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Proper Shape Fuction for the Contact Stress
in the Soil-Plate Interaction Problems
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Abstract

General formulation to analyse the rectangular thin plate on a soil medium by energy method is de-

veloped. In the problem, Boussinesque’s formul

stress distribution, Two different functions, i.e.,

ar needs to be integrated after asssuming the contact
power series and Chebychev polynomials are used to

approximate the contact stress distribution. It was found that Chebychev polynomials are better func-
tion to describe the contact stress than power series. Chebychev polynomials considering stress
singularity around plate boundary is recommended as the desirable shape function for future research.

Introduction

The analysis of a thin plate on a soil medium
is a typical soil-structure interaction problem
drawn the attention of both structural and
geotechnical engineers. Numerical technique

such as finite element method is a tool widely

used to solve such problems. But this method
would be expensive since 3-D elements are
required to model the system properly. As an
alternative way, energy method can be used
for the problem.

the
soil-plate interaction problem, choosing an ap-

To apply the energy method for
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propriate function describing shape of the
stress distribution between the plate and soil
medium 1s a key in the success the energy
method.

In this study, general formulation is devel-
oped to predict the flexural behavior of a rec-
tangular thin plate resting on an elastic soil
medium by energy method using two different
shape functions, i.e., power series polynomial
and Chebychev polynomials. Numerical results
of these two methods are compared and dis-
cussed.

Analytical Formulations

The deformation function, w(x, y) of the soil
surface, which also represents the deflection
function of the plate, is related to the contact
stress distribution, ¢(x, y), by the Boussinesque’s
formular(1) as follows :

vs) 6 n)
w(z,y) = 21rG / /b [(¢ - z) )2]1/’dfdn
0}

where, v, is the poisson’s ration, G, is the shear

modulus of the soil medium and (&, ») is the
point where a force is applied. Therefore, if we
assume a contact distribution properly, the de-
flection of the plate and the total potential en-
ergy of the system can be determined. The prob-
lem is what function will make the Eq.1 be inte-
grable for w(x, y) and fit the stress distribution
properly. Generally power series polynomial is
used as a shape function in this kind of problem.
In this study formulation using power series poly-
nomial and chebychev polynomial as the contact

stress distribution will be made and discussed.
If the plate of a size 2axX2b Xt is subjected to a

uniform load of intensity p and rests on a soil
medium, the contact stress distribution can be

assumed as an even power series function of a
spatial coordinates, x and y as follows -

gz y)=p Y, Bzy¥ (2)

i,7=0

where, n is an arbitrary integer and B,j s are
the unknown coefficients. The even power is
assumed because of the symmetricity of the
problem about x and y axis.

Substituting Eq.2 to Eq.1 reduces

w(z,y) = (1= v.)p 5 LB (3)

2rG,
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Fig.1 Plate Division Scheme for Integration

Using the polar coordinates and dividing the area
as shown in Fig.1l, Eq.3 can be integrated and
the resultsing expression for w(x, y) will take the
following form(In the expression the spatial
coordinates x and y are normalized to X and Y as
X=x/a and Y =y/b respectively.) (2) :

o(X,Y) = pi i‘ B,X¥y¥ @)

i=0 ;=0



7238 A6 d Al 335(1993. 9)

W(X,¥) = K Y)Y By H,(X,V) ®)

§=0 j=0
where,

— 20325 10
B, = a®b"V B,

K (L-v)bp
227G,
2 2
H.,(X,Y) :ZZC”"XZ-—-Y:U—x [ﬁ‘“ (h;full: +h;+t+l(_l)ll‘l
2320 ¢=0
+h;+'+l(—-l)'lf+h;+‘*l(—])'“ll‘) +X’ (h;H&l!‘s
R0y h;+l+l(_])113 + h;“’l(-—])'“l,')]
B=a/b, x=b/a
(%)
s t i [
Cypu= 2L N7 =
e s+t+1 (J) si(i - )t
hi=hy=1-X, ha=hy=1+X, hy=he=1-Y, hy=hy=1+Y
- LI
1 =/ du, m=1,23,..8
¢ o \/1+u,
u_hLu h__iu_h;__l_ hr 1
l_xh‘—u;' 1= Xy v :—Xh:—ua' e =Xy =

To evaluate the strain energy stored in the plate
system and to apply the boundary condition
properly, Eq.5 needs to be easily differentiable.
Eq5 1s so complicated that it is hardly
differentiable. It needs to be expressed in an eas-
ily differentiable form. This can be achieved by
approximating the function H,(XY) be
Chebychev polynomials(3).

After the approximation and simplification,
Eq.5 can be written in the following form :

w(X,Y)=K Z Z \2: }: D,r B, X3y

i=03=0r=04=0

- K i i: All‘Yhyi;

1=0 ;=0

(6)

where,

A.’ = Z z Du)r:Bn = (D][B]

r=01=0

ND ND

Dirs = 555 30 Y CartiT 67 300 Tanm)Pann)buth Hrs )

u=1v=; ezl izt

m = 2k (m + k)!

k _ ame K
tm = 27 (-1 m—k mlk!

where, [(n/2] is n/2 if nis even and (n—1)/2 if n is
odd, and ¢, =1if i #0 and , = -
Now the stress contact distribution function

and deflection fuction can be differentiated as
needed.

Boundary Condition

Along the edges of the plate, bending and
twisting moments and the vertical shear force
must vanish. The conditions can be written as
follows(4) :

1. Zero moment conditions :

8%y &*w

z*:z ta = —Dp | — — — =0
[M } x P !:61'2 UP ayz }1:24

v Fuw
[Myly=2s = - D, [B—yf - VPF] _— =0

2. Zero shear force conditions :

Bw Bw } _
zT=xa

[(Valzz2a = =Dy [g +(2- VP)W

Bw w ]
—vp) =0
P16220y |, 4,

here. . ——_Loth
where, D, 120-v,)
rigidity of the plate. Taking the partial derivative

of the function given in Eq.6 and substituting

represents the flexural
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them into the boundary condition, gives 4(n+1)
equations. They can be written in a matrix form
as follows :

(Wil =0 )

where, [4] is the unknown coefficient matrix of
Size NBX 1, i.e., [A] = [A()o, AO]"“AOH’ All,"'A,m]T.
The elements of (W] are functions of i, j, v,, f, 1.

One important point to be noted here is that
the minimum number of terms, i.e., nlor N), to
be considered to satisfy the prescribed boundary
conditions should be greater than the number of
boundary conditions, that is the relationship
N=n+12=5, must be satisfied. Eq.7 represents
4N number of linear simultaneous equations with
N? number of unknown coefficients (generalized
coordinates). Using tthese relationships, 4N num-
ber of generalized coordinates can be eliminated
by expressing them in terms of the remaining
N?—4N number of unknowns (independent
generalized coordinates). Therefore, reducing the
number of unknowns and retaining the indepen-
dent coordinates according to Eq.8 can be
regarded as imposing the boundary conditions.
Eq.7 can be written as follows; [WI]IDI[B] =0,
where, [W D] = [W][D]. It can be partitioned as

wensnanl ] -

It gives the relations ;

[B:] = [T)[Ba], [T} = —[WD,] '{WD,] (&)
which represents that 4N number of unknowns
can be written by the N?—4N number of
unknowns. By this operation total number of
unknowns reduces from N°—2N and [B)
becomes the independent generalized coordinates.

Also to reduce the number of indices from two
to one, Eq.4 will be rewritten as follows :

ij%ﬂ = B1ZQ(1) + -+ + BNZQ(N?)

where ZQ(IK)=X%Y% in which i and j are re-
lated to IK by the formula ; IK=iN+j+1 for 0 <
i < N-1and 0 < j < N—1. Considering Eq.8,
it can be written as

; N3_4N
1T - Glt)Bas @
p Ii=1
where,
4N
G(L) =Y (ZQUk)T(k, L) + ZQ(4N + 1))
k=1

where T(k, I,) is the elelent at k-th row and I-th
column of the transformation matrix (7] in Eq.8.
Similarly, w(X, Y) can be written in terms of the
independent generalized coordinates. For this
purpose we define a new vector ZW as follows :

Zw(II) =Y S Dy XUy = Y D(L.INX¥Y?

=0 s=0 I =1

where, I varies form 1 to 4N, and r and s are re-
lated to I, by the formula, /,=rN+s+1. Then

w(X, Y) can be expressed as follows :

N?-4N
X, Y
w(K' ) ?_‘; F(L)Ban+1, (10)
where
NT_aN

F(Ly= > (ZW(k)T(k. L)+ ZW(N + 1))

=1

and T(K, I,) was defined previously.

Minimization of Total Potential Energy

The total potential energy functional, Uy, of
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the plate-soil medium system is composed of
three contributions, i.e., strain energy stored in
the plate due to bending, strain energy stored in
the soil medium and work done by externally ap-
plied load. Each of these are given by the follow-
Ing expressions :

1. The strain energy stored in the plate, U bt

D, f* 71 2
U, = -—21/_1/_1 [Fb_s (bwkx + a*viy + 2820 wxxwyy)

1
+2(1 - V’);E (wfry - wxxwyy) dxXdYy

where, wyy Is the second derivative of w with re-
spect to X, xyy is the second derivative of w with
respect to Y, wyy is the partial derivative of w

with respect to X and Y respectively.
2. The strain energy stored in the soil medium,
U, is equal to the work done by the contact

stress at the plate-soil medium interface.

1 1 pn
U, = Eab/ / (X, Y)w(X,Y)dXdY
-1/

3. The work done by the externally applied
load p, U, is given by :

1 1
7 =—pab/ / w(X,Y)dXdY
-1J-1

Differentiating Eq.10 properly and substituting
them into the potential energy terms, total poten-
tial energy terms will be written in terms of the
N?—4N number of independent coordinates. To
find the unknowns, set eqgaul to zero the first de-
rivative, with respect to each of the independent
generalized coordinates, i.e.,

av,
3B(1,) ~ 0 (1)

This will give the following equation :

(X][B] = [F] 12)

} _ Dok & & 1eri(2r — 1)(20 — 1)
X 1) = -3 ;J{:cns(h I')CRS(J’]’)W
Dy, K2 8 ) 160s(2s ~ 1)(2! - 1)
-~ ‘;’g cns(..1.)cRs(J,1,;(2[r BV ——
L Dpak? %“gcnsu LIRS, 1) Jome2s = Dizm - 1)
B S BT T Gm S s~ 3
L Dk 8 i 16rm(2r — 1)(2m — 1)
s ;; CRS(i, I,)CRS(:. 1,)—_._(2“ TR T
XX ) 64raim
+40~ )= §]=l CRS(i, I )CRS(j, 1,)mm
+ Lok b%icRS' 1)[—-——4
L A [F TPy g y TPy gy
4
SN L2
M ’)(z(r—x7)+1)((2(:-»)*1)}
TR [ 4
" Ep]\abg CRS(i,1,) (T e
.
+ N . E—
et (k']‘)mr =)= 1) {2(s ~ 3) + 1)}
where,
4N
CRS(i, L} = D(i,4N + L)+ Y_ T(k,L)D(i. k)
k=1

and r, 5, I, m, iy, j;, iy, jo, i3, and js, are integrers,
which are obtained from the following
relationships :
i=rN+s+1
i=IN+m+1
AN+ L, =4N+5+1
F=igN—jp+1

AN + I, = i3N + 33+ 1

and

N
F(L)=Y CRS(i.1)

1=1

4
(2r +1)}2s+ 1)

Now the independent generalized coordinates
can be obtained from.

(B} = [ X.7'[F]

Finally, substituting the coefficient, [B] into Eq.9
and Eq.10, the contact stress distribution and the
deflection of the plate can be evaluated.
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Formulation Using Chebychev Polynomials for
the Contact Stress

To find the better shape function for the
contact stress distribution, analytical formu-
lation is made for the same problem when the

contact distribution itself is

stress
approximated by Chebychev polynomials, This
time the contact stress distribution will be as

follows :

X, ¥Y)= pZZB,,Tzi(X)Tu(Y) (13)

1=0 ;=0

Exactly the same procedure as before will be
taken and the elements of the matrix [X] in
Eq.12 changes as shown in Appendix B.

D,bK? 16ri(2r -- 121 - 1)

N N?
5 2. 3 CRS(,LICRS(, T e T

=1=1

X(L.L)=

1618(2¢ — 1){20 - 1)

MN’N’CRS'ICRS'I
T L X RS LIRSS L) oy atm 9 )

s=1 =1
16ms(2s ~ 1)(2m ~ 1)

.DyaK? ny . .
+ S ST CRS(i. L)CRS(, I,)mm

=t j=1
Dt I ) ) 16rm(2r — 1)(2m — 1)
+ %Echs(x, L)CRS(j, I’)WW

1=1;=1
K’ N N7
+41-y) . S CRS(i, LYCRS(. I,

1=13=1

) 64ralm
(r+ ) - 1}2(m+ ) ~1)

N
1 .
‘Epmb? CRS(i, 1))
=

[
3-dagia-li !
Z Zln. Y AL+ )2E+9+1)

dy=01=0

anN 1z 1z
= 1
. v V‘ PRy S PE 1)
‘ ;T‘k'll)l:“z-:o"“ N Ty A YT 1)}
1 X rq"‘ 2 Toygi-l i
1 , et
* z""“b; CRS(.L,) L‘:o gﬁ’"- L Ty A T Ty

N

AN A3 23
. S pa-dagrah !
+;1‘(k,1‘)’.2=0":n1u. 4 (2(1,+v')+1)(2(11+s)+!)J
The elements of matrix [F] will remain the

same.
Numerical Results and Discussions

The analytical formulation presented so far
1s numerically investigated for an isolate
square plate foundation resting on an elastic
soil medium. The plate is assumed to be
subjected to an uniform load and thin plate

theory is used. The results thus obtained are
compared with the results by a three
dmensional finite element solution using SAP
IV(5). Also, the flexural moments obtained are
compaed with the results reported by
Gorbunov-Posadov(6) and Zamman and

Faruque(7).

W= SRR ()

where, a, b and ¢, represent the dimensions of

the plate, E is the modulus of elasticity, v is the
poisson’s ratio and subscrips p and s represent
the quantities pertaining to plate and the soil me-
dium, respectively. In addition, the plate deflec-
tion, w(X, Y ), the contact distribution, ¢(X, Y,
and the flexural moments of the plate, M, and

My along the X and Y axis are

nondimensionalized as follows :

E:
_———w

w(X,Y) = a1 = 71)

(X, )

IX,Y)= o(X.Y)
ﬁx (X, Y) = Mx (X, 1)
My(X,Y) = My(X,Y)

A square plate (a/b=1) in smooth contact on an
isotropic elastic soil medium is selected as an
example. The plate is subjected to a uniform load
of g=lpsi. This is solved by finite element
method using SAP IV, and using energy method
assurning a power series to approximate the con-
tact stress distribution. In the finite element
method, eight-noded
isoparametric element with three translational

three-dimensional

degree of freedom per node is used. Due to the
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it

symmetricity of the problem, only one quater
part of the plate is modeled using the finite
elements(Fig.2). The effective zone of the soil
medium considered is bounded by 5 times th
plate dimension in the z direction and 1.5 times
the plate dimension in the x and y direction, re-
spectively(Fig.3). This boundary is consistent
with the values reported by Boussinesque and
Westergaad. The nodes of the planes of sym-
metry and those on the planes defining the
boundary of the soil medium are constrained
such that no translation normal to these planes
occurs. Nondimensional plate deflection and the
contact stress distribution are compared with the
results obtained by the three-dimensional finite

. NQ\A\Y\X\‘\j N N N N, .
\\Q ALY AN \\X Y
N :ﬁ L O U W W W —
WSS e
:\:\:N NNy ~
N
o IR S SRNS S S SS,
l N ‘%\QE\\ OO
:\\ J:\\\\ SN AN
RN
X ) \\ NN
\J]N \\\ \\
I\ J\ \\t\\

|

Fig.3 Finite Element Mesh Used for the Square Plate Problem

element analysis. Flexural moments are
compared only with two results reported by
Zaman and Faruque and Gorbunov-Posadov.

A comparison of the non-dimensional plate de-

flection for K, =10 is shown in Figd. It is
observed that the deflection obtained by the
method developed in this study does not change
significantly as the number of terms in the
power series are increased from 4 to 5. Also the
present analysis predicted the deflection at the
plate center which was 4.5% less compared to
the results obtained by the finite element nalysis.
In Fig.5 the non-dimensional flexural moments
for a plate with K, =10 are compared with the

existing solutions. The results obtained for the
moment at the plate center by the method devel-
oped in this study is 29.79 higher than the value
reported by Gorbunov-Posadov and 12.2% higher
than the value reported by Zaman and Faruk.
But the boundary moment predicted in this
study converges to zero, as they should. but
those reported by Zaman and Faruk did not do
so. Fig.6 shows the contact stress distribution
obtained by the power series approximation
when n=4 and n=5. In this figure the results
are compared with those obtained by the

24
22
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Normalized Deflection (i)

> o b b b

o
Y

0.0 - v v
00 01 02 O3 04 05 06 07 08 09 1.0

Normalized Distance Along X- and Y-Axis

Fig.4 Comparison of the Plate Deflection Variation
Obtained Using the Power Series Approximation an
That Reporte in the Literature for Kg=10
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Fig.5 Comparison of the Moment Variation Obtained Using
the Power Series Approximation and That Reported in
the Literature for Kg=10
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ace FEM
Fig.6 Contact Stress Distribution Obtained Using the Power
Series Approximation and the Finite Eiement Analysis

for Kg=10
three-dimensional finite element analysis. When
n =05, the matrix [X] in Eq.12 was found to be
ill-conditioned making it difficult to invert it. Be-
cause of this trouble, contact stress distribution
in Fig.6 shows some wave form which should
not be so.

Fig.7 shows the deflection of the plate
obtained by the
Chebychev polynomials for the contact stress dis-
tribution. It is found that the deflection does not

formulation using the

change significantly as n increases beyond 4.
The variance of the flexural moment for K, = 10

along the x and y axis obtained by using the
Chebychev
compared with the results reported by Zaman

polynomial  approximation is
and Faruque and Gorubnov-Posadov in Fig.8. As
shown in this figure, the results obtained by the
Chebychev approximation for n =4, 5, 6 more or
less overlap each other, showing that flexural
moments . predicted do not change significantly
as n is increased beyond 4. Fig.9 shows the con-
tact stress distribution obtained by using the
Chebychev approximation along with the results
obtained by three-dimensional finite element
analysis. Erom the figure, it can be seen that the
variation of the contact stress predicted near the
center of the plate by using the Chebychev
polynomials does not change significantly as n is
increased, whereas, the variation of the contact
stress gradient near the boundary increases rap-
idly as » is increased, which implies that as the
number of the Chebychev polynomial terms is
increased, better prediction for the contact stress
distrbution can be expected.

2.4
22 FEM
2.0 /
——
1.8 /’ / /
1 n=4 n=5 n=é

-
-~ o

Normalized Deflection (w)
o 0 o o » =
(-

0.0 —
00 01 02 03 04 05 06 07 08 08 1.0
Normalized Distance Along X- and Y-Axis

Fing.7 Plate Deflection Obtained Using Chebyshev Poly-
nomial and the Finite Element Analysis for Kg=10
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Fig.8 Comparison oth the Moment Variation Obtained
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the Literature for Kg=10
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Fig.9 Comparison of the Contact Stress Distr. Obtained
Using the Chebyshev Polynomial and the Finite’ El-
ement Analysis for Kg=10

Conclusions and Recommendations

From the results presented, it can be
concluded that the simple power series poly-
nomial does not give a good representation of
distribution, The
Chebychev polynomial approximation for the

the contact stress

contact stress distribution results in a better
control over the solution, making it possible to
invert the matrix [X] in Eq.12 up to the case

when the number of the polynomial terms, n, is
equal to 6. On the other hand, the simple power
series approximation results in an ill conditioned
matrix [X] when the number of the polynomial
terms, n, is increased beyond 4. This address the
irnportance of selecting a proper shape function
to approximate the contact stress distribution in
the plate-soil interaction problem. Finally it is
recommended that the contact stress distribution
q(X, Y), be approximated by a new function
which incorporatps the stress singularity terms
around the boundary of the plate. It can be
achieved by dividing the Chebychev approxi-

mation function in Eq.13 by  1-X?+v 1—y2).
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