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Error-Robust Model-Based Sampling in Accounting

Young-II Kim?

Abstract

In a model-based sampling problem, it often happens that the functional
form of variance of error terms in regression model cannot be specified in
an exact form. The goal of error-robust sampling design will be to
minimize the ’ill effects’ resulting from a lack of knowledge of the error
structure. A sampling criterion, which is optimal if it minimizes the
average of an inefficiency measure when taken with respect to all
candidate error structures, is proposed and a computer algorithm is
developed for construction of optimal sampling plans. Auditing problem is
of particular relevance because of the uncertainty that currently clouds
specification of the error structure.

1. Introduction

Model-based samplers such as Brewer(1963) and Royall(1970) attempted to
derive an inference from considering the values yj,-,yn associated with the N
units of the population as the realized (but still unknown) outcome of real random
variables Y}, -,Yn. The N-dimensional joint distribution of Y7, -, Y~ is denoted

as ¢. As implied, a "model” defines a class of distributions ¢. In this paper we
consider only linear regression models and follow the same notation as Wynn
(1977). A finite population S constitutes N units labeled i=1,--,N. Unit i has an

attribute x; which may be a vector of auxiliary (known) variables in R*
(i=1,--,N). Also unit i has attribute Y; which is unknown before the sampling.
We assume a superpopulation model in which Y; is a random variable. The

assumptions are as follows:
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E«(Y)=f(x)To
Var(Y;)=o%; (1)
Cov(Y;,Y))=0 (ij=1, N ; i*j)

where f(x)=(fi (x), ~ f(x))T, 8=(8),,0,)7T is a vector of unknown parameters,

2

and o“); is assumed known.

Once the superpopulation model is determined, a sample size of n units is
chosen from S, purposely, and the corresponding values of Y; : i€s are

observed. We estimate some linear function =t=2.c;Y; of the Y;. We seek an
estimator T for t which is unbiased in the sense of EE(T)=E:(x) and

minimizes the E(T-z)?, the mean square error. It can be shown by the Gauss
Markov theorem that the estimator T takes the form

T= 'ZC,'Y.'+ 'EIC.' Yi
i€s i€s

where s’ is the complement of s in S (i.e, the non-sampled units), and Y; is
the weighted least squares estimate of E(Y;) based on Y; : i€s. Here we
consider the case t= §SY,~ only for simplicity.

H

One criterion for choosing a sampling design is to choose scS to minimize
E(T-<)%. Hereafter such a sampling design to minimize the mean square error

will be called optimal. We note that, by definition of E(7-7)? and some algebra,
the following is true,

E(T-1)%=¢? l_é\;,u,.wzg Z fe)T(XTV X)) @)

where Xs=(f(x1),,f(x.))7 and V is the diagonal matrix with entries o%;,

« . o%,. From (2) it is clear that E(T-1)? can be minimized by effective

selection of s. Therefore, the process of selecting a sample is not necessarily
random and is chosen on the basis of the model and knowledge of all the x; for
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i€S. A sampling design problem, specified by the triplet (fS,v), is solved by
selection of s for the model f, the population S and the variance function v.

In model-based sampling, we must decide on a strategy (s, T), not only on a
predictor T. Since an optimal predictor T minimizes E(T-<t)? for every fixed
sample, s, the question of choice of sampling design enters at the stage of
pre-sampling. That is to say, once T has been determined, we should minimize

the mean square error via choice of s. If the result is s°, then (s°,T") is an

optimal strategy for the criterion to minimize the E(T-<)2. Often s* turns out to
be purposive in the sense of selecting one particular set s with probability one.
The thought of using such non-randomized selection is hard to accept among
design-based samplers. In an effort to counter the robustness criticisms, Royall
and Herson (1973) presented the concept of "balanced sampling ”. They showed

that when we have Var(Y;)=o%under (1), then a balanced sample, one for which
',1,_ Esf}(xi)= % Esf"(x")’ (=1, = k)
minimizes E(T-7)2.

On the other hand, Wynn (1977) presented an alternative sampling design
criterion closely related to the D- and G-criteria in experimental design. A new
"continuous theory” for finite population sampling was given by Wynn (1976).
This approach would be very appealing if sampler is interested in inference
concerning 8 or prediction of non-sampled units.

In auditing sampling, we have a rather firm knowledge of superpopulation
model. Knowledge concerning the error structure, however, is fairly weak. Thus
neither optimal model-based sampling nor model-based balanced sampling meet
our needs for robustness. In the following two sections, we consider the selection
and construction of samples that are robust with respect to the misspecification of
error terms.

2. Error-Robust Sampling in Accounting

Recently, model-based sampling has been advocated by various auditors in the
accounting setting (See Ko, 1986, and Gofrey, et. al., 1984). Knowledge about the



32 2484

accounting population can be summarized in a model that describes the joint
distribution of Y31,-,Y~. The primary variable of interest (Y;) in auditing is the
audited account value which is usually accompanied by one auxiliary variable ( x;),
the book values. Ideally, the company’s accounting and internal control systems
should operate in such a way that the reported book value of a unit in the
accounting population should be its true audit value. However, due to the errors
introduced into the accounting system, deviations between book value and audit
value occur.

Empirical studies have repeatedly suggested that observed account values tend
to be linearly related to the corresponding book values, as one might expect.
Intuitively, one might also expect to find larger errors associated with larger
accounts. As a result the following model has been proposed for most accounting
populations (Johnson, et al.,1981).

E(Y;)=60+6,X;
Var(Y;)=02X;, for some value of o 3)
COU(Y,‘,YJ-)=0, (i and j:l’ ‘",N, i#j)

It is generally admitted however that plausible values of « are in the range

[01]. In order to understand the implication of uncertainty with regard to the
error structure, optimal sampling designs were obtained for different a’s in the
model (3) for a hypothetical data set consisting of the integer values from 1 to 15.
As a varies from 0 to 1 we note a resultant shift in the sample mean (See Table
1). Evidently, the sample mean is increasing as the value of a increases. The
algorithm necessary to find the optimum sampling design is discussed later.

To compare samples, an efficiency measure is needed. We give the following.

Definition 1. The MSE efficiency of a sampling design s for (£S,v) with respect
to s° is
MSEE(s,s*,(£,S,v)) = MSE(s*)/MSE(s)

For brevity, we will take the dependence on the triplet (£S,v) as implied, and
simply use MSEE(s,s*) =MSE(s")/MSE(s). Far s = optimal sampling design,
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MSEE(s,s*)=MSEE(s)

Table 2 shows the MSE efficiencies with respect to the optimal sampling design
under varying assumptions about a. For example, the first line of the Table 2
summarizes how badly the balanced sample can do if the sampler assumes
constant error terms will be necessary (@ = 0). From this Table it is not
unreasonable to suggest that the sample which is obtained by setting a equal to a
middle value between 0 and 1, say 0.4 or 0.6, will be robust against the two
possible extreme cases.

Suppose we assumed a class, A, of competing a values that could be reasonably
expected to describe the accounting population from past data. Let A = {alO <a
< 1}. To evaluate the efficiency of a particular sampling design for a € A, we rely

on in Definition 1. MSEE.!(s) can be called the inefficiency measure with respect
to optimal sampling design for a particular value of a.

Definition 2. For a class of competing a values, a sampling design s is said
to be M-optimal if it minimizes the average inefficiency over A

M(s)= SC“‘“;IA MSEE;!(s)dB(a)

where 3 is a user specified probability measure on A which could be provided by
the auditor. This criterion provides a measure for optimality of a design with
respect to several competing a’s. This approach is a simple modification of L
-optimality suggested by Cook and Nachtsheim (1982). M-optimal sampling
approach was applied to the simple linear regression superpopulation model with
the same hypothetical population as before with A = {0, 0.2, 04, 06, 08, 1.0}
(Table 3). Ideally, A = [0,1]. However, numerical construction of the (nearly)
optimal sample required discretization of A. A simple modification of Johnson and
Nachtsheim’s k-exchange algorithm (1983) for experimental design was needed to
construct the error-robust sampling design. Similar algorithm can be applied to
find the optimum model-based sampling. A practical routine has not been available
in sampling literatures.
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Algorithm

1. Form a sample of size n for which X%V X, is nonsingular, sn.
2. For each i, i=12,n,

(2.1) Remove the i-th sampled unit from s, giving s ;

(22) Compute M (s7iy).

3. Let

M(si,)= ilgir}nﬂ_/!(s;h), I.=(1, ~,n)

Delete the j-th unit from s, giving si;

4. For each i€In-(n-1), IN-(a-0=(1, ,N-(n-1))
(4.1) Add the i-th non sampled unit to s;’;, giving s.'.
(4.2) Compute M (s}})

5. Let

AF(thy- MmN FF i
M(Sn ) iEIN_(n_l)M(Sn )
Add the k-th unit to s;., giving s,.
6. Repeat steps 2-5 until M (s;) cannot be improved. This sample will be
regarded as nearly optimal.

Note this algorithm requires the input of optimum MSEs of samples size of n
and n-1 for each a € A. Further modification was made to avoid the local
minimum in such a way that the best k units (not one unit) are saved in Step 3
and sequentially exchanged for k non-sampled units in Steps 4 and 5. If there is
an improvement, then repeat Steps 2-5.

The third row of Table 3 indicates an error-robust sampling design when we
have equal probability for each a. For illustrative purposes, the average efficiency
is computed for the sampling design of the third row of Table 3. The efficiencies
are 91.8, 96.9, 99.2, 98.1, 90.3 and 84.3% for each a in increasing order respectively.
Therefore, the average efficiency from this data set is 94.3%. Notice that the first
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and the fifth designs are reflecting the extreme differences in probabilities. The
main advantage of this approach is its ability to reflect the sampler’s prior belief
about the likelihood of each a € A.

3. Higher Order Model

An alternative method for balanced sampling design, optimal sampling design
under more general model, was said to be under investigation by Royall and
Herson (1973) when the model is not exactly known (They were only concerned
about the a = 1 case). Suppose we have the following model

Et(Yi)=Bo+61x,-+ezx?
Var(Y;)=o0%? for some fixed «
Cov(Y .Y =0 (i,j=1,2,~,N : i%j))

Table 4 shows optimal sampling designs for various a’s. The sample mean has
a slower pace of increase than exhibited in Table 1. Overall, the MSE efficiencies
are extremely high. This can be explained in part by the more uniform spread of
sampled units. The extreme error-robustness exhibited by the optimal design for
a = 6 led to the question: Is this design similarly model-robust? To study this
question, we computed the MSE efficiencies of the optimal sampling designs for
quadratic regression under the assumption that the simple linear regression is true
for varying .

Results are summarized in Table 6. Surprisingly, the worst case efficiency
(67%) occurs when we assumed a = 0.0 is appropriate and the true a = 1.0. As
we notice in Table 6, for a given assumption about a, the MSE efficiency
decreases with increasing true a. This is because when the simple linear
regression is true, the spread of the sample under the assumption of quadratic
regression is quite different from that under simple linear regression with a = 1.0.
This low efficiency is not significantly increased even when we assume a = 1.0
(769%). Overall, the MSE Efficiencies are fairly high. When the simple linear
regression is assumed and quadratic regression is true, the MSE efficiencies will
be significantly worse and therefore omitted. If the auditor were to assume a = .6
and quadratic regression for purposes of sample construction, his expected MSE
efficiency will be 88.6% if the model turns out to be linear. This is 5.76% lower
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than the one we achieved using M-optimal sampling design for linear regression,

94.3%, the simple average of six efficiencies shown in section 2, 91.8, 96.9, 99.2,

98.1, 903, and 84.3%. But the former plan will be extremely efficient if the true
superpopulation model is indeed quadratic (Table 5). Similar arguments were
discussed in many situations of sampling and optimal experimental design (See
Royall and Herson, 1973, Kussmaul, 1969 and Cook and Nachtsheim, 1982).

4, Concluding Remarks

In this paper we have conducted research directed toward the characterization of
model-based sampling designs that are insensitive to the specification of error
structure. A number of implications of the findings for further research, though
limited, are possible for audit samplers as summarized in the following:

1. For the case when the superpopulation model as well as the variance
function is known, algorithms have been given for constructing optimal
samples for arbitrary regression models. Unfortunately the efficiency of
designs produced can be highly sensitive to changes in assumptions
about the error structure.

2. Often in accounting, the model is fairly well determined while the error
structure is not. In the formulation of the variance function, the choice
of a is not always clear. in such cases we recommend that the sampler,
at a minimum, define the space of collection of possible a’s and take
the optimal sampling design associated with an intermediate value of a.
If computing resources permit, we recommend construction of the M
-optimal sampling design.

3. For the case in which the model as well as variance function is
unknown, our results suggest the optimal sampling design for the
higher degree polynomial regression model (i.e, use quadratic regression
model when the simple linear regression model is in doubt and the
value of a is not determined) with an intermediate value of a. This
sampling design will cover robustness in both areas as illustrated
partially in Table 5 and 6.

In summary, a strategy derived in blind reliance on a model-based sampling
argument could give misleading estimates when the model is in error. This is
particularly true if the error structure is misspecified. In order to be of practical
use, and not only of theoretical interest, a model-based sampling design should be
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formulated to be robust for a suitably broad family of models. In general,
robustness considerations can be expected to favor "representative” selection rather
than "extreme” selection.
Further simulation study considering various modelling situations and data set is
under investigation to derive more reliable conclusions.
Table 1.
Simple Linear Regression
Data : (1(1)15)
n=5, N=15, Var(Y) is proportional to x"

Optimal sample Sample Mean
a=0 1 4 6 14 15 8.0
a=20.2 1 2 12 14 15 8.8
a=204 1 2 13 14 15 9.0
a=0.6 1 9 13 14 15 10. 4
a=038 1 12 13 14 15 11.0
a=1.0 1 12 13 14 15 11.0
Table 2.
MSE Efficiencies for simple Linear Regression Model.
True a
Assumed a | 0.2 0.4 06 08 10
0 1.00 0.97 0.92 0.86 0.75 0.67
0.2 0.97 1.00 0.99 0.95 0.85 0.77
0.4 0.96 0.99 1.00 0.97 0.87 0.80
0.6 0.75 0.86 0.95 1.00 0.97 0.94
0.8 0.66 0.79 0.91 0.99 1.00 1.00
1.0 0.66 0.79 0.91 0.99 1.00 1.00
Table 3
Priors for a = Error-Robust Sampling
0.0 0.2 0.4 0.6 0.8 1.0 Design Sample Mean
0.8 0.04 0.04 0.04 0.04 0.04 3 4 5 14 15 8.2
0.5 0.1 0.1 0.1 0.1 0.1 1 2 13 14 15 9.0
0.16 0.16 0.16 0.16 0.16 0.16 1 4 13 14 15 9.4
0.1 0.1 0.3 0.3 0.1 0.1 1 4 13 14 15 9.4
0.1 0.1 0.1 0.1 0.1 0.5 1 12 13 14 15 11.0

Note: 6X0.16 is not summed up to 1 due to truncation error.
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Table 4

Quadratic Regression

Data : (1(1)15)

n =5 N = 15, Var(Y) is proportional to x*

Optimal Sample Sample Mean
a =0 1 6 8 12 13 8.0
a =02 1 8 9 10 14 8.4
a =0.4 1 8 9 10 14 8.4
a=06 1 8 9 10 14 8.4
a=2038 2 8 9 10 15 8.8
a=10 3 6 10 12 15 9.2
Table 5.
MSE Efficiencies for Quadratic Regression Model.
True a
Assumed o |, 0.2 0.4 0.6 0.8 1.0
0 1.00 0.99 0.97 0.95 0.91 0.88
0.2 0.99 1.00 1.00 1.00 0.99 0.99
0.4 0.99 1.00 1.00 1.00 0.99 0.99
0.6 0.99 1.00 1.00 1.00 0.99 0.99
0.8 0.94 0.97 0.99 0.99 1.00 0.99
1.0 0.89 0.91 0.94 0.98 0.98 1.00
Table 6

MSE Efficiencies of Optimal Sampling Design for Quadratic

when Simple Linear Regression is true model

True a
Assumed a | 0.2 0.4 0.6 0.8 1.0
0 .00 0.97 0.9 0.85  0.74 0.67
0.2 0.99 098  0.95 0.89 0.79 0.72
0.4 0.99 0.98  0.95 0.8  0.79 0.72
0.6 0.99 09  0.95 0.89 0.79 0.72
0.8 0.95 0.95  0.93 0.90 0.81 0.76
1.0 0.89  0.89  0.88 0.8 0.80 0.76
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