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Some Statistical Properties of MUSIC Null-Spectrum
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ABSTRACT

A statistical performance analysis of the multiple signal classification (MUSIC) method is addressed in this paper.
Some statistical properties of the MUSIC null-spectrum are obtained, From this we obtain a more exact expression
of the resolution threshold which is (hen used Lo evaluate the resolution capability for two closely located signal
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L. introduction value of the null-spectrum is zero. In practice all
that is available is the sample null-spectrum,
Various techniques for finding directions of from which the DOA’s of multiple signals should
multiple signal sources have been developed in be estimated.
the last two decades. In [1], for instance, the The performance of the sample null-spectra, e.g.,
multiple signal classification (MUSIC) was the MUSIC and Min-Norm sample null-spectra, has
proposed : variations of the MUSIC method have been investigated in (1] by simulation. The statisti-
also been studied |e.g., 2]. The common feature cal properties of the sample MUSIC null-spectrum
of these methods is the null-spectrum, which is a have also been analyzed, For example, the first and
nonnegative function of direction of arrival second order statistics of the sample MUSIC
(DOA) with values ideally zero at the DOA’s of null-spectrum are obtained in [3], and a more exact
signal sources. The DOA’s of multiple signals can expression of the second order statistic is obtained
be found by taking the directions at which the in [4). In addition the statistical properties of the
KAIST DOA estimates obtained by the MUSIC method are
H4U411993. 3. 2. derived in {5].

In performance analysis the resolution capa-
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bility of the sample oull-spectrum for two
closely-located signal sources is of importance, as
shown in [3,4,6], The resolution capability of the
sample null-spectrum can be characterized by the
probability of resolution (PR} [3,4] which is the
probability that the values of the sample
null-spectrum at DOA's of two closely-located sig-
nal sources are smaller than that at the middle of
the two DOA’s, Although the PR is a reasonable
measure for the resolution capability of the
sample null-spectrum it reguires heavy compu-
tation load. To evaluate the resolution capability
the resolution threshold (RT) can alternatively
be used, which is defined in [3,6]. An important
advantage of the RT when compared with the PR
is its computation facility.

In this paper we focus on the statistical proper-
ties and resolution capability of the sample MU-
SIC null-spectrum: we obtain a more exact ex-
pression for the RT which ¢an also be used when
the two DOA's are not quite close,

Hl. Preliminaries and Assumptions

Let us consider an array of [ sensors of unity
gain. The array output vector is denoted by y{(#)
€L, where **1 is the space of .. X1 complex
valued column vectors. For narrow-band sources,
we assume the standard model of observation :

y(£) = Ax(£)+nlt), t=1,2,....N, (1)

where the column vector x(¢} is an MXx1 zero
mean complex random vector of source time
series as observed at the array phase center, and
n(t) is the additive noise vector.

Assumptions on the signa! source x(f) and the

noise n(¢) are as follows :

Al.The x(£{}, t=1, 2, . . . ,are independent
zero mean circular normal random vectors
with positive definite covariance matrix
E{x(#)xH{f)]=R,.

A2.The n(f), t=1,2,...,are independent circular

normal random vectors with zero mean and
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covariance matrix o7,
A3, The two vectors x(¢) and n(s) are indepen-
dent for any £,5=1,2,...
In (1) the matrix 4 is an LxM (L.> M) com-

plex matrix having the particular structure
A=[al6)),al02},...,alby)),

where 8; is the DOA of the ¢-th signal, Here a(#;)
€ s called the steering or transfer vector.
The covariance matrix of y(¢) 1s

Ry =AR, A"+ gl (2)
where H denotes the Hermitian. Assumption Al
implies that the covariance matrix R, is a full
rank matrix. Let A;22;>..=A; denote the

ordered eigenvalues of R,. Since rank({AR,AY)
=M, it follows that

A>e for 1<i<M

and

N=g for MH+1<i<i

Let the norrualized eigenvector corresponding to
A be denoted by e, i=1,2,...,L, with which we

define two matrices

S=leyes,....ey]

and
G=[ey+1,0M+2....01]
of size LxXM and 7 X{I.—M), respectively. The
ranges of the matrices 5 and (; are called the signal
and noise subspaces, respectively.

We observe that (1]

a(8)G=0 for €0 {3)

where @=186,,8,....0s Is the set of DOA's, be-
cause the vectors {a(8;), 1<i/< M} are orthogonal
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to the noise subspace. Then the MUSIC
null-spectrum f{#) is defined by

f8) =a"()aG"a(s), {(4)

which is nonnegative for all # and has zeroes only
atge@ [5].

In practice, we can not obtain R, from a finite
observation of y(¢). Thus let us define

A

R=L v(ny(0) (5)
Vo=

to be the sample covariance matrix of {v{2),7 =1,
2....,.N}, which is an estimate of R.. As we have
done in the eigendecomposition of K., let {¢,é,,
-...,é1} denote the normahzed eigenvectors of K,
with the associated eigenvalues being arranged in
the order of decreasing magnitude. Note that ¢;, i
—1.2,...,L, are random vectors. In addition Let
,ea] and G= [L:M+|,:’M +2,....61) be

the sample signal and noise subspaces, respect-

.$T=‘-' [51‘22. ‘el

ively, The MUSIC sample null-spectrum {9} is
then defined by

J(er=a"(8)C ' al9). (6)

It is thus expected that F(8) has minimum points
around #E€ O,

fl. Asymptotic Statistical Properties

In this section we discuss the asymptotic (for
large N, i.e. ,N—w) mean and variance of the
sample null-spectrum {(from now on we simply
write the “sample null-spectrum” to denote the
“sample MUSIC null-spectrum”) with finite
observations.

Let us consider the sample null-spectrum
F8) =a"{0)G ¥ aln), (7)

and define the projection of (@) on the eigenspace
which is given by

ROy =|5'C)8al9), (8)
or
a®)=[S'GIh (). {9)

Using (9), we have from (7}

s*ais shadc
. | kio)

Fo) =h”(9)[ -

=" (B)SSPEISSMal8)+a"(8) GCHTTSS al8)
+a"(0)SSHEACG a0+ (0)G G GG al9).

(10}
Now let us rewrite (10) as
F(8Y=F(8) +6()+v(®), (11)
where
) =" (066G GG al0), (12)
B(0) = a"(8)SS" GG s al8), (13)
and
2(0) = 2Relad (0)GGAGGHS S a(9)), (14)
We have for §#6;
YO=7OI_ 41 /), (15)

[t 12

180} | =0(1 / V'N), {16)
and
LB — o1/ V), (17)

where ¢{8) =G¥a{8). Thus when ¢ — 8;, since
(0) — 0, the asymptotically dominant term of
F£(8) — £(8) is bio).
Lemma 1 : The normalized error, 26(8) /47(8), has
asymptotically x* distsibution with degree of free-
dom 2(1.— M), where
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.,;(e)=—1{,[?'“__‘I S prer el CATITA LN (18)

Thus the asymptotic mean and varniance of &(8}

are given by
E[6(0)]=(L.—M)o}(8)
and

var [6(0)) = (1.— M)a2(0).
Proof : See[7].

Theorem 1 : The asymptotic mean of the sample
null-spectrum F{6) for #=8,€@ is given by

g0 1-foy = M8 s angein)

(19)
Theorem 2: When 8 is between 8, and #; and the

difference between 8, and @, is sufficiently small
enough to let var [v(8)] =0, we have

var| £(0)] ZJL—J#L[il j%'_‘:’;jz' la"(@)exd?] (200
Proof : See [7).

V. Computer Simulation
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The RT 1s the array signal to noise ratio
(ASNR) at which E1/(6,)]=E{ f(8:)1=ELS (0m) ]
for two equal-power sources, where {#,= (& +8)
/2. For standard MUSIC the RT was derived in
[3], and the RT for the beamspace MUSIC aere
was derived in [6], where the definition of the
RT is extended to the case of two unegual-power
sources also, Denoting the RT by & we have min,
FLf(0,) = F(0:)1=0 for ASNR=®. 1f the ASNR
is greater than & we can discriminate two signal
sources. Conversely, to discriminate two closely-
located signal sources the ASNR should be
greater than &

In Tables 1-4 the RT's for various cases are
obtained. Computer simulations show that the

values of the RT are quite exact, The variance of
F(8) — £(8;) obtained by computer simulation is
not, however, close to the computed value. This
also comes from neglecting the error v(#) 0 (11).
However the orders of these values are the same.
In these tables it is seen that the RT is increased
when the correlation of the two signal sources is
increased and /or the difference of the two DOA’s
becomes small. In addition when the ratio of the
two signal source powers becomes small. the RT
is increased.

It is noteworthy as we mentioned earlier that
the RT can be found when the two DOA's are not
quite close as we can see from Tables 3 and 4.

corr. coefl, p=0+10 p=05+10.5
u=}WT’; v=1 v=05 vel v=05
[RT (ASNR, dB) 45.34 49.30 50.33 53.54

E[f(6:)] 2.34¢-05 (2.37¢-05)* | 9.40¢-08 (9.47e-06) | 1.49e-05 (1.48¢-05) | 7.11e-06 (7.06¢-06)
var(7(61)] 6.87e-11 (6.86¢-11) | 1.10e-11 (1.09e-11) | 2.78e-11 (1.96e-11) | 6.31e-12 (4.42¢-12)
E(f(8;) 2.34¢-05 (2.41¢-05) | 1.88e-05 (1.93¢-05} | 1.49¢-05 (1.53¢-05) | 1.42¢-05 (1.46e-05)
var(f(62)} 6.87¢-11 (6.62¢-11) | 4.43e-11 (4.26e-11) | 2.78¢-11 (2.65¢-11) | 2.53e-11 (2.42¢-11)
Elf () 2.340-05 (2.42¢-05) | 1.88¢-05 (1.92¢-05) | 1.496.05 (1.55¢-05) | 1.42e-05 (1.46e-05)
var{f(0m)) . 1.72e-11 (5.13e-11) | 6.24e-12 (2.5%¢-11) | 1.27e-12 (1.13e-11} | 7.56¢-13 (7.90e-12)
Elf(Bm) — f(61)] | 4.16e-13 (5.22¢-07) | 9.38e-08 (9.81¢-06) | 1.72e-14 {6.86e-07) | 7.08.06 (7.54e-06)
var(f(0m) — f(81)] | 5.16e-11 (8.87e-11) | 1.17e-11 (3.30e-11) | 2.36e-11 {2.82¢-11) | 5.50¢-12 (1.16e-11)
E[f(8m) — 1(62)) | 4.160-13 (1.28¢-07) | -3.33¢-08 (2.53¢-09) | 1.71e-14 {2.39¢-07) | -2.90e-08 (3.63¢-08)
var(f(8m) — f(62)] |_5.16¢-11 (9.19e-11) | 2.86e-11 (5.04e-11) [ 2.36e-11 (3.47e-11) | 2.02¢-11 (2.74e-11)

Table 1.The resolution threshold when two DOA’s are 15 and 17° and the mean and variance of the sample
null-spectrum at the resolution threshold (* the values in parantheses are obtained by comuter simu-
lation wath 100 trials and those without parantheses are theoretical values, ),



The Journal of the Acoustical Society of Korea, Vol, 12, No.1E {1993)
corr. coeff. p=0410 p=05+105
v=FPlh v=1 v =105 v=1 1 v=105
RT (ASNR, dB) 38.18 42.11 43.25 46.42
E[f(6))} 1.23¢-04 (1.24e-04) | 4.93e-05 (4.98e-05) | 7.65e-05 {7.59¢-05) | 3.68e-05 {3.65¢-05)
var{f(8:)] 1.88e-09 (1.91e-09) | 3.04e-10 (3.05¢-10) 7.32¢-10 (5.09¢-10) 1.69e-10 (1.18¢-10)
E{f(6:)) 1.23e-04 (1.25¢-04) | 9.89¢-0%5 (1.012-04) 7.65¢-05 (7.81e-03) | 7.36e-05 (7.53¢-05)
var([f{8)] 1.88e-09 (1.75e-09) | 1.22¢-09 (1.15¢-09) 7.32e-10 (6.69¢-10) | 6.78e-10 (6.25¢-10)
E[f(8m)) 1.23e-04 (1.2de-04) | 9.84e-05 (9.89¢-05) 7.65e-05 (7.74¢-05) | 7.33e-05 (7.36e-05)
var[f(6m)) 4.68e-10 (1.37e-09) | 1.72e-10 (6.88e-10) 2.87e-11 (2.69e-10) 1.78e-11 {1.91e-10)

Ef(6m) = f(01))

2.47e-11 (4.92¢-07)

4.92¢-05 (4.91e-05)

9.27¢-13 {1.53¢-06)

3.65¢-05 (3.71-05)

var{f(8m} — f(81)]

1.41e-09 (2.36e-09)

3.18e-10 (8.71e-10)

6.356-10 (7.336.10)

1.52¢-10 (3.00e-10)

Ef(0m) — f(82)]

2.47¢-11 (-1.09e-06)

-4.08¢-07 (-2.34e-06)

9.27e-13 (-7.45e-07)

-3.51¢.07 (-1.71e-06)

var[f{8m) — f(82)]

1.41e-09 (2.46¢.09)

7.98¢-10 {1.37e-09)

6.35e-10 (8.89¢-10)

5.55e-10 {7.24e-10)

Table 2.The resolution threshold when two DOA’s are 15” and 18"

null-spectrum at the resolution threshold.

and the mean and variance of the sample

corr. coefl. p=040 p=05+1:05
v= P[P v=1 | v=105 vl v=05
RT (ASNR, dB) 33.20 37.11 38.37 4].48
1Y) 3.870.04 (3.91e.04) | 1.57¢.04 (1.58.04) | 2.38¢-04 (2.35¢.04) | 1.15¢-04 (1.14e-04)
var(f(81)) 1.87¢-08 (1.93¢-08) | 3.06e-09 (3.10e-09) | 7.07¢-09 (4.91e-09) { 1.67¢-09 (1.16¢-09)
E[1{82)) 3.87e-04 (3.95¢-04) | 3.15e-04 (3.21e-04) | 2.38e-04 (2.42¢-04) | 2.31e.04 (2.362-04)
var(/(82)] 1.87¢-08 (1.70e-08) | 1.24¢-08 (1.14¢.08) | 7.07¢.09 (6.25¢.09) | 6.69¢.09 (6.01e-09)
U (8)) 3.87¢.04 (3.92¢.04) | 3.126.04 (3.13¢.04) | 2.38c-04 (2.40e-04) | 2.20e 04 (2.30¢-04)
var{f(fm)] 4.67e-00 (1.37¢-08) | 1.75¢-09 (6.92¢-09) | 2.40e-10 (2.44¢-09) | 1.56e-10 (1.76¢-09)

Ef(8m) — f(61)]

4.16e-10 (1.13-06)

1.56e-04 (1.55¢-04)

1.45¢.11 (5.06¢-06)

1.14e-04 (1.15¢-04)

var(f{8m) — f(61))

1.42¢-08 (2.33e-08)

3.16¢-09 (8.63¢-09)

6.27¢-09 (7.09¢-09)

1.52¢-09 (2.90e-09)

Ef(0m} — f(8:2)]

416210 (-2.42¢-06)

-2.32¢-06 (-7.89e-06)

1.45¢e-11 (-1.39¢-06)

-1.96e.06 (-5.82¢-06)

var({ (6m) = J82)]

1.42¢.08 (2.45¢.08)

8.19¢-09 (1.37¢-08)

6.27¢-09 (B.48¢.09)

5.59¢-09 (7.08¢-09)

Table 3.Thr resolution threshold when two DOA's are 15° and 19"

null-spectrum at the reaolution Lhreshold.

and the mean and variance of the sample

corr. coefl, p=0+10 p=05+105
v=P/P v=1 v =05 v=1 v=025
RT (ASNR, dB) 29.36 33.22 34.60 37.66

E[f{5))) 9.44¢-04 (9.54¢-04) | 3.84¢-04 (3.88e-04) | 5.72¢-04 (5.64e-04} | 2.80e-04 (2.77¢-04)
var(f(6,)] 1.11.07 (1.16e-07) | 1.84¢.08 (1.87¢-08) | 4.09¢-08 (2.84e.08) | 9.82¢.09 (6.83¢-09)
B (6,)] 9.440.04 (9.50e-04) | 7.73¢-04 (7.87¢.04) | 5.72¢.04 {5.79¢.04) | 5.62.04 (5.70e-04)
var(7(8,)] 1.11-07 (9.84¢.08) | 7.48¢.08 (6.70e.08) | 4.00¢.08 (3.52¢-08) | 3.95¢.08 (3.46¢-08)
Elf(0)) 9.44¢-04 (0.56e.04) | 7.65¢.04 (7.67¢.04) | 5.72¢.04 (5.78¢.04) | 5.54e.04 (5.56¢ 04)

varlf (6m)) 2.77¢-08 (8.21e-08) | 1.060.08 (4.18¢.08) | 1.216.00 (1.33¢.08) | 8.22¢ 10 (9.86¢.09)

E(f(0m} — £(8:))

3.60e-09 (2.92¢-06)

3.81e-04 {3.79e-04)

1.18¢-10 (1.39¢-05)

2.74e-04 (2.78e-04)

var(f(Bm) — f(6)))

8.46¢-08 (1.38¢-07)

1.87¢.08 (5.13¢-08)

3.70e-08 (4.12¢-08)

9.12¢.09 (1.69¢08)

E|f(0m) — £(63))

3.60e-09 (-2.40e-06)

-8.95¢-06 (-2.03¢-05)

1.18¢-10 (-3.84e-07)

-7.42¢-06 (-1.44¢-05)

var|f(8m) — £(92))

8.46e-08 (1.46e-07)

5.04¢.08 (8.26e-08)

3.70e-08 (4.86¢-08)

3.37¢-08 (4.156.08)

Table 4. The resolution threshold when two DQA's are [5° and 20° and the mean and variance of the sample
null-sepctrum at the resolulion threshold.
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V. Summary

We decomposed the estimation error of the
sample MUSIC nu]]-.spectrum into two errors,
from which we ohserved that the sample MUSIC
null-spectrum is a biased estimate of the MUSIC
null-spectrm. The mean and variance of the
sample MUSIC null-spectrm were obtained ana-
lytically.

We also derived a more exact expression of the
resolution threshold which can be used to show
the resolution capability @it is easier to compute
than the probability of resolution, Since the ex-
pression was derived without assuming that the
two DOA's are closely-located, it can also be used
when the two DOA’s are not quite close,
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