A Framework for Inteligent Remote Learning System

f 3% (E3ddz F43RYgay a4)

1. INTRODUCTION

Communication technology is being exploited to create competitive advantage in
the marketplace, increase productivity, and enable new forms of organizational
design. Many organizations now have found that information networking is a
management-level 1issue with the same importance as information systems

applications and the data resource,

Training and educational entities are no exceptional in terms of the degree of
innovation when deems as a business organization. How well the organization

currently uses electronic communications technologies is a significant subject,

An training and educational institute in their nature should be obliged to the
order to be an academic and educational capacity.
(1) Bulletin board and consultation services.
(2) Instructional, or computer-based learning and training.
(3) Informational database services and delivery,
(4) Data communications.
) Storage technology with hypermidea equipment,
) Specific application software with input/output devices,
) A knowledge-based environment for management and research units.
) End-user computing support that includes operating system and level

routines and utilities,

Intelligent remote learning system(IRLS) is a system that incorporate
communication technology. The opportunities rest on the advantages of modern
communications technology but it will also be weighted against their costs.
Fortunately it is still feasible when we considered the existing available

SYys tem resources,

2. ARCHITECTURE OF IRLS
2.1 System Configuration of IRLS

IRLS works under an network environment: a network configuration of machines

- 195 -

that exchange information among themselves. The information originating at the
instructor’s side can be transmitted along a communication line and delivered to
the intended participant in an intelligent form,

Implementation of IRLS is devided into two phases as follows:

Phases 1: It is more than an experimental system that a real sophisticated
system while it still has the function of communication capabilities centered
wvithin a single host machine. It include most of the instructional facilities

and a prototype of database system which can be accessed by the legal parties.

Phase 2: In order to make IRLS to be more reasonable remote learning system,
consideration has been taken for the feasibility study of a heterogeneous
machine environment on which the IRLS can work. Another characteristic of IRLS
is the build-up of an integral database subsystem that is used to keep track of
all the student’s grade history and other academic records, Besides, program
routines are incorporated for the attainment of a powerful editing capability

which is developed to encompass more sophisticated editing functions.

Nowadays window operation has been one of the main topic of software
engineering, it is something short to be a complete piece of work without
introducing the asset of window functioning. Prospects for IRLS include a good
computer-based learning systemn, a database engine, a self-contained
communication entity, and a tutorial system. All of these capabilities

4

contribute to it's name of an "Intelligent Remote Learning System,’

2.2 Machine 7 Network Configuration for IRLS

IRLS implementation relies heavily on network services and it is written in C

on Ultrix/VAX 8550, which supports TCP/IP,

TCP/IP was initially developed by the United States Department of Defense to
run on the ARPANET. ARPANET is a packet switching wide area network which was
firstly demonstrated in 1972, Today the ARPANET is a part of a wide area’
network known as the DoD (Department of Defense) Internet, or the Internet, for

short. Presently the term Internet is used to describe both the protocol family

- 196 -

and the wide area network.

Every time when network is being referred to network protocol is sure to set
in behind the scenes., Internet protocol family included transmission Control
(TCP), User Datagram Protocol (UDP), Address Resolution Protocol (ARP), Reverse
Address Resolution Protocol (RARP), and Internet Control Message Frotocol
(ICMP). The entire family is popularly termed as TCP/IP, reflecting the names of

the two main protocols.

TCP/IP provides services to many different types of host machines connected to
heterogeneous networks, These networks may be wide area networks, such as
X.25-based networks, but they can also be local area networks, such the one

installed in a single building.

The TCP/IP protocol structure can be conceptualized as a series of layers as

shown in the following figure 2. 1:

Layer Network Services

Application Telnet, FTP, TFTP

Transport TCP, UDP

Network IP, ICMP

Data Link ARP, RARP, device driver (such as Ethernet)
Physical Cable or other devices (such as an Ethernet board)

Figure 2.1 Layers of TCP/IP

- 197 -

The following figure 2.2 shows an interaction of sender and receiver.

SENDER RECIPIENT
Application Application
(Source) (Source)
| 1
Transport Layer Transport Transport Layer
(TCP) Level (TCP)
Interface
! (TLI) 1
Network Layer Network Layer
(IP) (IP)
| t
Data Link ' Data Link
Layer Layer
| 1
Physical
Physical Layer >1 Physical Layer
AAJ Connection

Figure 2.2 Sender/Receiver Interaction

2.3 STREAMS in UNIX communication service

IRLS implementation relies heavily on UNIX's existing network services,
STREAMS was incorporated in UNIX system VRelease 3 to augment the character
input/output (I/0) mechanism and to support development of communication
services. A well defined and contrived structure of STREAMS makes it easy for a
system programmer to have a good command in dealing with system communication

tasks.

STREAMS defines standards interface for character 1/0 within the kernel, and
between the kernel and the rest of the UNIX system, It consists of a set of
system calls, kernel resources, and kernel routine. As STREAMS does not impose
any specific network architecture, so its standard interface and mechanism
enable module, portable development and easy integration of high performance

network service and their components. Upward compatibility with the character

~ 198 -

1/0 user level functions like open, close, read, and write is one of its many

benefits,

In one word STREAMS is a set of system calls, kernel resources, and kernel
routines, STREAMS provideds a flexible, portable, and reusable set of tools for

development of UNIX system communication services (Figure 2.3).

User Process

User Space

downstream Kernel Space

Stream Head

Module

(optional)

Driver

0

External Interface Up stream

Figure 2.3 STREAMS

STREAMS are composed of four components mainly: queues, messages, modules and

drivers, The components of STREAMS are briefly discussed in the following,

2.3.1 Queues

Queues structure constitute an essential part in IRLS through which interface
between a STREAMS driver or module and the rest of the Stream can be achieved,
A queue’s service rcutine is invoked to process messages on the queue. It

usally removes sucessive message from the queue, processes them, and calls the

- 199 -

put routine of the next module in the stream to give the processed message to

the next queue,

A queue’s put routine is invoked be the preceding queue’'s put and or service
routine to add a message to the current queue. If a module does not need to

enqueue messages, its put routine can call the neighboring queue’s put routine.

Each queue also has a pointer to an open and close routine. The open routine
of a driver is called when the driver is first opened and on every sucessive
open of the Stream. The close routine of the module is called when the module
is popped (removed) off the Stream, The close routine of the driver called when

the last reference to the Stream is given up and the Stream is dismantled.

2.3.2 Messages

Message is a set of data structure used to pass data, status, and control
information between user processes, modules, and drivers, All STREAMS message
are assigned message types to indicate their intended use by modules and
drivers and to determine their handling by the Stream head. A driver or module
can assign most types to a message it generates, and module can modify a message
type during specified message types and sent\d them down-streams, and it will
respond to other calls by coping the contents of certain message types that were

sent upstream,

In some cases, messages may contain urgent information (such as BREAK or ALARM
conditions) which must pass through the Stream very quickly. To deal with these
cases, STREAMS provides multiple classes of wmessage queuing priority. All

messages have an associated priority field.

Message priority is defined by the message type: once a message is created,
its priority cannot be changed. Certain message types common in equivalent high
priority/ordinary pairs, so that a module or device driver can choose between

the two priorities when sending information.

- 200 -

2.3.3 Modules

A module perform intermediate transformations on messages passing between a

Stream head a driver, They may be zero or more modules in a Stream,

User Process

$

User Space

Kernel Space
Stream Head

downstream]]
Module QUEUE QUEUE
B "Bd” "Bu” ——»———~—1
i t)
Message
Module QUEUE QUEUE "Bu”
B i "Ad"” "Au”
Message t
"Ad” '
upstreanm
——| QUEUE
pair
Stream
Driver End
Routine
T

External Interface
Figure 2.4 A Stream in More Detail

Each module is constructed from a pair of queue structures. One queue

performs functions on messages passing upstream through the module, The other

set performs another set of functions on downstream messages.

Each of the two queues in a module has distinct functions, that is, unrelated

- 201 -

processing procedures and data. The queues operate independently and "Au”
(Figure 2.4) will not know if a message passes through "Ad” (Figure 2.4) unless
"Ad” is programmed to inform it. Messages and data can be shared only if the

developer specially programs the module functions to perform the sharing.

Each queue can directly access the adjacent queue in the direction of message
flow (for example, "Au” tc "Bu” or "Bd” to "Ad”). In addition, within a module,

a queue can readily located its mate and access its messages and data.

Each queue in a module points tp messages, processing procedures, and data as

follows:

1) Messages : These are dynamically attached to the queue on a linked list
("Message queue”, see "Ad” and "Bu” in Figure 2.4) as they pass through the

module,

2) Data : Developers may use a private field in the queue to reference private

data structures {for example, state information and translation tables),

3) Processing procedures : A put procedure processes messages and must be
incorporated in each queue. An optional service procedure can also be
incorporated. According to their function, the procedure can send messages
upstream and/or downstream, and they can also modify the private data in their

module,

2.3.4 Drivers

Drivers that are to be included are services of an external 1/0 device, or a
software driver (pseudo-device driver), IRLS uses driver to handle transfer
between the kernel and the devices and does little or no processing of data
other than conversation between data structure used by STREAMS mechanism and

data structures that the device understands.

Note : Basically there three differences between modules and drivers in IRLS
implementation,
1. A driver is able to handle interrupts from the device.

2. A driver can multiple Stream connected to it.

- 202 -

3. Adriver is initialized/deinitialized via "open” and "close” system
calls.
Similarities are :
Drivers and modules can pass signals, error codes, and return values to

processes via message types provided for that prupose.

2.4 Multiplexing in IRLS

Multiplexing 1is suitable for many applications, IRLS is capable of
multiplexing Streams in a variety of configurations, Typical multiplexing

examples in IRLS are terminal window facilities.

Child Child Child

Process Process Process

0 T I

Modules Modules Modules

0

>| Window <
Driver

$

tty
Driver

Figure 2.5 Window Multiplexing Streams

2.5 Interprccess Communication in IRLS

Without the using Interprocess Communication mechanism which is implemented as
a part of the UNIX system utilities IRLS will never work properly as we expect.
System V provides three seperate forms of IPC: they are semaphores, shared
memory, and message queues, Each of these mechanism, while powerful in its own
area, tends to rather restrictive in the types of uses to Which it can be put.
The Berkely UNIX method, called "sockets,” provides and interface that is a
generalization of the pipe mechanism already familiar to most UNIX programmers,

The pipe mechanism is actually implemented in Berkely UNIX as a pair of

- 203 -

connected sockets.

User

Process

User

/ \ Kerner

Stream
Head

Stearm
Head

Figure 2.6 Pipe (STREAMS - based)

In the above "Pipe” mechanism there is no need for a driver. Ordinarily a
driver is required for a STREAMS, while the module is not necessarily a required
component. A STREAMS can be one without any module like the "pipe” above.

(Figure 2.6)

3 Philosophy of IRLS in terms of IPC

IPC in IRLS is achived by a model as belows :

One process is called the server: it is responsible for satisfying requests
put to it by the other process, the client. Normally when a server program is
invoked (like instructor's Demon in IRLS), it asks the operating system for a
socket. When it gets one, it assigns a well -known name to that socket, so that
other programs can ask the operating system to tilk to that name (the actual
integer value will not be knownto other programs). After naming the socket, the
serverlistens on the socket for connectionrequests form client process to come
in. When a connection request arrives, the server may accept or reject the
connection. If it accepts the connection, the operating system joins the client

and se~ver together at the socket, and the server may read and write data to

- 204 -

andfrom the socket just as if it were a pipe to the client.

The client starts the process by asking the operating system for a socket, and
then requesting that the socket be connected to some other socket that has a
given name. The operating system tries to find a socket with the given name,
and if it succeeds, it will send the process which is listening to that socket a
connection, the operating system joins the two processes together at the socket,
and the client can read and write data to and from that socket just like there

exists a pipe to the server.

4 Summary

Intelligent remote learning system is a system that incorporate communication
technology and others : a database engine, an intelligent tutorial system.
Learners can study by themeselves through the intelligent tutorial system. The
existence of a communication, database and artificial intelligence enhance the

capability of IRLS.

According to Parsaye. an intelligent databases should have the following
features
1) Knowledge discovery
) Data integrity and quality control
) Hypermedia management
) Data presentation and display
) Decision support and scenario analysis
} Data format management

) Intelligent system design tools
I hope that this research of framework for IRLS paves for the future research.

As mentioned in the above, the future work will include an intelligent database,

self-learning mechanism using neural network.

- 205 -

REFERENCES

Ambrosch, W. D., Maher, and Sasscer, B. (1989). The Intelligent Network. NY:
Springer-Verlag.

Burrows, B, C. (1986). Planning Information Technology and the Post-Industrial
Society, Long Range Planning, vol. 19, no.2, pp. 79-89.

Kochan, S. G.,, and Wood, P. H. (1987). Topics in C programming. Hayden Books
UNIX system library.

______ (1990), UNIX system V Release 4, Network User’s and Administration’s

Guide. Unix Software Operation.

Parsaye, K., et al (1989). Intelligent Databases, Objected-oriented, Deductive
Hypermedia Technologies.

Rao, K. R., and Srinivasan (1985). Teleconferencing. NY: Van Nostrand Reinhold
Company. .

Sullivan, C. H., and Smart, J. R. (1987). Planning for Information Networks,
Information Technology Planning Corporation AT&T, vol. 28, no. 2.

Touretzky, D. S. (1990). Advances in Neural information Processing System 2.
Morgan Kaufmann,

Yoo, Y. D. (1991). An Expert Training System Loosely Coupled to External
Database Systems, Proceedings, IEEE/ACM International Conference on
Developing and Management Expert System Programs, Washington, D.C., Sept.

pp. 24-28.

- 206 -

