixture can be specified as follows;
N A _ 8(1-6)
ylo o Binomial (m,8) = NEF [6, poo ]

8~ Beta(yu,y(1-p))= CM[u,0u(1-un)]
where v=1/¢-1, and the variance function is
V() =p(1-u).
Then, the marginal distribution of y becomes

y~ —;l— BB (m,wu,y(1-p))= marg [u,u(1-u)/w]

where BB(m,a,B) denotes a beta—hinomial random variable with probability
function
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p(r)=(m) T(a+B)(r+a)T(m+p-r) r=0,1,...m

r ()T (B)r(m+a+p)
and w=m/{(1+(m-1)¢). In this situation,
=(yi- W ¥ u(1- )
and

rlp=—2{y,-log( TLu)+ log (1- ‘u)—yilog(—l_&yi-)— log (l—y.-)],

and the corresponding adjusted variances are

__ 2 1 1-6p(1-p)
var(rp)=—s (1+ mz M=)

and

_ 2 1 1-p(1-p) \?
var(rp)= u;f(l+ mw  u(l-w) /-

Also, note that the nominal variance is 2/w?.

3. Simulation

In the negative binomial distribution simulations are done for n=100,1000;
#=1(1)10;6=0.1,0.2, and 1000 replications are allowed. To be more specific, we

generate a sample of size n for a given u and ¢ from the IMSL library
(GGDA), and repeat 1000 times to obtain true variances (TV; i.e., average of 1000

sample variances) of r2 and rb, and compared them with the nominal variance
(NV) and their adjusted variances (AV). Figure 1 shows the simulation result for
n=100, and Figure 2 shows them for n=1000. When n=100, % is overly adjusted
for u<2, while r% is properly adjusted. When n=1000, 7% is under-adjusted
especially for ¢=0.2 case while r% is almost perfectly adjusted except u<2.

Simulation for other n, u, and ¢ than listed showed similar results. Based on
these results, we note that
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i) True variances of r> and r% are away from their nominal variance 2¢%,
unless u is large (at least u25 in our experience) regardless of the sample
size n Therefore, adjustment is necessary.

ii) For small sample size adjustment of r> is better than that of %, and the
converse is true for the large sample size.

iii) As the overdispersion parameter ¢ increases, adjustment of r% shows

better performance unless u is too small.

For fixed sample size n=1000, simulations are done for m=510; u=.05(.05).50 ;
$=.01,.02, and 1000 replications are allowed in the beta-binomial distribution.
Simulation results are given in Figure 3 and 4 for m=5 and m=10, respectively. As
shown in these Figures both adjustinents for m=5 are too small to explain the

actual variances. Adjustment of r% is so bad in the sense that the actual variance

increases while the adjusted variance decreases. In rf, case both decreasing,

however, the adjustment should be made larger than it is. For m=10, the
discrepancies become much smaller but similar phenomenon to m=5 case occur.
We note that

i) Adjustment of r% is very poor.
ii) Adjustment of % is smaller than it should be.

4. Remarks and Further Studies

Conclusively, adjustments for the variances of the dispersion statistics are
necessary, but the existing adjustments are not good enough to be used safely in
every situation. We have done simulations on other situations than listed in this
paper, and they showed similar trend. It is therefore required that refined
adjustmments must be studied. Also, as pointed by referees, analytic form of
adjustments might be possible and application to real data sets improve and
rectify this study.
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Figure 1. Simulations for the variances of dispersion statistics % and rf, with

their nominal and adjusted variances with respect to p when n=100, ¢=.1, 2 in
negative binomial distribution.
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Figure 2. Simulations for the variances of dispersion statistics 7% and % with

their nominal and adjusted variances with respect to u when n=1000, ¢=.1, .2 in
negative binomial distribution.
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Figure 3. Simulations for the variances of dispersion statistics % and % with

their nominal and adjusted variances with respect to u when m=5 ¢=.0], .02 in
beta-binomial distribution.
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Figure 4. Simulations for the variances of dispersion statistics % and r% with

their nominal and adjusted variances with respect to u when m=10, ¢=.01, .02 in
beta-binomial distribution.



(1

(2]

(3]

(4]

(5]

(6]

(7]

(8l

(91

Adjustments of Dispersion Statistics 51
References

Cox, D.R. (1983), "Some remarks on overdispersion”, Biometrika, 70, 269-274.

Efron, B. (1986), "Double exponential families and their use in generalized
linear regression”, Journal of the American Statistical Association, 81,
709-721.

Gelfand, A. E. and Dalal, S. R. (1990), "A note on overdispersed exponential
families”, Biometrika, T7, 55-64.

Jorgensen, B. (1987), ”"Exponential dispersion models (with discussion)”,
Journal of the Royal Statistical Society, B, 49, 127-162.

McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, ]. Wiley
and Sons, New York

Morris, C. N. (1982), "Natural exponential families with quadratic variance
functions”, The Annals of Statistics, 10, 65-80.

Morris, C. N. (1983), "Natural exponential families with quadratic variance
functions : statistical theory”, The Annals of Statistics, 11, 515-529,

Nelder, J. A. and Pregibon, D. (1987), "An extended quasi-likelihood function”,
Biometrika, 74, 221-232.

Nelder, J. A. and Wedderburn, R. W. M (1972), "Generalized linear models”,
Journal of the Royal Statistical Society, A, 135, 370-384.

[10] Pierce, D. A. and Schafer, D. W. (1986), "Residuals in generalized linear

models”, Journal of the American Statistical Association, 81, 977-986.

[11] Pregibon, D. (1984), "Review of Generalized Linear Models”, The Annals of

Statistics, 12, 1583-1596.

[12] Wedderburn, R. W. M. (1974), "Quasi-likelihood functions, generalized linear

models and the Gauss-Newton method”, Biometrika, 61, 439-447.



52 & ¥ 4d
TTE 9 A A
A%<, A A2
& ¢

¥ =8dMe A4 EF YU 20|¥ EX wEolg XA FHole ¥H
3 Hu AL HeHe FAA A UE AF}E FYUHOR ¥IPD °)F HAX
T 29, 3 A& FA 23 e s FE4Y ST FaP
TAYoY. ZHdPE FHA AN o] HF, AXEFo] wd) o|¥A @

AeA Ha AFFRG.

DEdars 288 J2ajstds 5443} (BSRI-91-116) Ao o)s] L85 9L
2 (609-735) WAt YA AT FAS Ao FALz}



