The Korean Journal of Rheology,
Vol. 5, No. 2, December 1993 pp.109-124

(AF=8

SRR SEASTEO ARSAS

ogk

s
BHTH A

Hade - Ay

ree

23Tt 7A e
(1993 79 1d A4

Numerical Simulation of Injection Molding Filling
Process of Short-Fiber-Reinforced Thermoplastics

S. T. Chung and T. H. Kwon

Department of Mechanical Engineering, Pohang Institute of Science
and Technology, P.O. Box 125, Pohong 790-600, Korea
(Received July 1, 1993)

B 79 BRe d99) 329 Ay I8 A DG st Eukae] 24 aAdAe AR
A S dEste A A *11%«1 kel olet. Hele-Shaw WA ell shidfofl ofsiA F7Hd &4%
3298 Dinh-Armstrong®] 2d-¢ =2y M2 A ] o A P4 o] fEFic A2E
Aul AL A Foll 3t ﬂﬂﬂﬂl 2o A2E G5 @3t ek FA FAY WM H2E
A AT A A S 3 BT {7 AR S o188t %1 & Alell w3 =l 4 (orientation tensor)9]
M3}t A4S 43 Runge-Kutta ®-& o]-8-3ko] Egich v w3 sl S M9 g W22 o]8-ste] sle)e]
3 F¥ IR RE £ 20] FAANA FA e 2E T"r?{ A Az aet Asbsisick ol @
who2 ofele) 34l AkE AW F9 FAWAA vlE FA F53 H=r)H 32 AR F AHE AR
AEAEE DI FH ZAst] o #-5 ol wE AR N AR el st etz
et

:10

r_-.
N

Abstract—The present study aims at the development of a numerical simulation program to predict a transient
behavior of fiber orientations together with the mold filling simulation for short-fiber-reinforced thermoplastics
in arbitrary three-dimensional injection mold cavities. Dinh-Armstrong thodel including an additional stress
due to the existence of fibers is incorporated into the Hele-Shaw equation to result in a new pressure equation
governing the filling process. The mold filling simulation is performed by solving the new pressure equation
and energy equation via a finite element/finite difference method as well as evolution equations for the second-
order orientation tensor via the fourth-order Runge-Kutta method. The fiber orientation tensor is determined
at every layer of each element across the thickness of molded parts with appropriate tensor transformations
for arbitrary three-dimensional cavity space.
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1. Introduction

In injection molding of short-fiber-reinforced
thermoplastics, the prediction of fiber orientation
is very improtant to obtain the desired mechanical
properties of injection molded parts. It is well
known that anisotropic mechanical properties are
significantly affected by the final fiber orientation
state. The flow during a mold filling process plays
an important role in forming a flow-induced fiber
orientation field. However, the flow field is also
affected by the orientation of fibers. Therefore a
mold filling simulation of fiber-filled polymer must
include an anisotropic constitutive equation in or-
der to describe the system completely.

Jeffery’s model [1], which was developed for
the motion of a single ellipsoidal particle immer-
sed in a viscous fluid, has been a basis of most
studies in this field. Since this model does not
account for the fiber-fiber interaction and does
not consider the effect of fiber orientation on the
velocity field, this is only valid for sufficiently di-
lute suspension. Givler et al. [2], calculated fiber
orientations from the numerical integration of Jef-
fery’s equation along streamlines via the finite
element method. Folgar and Tucker [3] develo-
ped a model for the orientation behavior of conce-
ntrated suspensions by adding a diffusion term
to the Jeffery’s equations in order to account for
fiber-fiber interactions. Dinh and Armstrong [4]
developed a rheological equation of state for semi-
concentrated suspensions. They replaced the mul-
tiparticle problem with a single-particle one with
the subsequent use of Batchelor’s cell model [5]
to estimate the drag on a test fiber to account
approximately for fiber-fiber interactions. Bibbo et
al. [6], showed a good agreement between com-
puted and measured rheological properties using
Dinh and Armstrong model. In recent years seve-
ral different methods have been used to describe
the fiber orientation states. Advani and Tucker
[7] developed the use of tensors to describe and
predict fiber orientation. These tensors offer a co-
ncise representation of orientation state but a clo-
sure approximation is required to obtain a closed
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set of evolution equations for orientation tensors.
Altan et al. [8], studied tensorial approximations
for the description of orientation state for fiber
suspensions in homogeneous flows. A closure app-
roximation for three-dimensional structure tensors
was proposed by Advani and Tucker [9] modify-
ing the scalar measure of fiber alignment. Recen-
tly, Advani and Tucker [10] developed a numeri-
cal method to predict the orientation of fibers in
a thin, flat part. They combined a finite ele-
ment/control volume method of the mold filling
flow and a finite element calculation for the tran-
sient orientation problem. But their orientation
calculation was limited to flat parts. Altan ef al.
[11], presented a numerical method to predict
the transient three-dimensional fiber orientations
in Hele-Shaw flows in irregularly shaped planar
cavities. Each fiber location was traced during
mold filling and along these paths the indepen-
dent components of fourth order orientation ten-
sors were solved at zero volume fraction limit.
Frahan et al. [12], developed a numerical me-
thod for calculating fiber orientation in the midsu-
rface of a molded part of small thickness in injec-
tion molding. Two-dimensional fiber orientation
was predicted in three-dimensional geometries in
the absence of coupling between the flow calcula-
tion and the fiber orientation. More recently,
many researchers simulated the short fiber orien-
tation in an extrudate swell, an injection molding
and a fountain flow field [13-16].

This paper presents a numerical simulation that
couples a non-isothermal mold filling flow and a
transient three-dimensional fiber orientation in
arbitrary three-dimensional thin cavities in injec-
tion molding. The first section reviews the theory
describing the fiber orientation states and the
equation of change for the orientation tensors.
Then presented is a modeling of the coupled mold
filling process with Dinh and Armostrong’s rheo-
logical equation of state for semiconcentrated fiber
suspensions. The numerical analysis describes the
development of a computer simulation program
to predict the mold filling flow field modified by
the presence of fibers and the flow induced fiber
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orientation states. The program combines finite
element/finite difference methods for mold filling
simulation with a numerical method for an integ-
ration of the evolution equations for the fiber
orientation tensor. Finally, several numerical re-
sults are presented.

2. Governing Equations

2.1. Fiber Orientation

There are several different approaches to desc-
ribe the fiber orientation. The simplest form is
the scalar angle between the fiber and one of the
reference axes. In any injection molded parts
there are fibers oriented in many different direc-
tions. A single orientation angle cannot describe
the true orientation state of fibers. The most com-
plete, but complex way to describe the orientation
state is the use of a probability distribution func-
tion, y, which is associated with a unit vector p
along the axis of the fiber indicating the orienta-
tion. The distribution function, y(p,t), is defined
such that it gives the probability of a fiber having
an alignment in the direction p. The probability
distribution function must be periodic, normalized
and satisfy the continuity condition [7]. Using the
distribution function to calculate the fiber orienta-
tion state everywhere in the part would make the
calculation too long and expensive for a practical
use. A more compact representation of fiber orie-
ntation state is thus needed.

Advani and Tucker [7] showed the use of even
order tensors as a more concise description for
the orientation state in a suspension or composite
system. The second- and fourth-order orientation
tensors are

aa:f ppw(p, t) dp

aijkt:§ pippepv(p, t) dp @

The second- and fourth-order orientation tensors
are completely symmetric and the trace of a; is
unity, which is the normalization condition. An
advantage of using orientation tensors is computa-
tional efficiency. We will use the second-order th-

ree-dimensional orientation tensor to descirbe the
three-dimensional orientation state. In this case
there are only five independent tensor compone-
nts.

To predict the flow-induced orientation state by
using compact orientation tensors, we need the
equation of change (i.e. evolution equation) for
orientation tensors. One takes the material deri-
vative of Eq. (1) with the help of Jeffery’s equation
and continuity equation for v, then obtains the
equations of change for orientation tensors [7].

In practical injection molded parts of short-fi-
ber-reinforced thermoplastics, there are too many
fibers to consider the fluid as dilute suspensions,
so Jeffery's equation becomes invalid. The orien-
tation state of concentrated suspensions is similar
to that of dilute suspensions. Howevers, as the
volume fraction of fibers increases, the orientation
state is influenced by fiber-fiber interactions. It
is very difficult to model physically the fiber-fiber
interactions. So Folgar and Tucker [3] suggested
a phenomenological model. They added a diffusive
type of term to Jeffery’s equation by introducing
a pheomenolgical coefficient for modeling the ran-
domizing effect of mechanical interactions bet-
ween fibers.

Folgar and Tucker’s equation [7] of change for
the second-order orientation tensor in a concent-
rated suspension is

Da,~ 1
——I_)t; = E((Dikakj - az’kwkj)

1. . .
+ o Myt ainYes — 2¥uaie) + 2C 75— aay)
2

where §; is a unit tensor and o equals 3 for three-
dimensional orientation. w; and vy, are the vorti-
city and the rate of deformation tensors, respecti-
vely, defined in terms of velocity gradients as

o= oy, _ du; duy; +8u,-

aX,' an SR aX,' an

¥ is the generalized shear rate defined by
. /1.,
Y=\ i
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And A is a parameter related to the particle shape.
It is given as

rr—1

r+1

A=

where r, is the aspect ratio of the fiber. The dime-
nsionless interaction coefficient C; describes the
strength of fiber-fiber interactions. In fact, C;
could be variable depending on the fiber orienta-
tion state, fiber aspect ratio, fiber volume fraction,
etc. Without a detailed model of interactions there
is no way to predict C;; it is assumed to be cons-
tant in the present study.

To solve Eq. (2) in terms of a; we must intro-
duce a suitable closure approximation for the fou-
rth-order tensor a;u. There are several types of
closure approximations: the linear closure appro-
ximation is better for a random distribution of
orientation, while the quadratic closure approxi-
mation is exact for a perfectly aligned orientation
state. A hybrid closure approximation, which mi-
xes the linear and quadratic forms according to
a scalar measure of orietation f, performed best
for a wider range of orientation states [9]. We
will use the hybrid closure approximation given
for the three-dimensional orientation in [9].

a=1—Dau+f a5 3

where a;; and a;, denote the linear closure app-
roximation and the quadratic closure approxima-
tion, respectively. The scalar measure of orienta-
tion for three-dimensional orientation field is defi-
ned by

f=1-27 det[a;]

f varies from zero (in case of a random orienta-
tion) to unity (in case of a perfectly aligned orien-
tation), so that f can be regarded as a measure
of orientation.

2.2. Injection Molding Filling Flow

In injection molding filling flow of short-fiber-
reinforced thermoplastics, there exists the coup-
ling between the flow field and the fiber orienta-
tion. Several models are available for calculating
flows coupled with fiber orientation. Dinh and Ar-
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mstrong [4] developed a rheological equation of
state for semiconcentrated fiber suspensions.
Their model treats slender cylindrical fibers and
ignores the fiber thickness effect. The model is
valid for a semiconcentrated region where the
average spacing between neighboring fibers is
greater than its diameter D but less than its le-
ngth L. Within this concentration range, fiber-fiber
interactions are taken into account by utilizing a
self-consistent cell model and considering a rep-
resentative fiber immersed in an effective me-
dium. The constitutive equation of this model can
be described as follows

13
‘5‘5’1?2}1—/])) Up, Qi @
_ { (nL)"2 (aligned)

(nL*»~ ! (random)

t=n(u;tu)+n

where

t;=total stress tensor

n=viscosity of the thermoplastic medium

u; = 0du;/0x;: velocity gradient tensor

n=number of fibers per unit volume

h=average distance from a given fiber to its
nearest neighbors

In the present simulation, it is assumed that the
average distance from a given fiber to its nearest
neighbors, h, is linear in terms of the scalar mea-
sure of orientation f. When the number of fibers
per unit volume n is greater than 1/(DL?), the
average distance between fibers is assumed to be
the same as huma for the aligned orientation
state. That is,

1 1
h=Q1—=1 huuom+ 1 hajgnea for EE <n< DLZ
_ 1 1
h= haligned for W<n<ﬁ—

®)

The thickness of injection molded parts is usua-
lly much smaller than other characteristic dimen-
sions of the part. So, the injection molding filling
flow can be approximated by the use of the lubri-
cation approximation, based upon the fact that the
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velocity gradients in the thickness are much lar-
ger than those in the in-plane directions. One then
obtains the Hele-Shaw approxmination of the vis-
cous flow [17]. A fountain flow is observed at
the flow front where the flow field is fully three-
dimensional. However, it is known that the size
of this region is of the order of a few gap widths
and thus the fountain flow effect is neglected in
the present study. The flow of fiber suspensions
in narrow gaps was extensively investigated by
Tucker [19]. When the gap is very thin but inte-
raction (or diffusion) effects between fibers intro-
duce some slight out-of-plane orientation, the gap-
wise shear stress term still dominates the mome-
ntum balance. Also, pressure p is still independent
of gapwise coordinates z. Thus, the essence of
the lubrication approximation is retained. The ap-
propriate simplification of the constitutive equa-
tion in such a case is

Tae =MNUgz TN (u1383013 1 Uz333023)  (6)

nnl?
6 In(2h/D)
where, a takes the value 1 and 2. The coordinate
system in Eq. (6) is chosen such that 3 is along
the thickness direction, 1 and 2 lying on the plane,
as indicated in Fig. L.

Under the above simplification, the injection
molding filling flow for non-dilute fiber suspen-
sions is governed by the momentum equation

dp . 8 @
0= ——3% +—; ['r] alzl +nN( 33113+ aV 33123)]
% A av ov
L R ALy - e )
@

1/
X
>

Y(x,) ]Z(X 3)
X(x 1)

Fig. 1. Schematic diagram of a cavity with coordiate
system.

where

nnl3

N= s nenD)

and by the mass conservation equation

9 2= m—0 8
ox (bu 3y (bv)= 8

where b is the half gap thickness of the part,
which may be a function of x and y. “—” denotes
an average over z, the gapwise coordinate. And
n, a function of shear rate and temperature T,
is the viscosity of the thermoplastic medium. In
the present study, a modified cross model has
been employed as follows

- up

T
Ty B el

. b

n@, T ~S O
where n, B, C and T, are constants for a given
material and 7, is zero-shear-rate viscosity. App-
ropriate boundary conditions in the z-direction are

given by

u=4>0 v=0
o0u/0z=0 0Jv/0z=0

at z=b
at z=0 10)

Integration of Eq. (7) with the help of Eq. (10)
results in

Ou_dp z

z op z op z
— —NF— = _Nv—= &
oz 0z 7 ox N dy 1
ov _0dp z dp z op z
— P 2z P 2 \w P Z
0z dy 7 dy 1 ox 1 an
0p bZ . z z
- —dz N—dz+— | Nv—dz
f S v taar 2 [
a
v=— ap fNyZder aprvZ
y ¢ n n
(12)
where
o Nas113(1 + Nagss) — N%agipsa513
(1+ Nazns)(1 + Nagzs) — Nagzam3
= Naggps(1+ Nagiis) — N%aziesa5m3
(1+ Nagis)(1+ Nagzos) — N%agpsass
_ Na
o 3123 a3)

(1+Nagy5)(1+ Nagss) — N23312333213
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The two last terms in Eq. (12) indicate the coup-
ling effect of the pressure gradient to the velocity
in x and y direction, respectively. It should be
noted that the velocity vector is not in the direc-
tion of —Vp, which is different from a fundamen-
tal characteristic of Hele-Shaw type flows of ther-
moplastics without fibers. The gapwise average
velocities are obtained by integration of Eq. (12):

-__S0 & dp_ S dp
b 0dx b 0Ox b Ody

- S dp S dp , S¥ op
=t — — 4+ — —
v b dy * b oy b 0ox (14)

where

j—dz

2
s=[n f]

=2
g=N-"2d
0 n

b 2
=N L
0 n

15)

Hence, substituting Eq. (14) into Eq. (8) gives the
pressure equation as follows

a% [(S—$952 g 22 g? |

d dp
% [(s S

9p
—_Qw_r =
S ax} 0 (16)
Boundary conditions on the pressure equation
are

p= 0 on the moving flow front
un+ve n,=0 on the impermeable boundaries

a7

In order to deal with the non-isothermal flow,
the energy equation is also to be solved during
the filling process. In a thin cavity mold, the ene-
rgy equation can be simplified as

oT oT oT ) aZT

pC,( +tu—— +tv—

at Wox Vay T (9

Appropriate boundary conditions in the z-direction
for the above governing equation are given by

i, M54 A 2%, 1993

at z=b
at z=0 19)

T=T,
0T/0z=0

3. Numerical Analysis

3.1. Mold Filling Flow

The injection molding filling flow is, in its na-
ture, non-isothermal and non-Newtonian with a
moving boundary (the flow front). It is difficult
to treat the moving flow front in cavities of comp-
lex geometry. Here, a finite element method is
used to solve Eq. (16) for the pressure distribution
over the flow domain while the gapwise tempera-
ture distribution is solved using a finite difference
technqiue [17, 18].

In the present treatment, we employ thin shell
triangular elements for the cavity and linear shape
functions for p. Accordingly, on each element, e,
the pressure field is of the form:

3
Z (e) (e) (20)

where j corresponds to the three vertex nodes
with ¥, being linear interpolation functions and
p; being the nodal pressures. A Galerkin method
is employed on Eq. (16) such that the resulting
governing equation for any interior node is given
by

Nk 7 7 a\y,-_agj
fﬂ[(S S)a o0x dy oy
oY, 0¥, __ 0¥, JY,
—Qy_—_—°
Saxaysaya]dﬂo

@D

The above nonlinear system of eugation can be
solved by iteration. ‘

The melt front tracking algorithm with fixed
mesh associates a control volume with each node.
The nodal fill factor, which is defined as the filled
fraction of nodal control volume and varies from
zero (empty node) to unity (completely filled
node), is assigned to each node. Partially filled
nodes, which have the fill factor greater than zero
and less than unity, are considered as the melt
flow front nodes. Pressure values are calculated
at the completely filled nodes by solving the finite
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element equations. And the finite difference form
is also used to solve Eq. (18) for gapwise tempera-
ture distribution in the present study. The flow
front is advanced at each filling time step by up-
dating the nodal fill factor according to mass bala-
nce between connected nodes. The procedure is
repeated until the entire mold is filled. The finite
element/finite difference scheme can simulate the
mold filling flow with non-isothermal conditions
in very complex geometries [17,18].

3.2. Fiber Orientation

It is well known that gapwise variation in shea-
ring and stretching deformation of fluid produces
distinct orientation structure along the gapwise
direction. The evolution equation for the second-
order orientation tensor, Eq. (2), in three-dimen-
sion produces a system of five coupled, non-linear,
differential equations. There are many numerical
methods to solve these kinds of evolution equa-
tions [2,10,11,12]. In the present study these
are solved at the centroids of the same finite ele-
ment mesh as is used for the mold filling analysis,
based on its local coordinate system, as shown
in Fig. 1. This method is useful because the velo-
city gradient field is calculated based on the local
coordinate system from the filling analysis and
the flowability constants in Eq. (5) are determined
at the centroid of each element. Therefore, Eq.
(2) can be rewritten as follows
Oa; da

da;
ot “ax v

aa,“ 1
i _
- _((')ikakj - aik(l)kj)

dy 2
1.. . .
+ EMYz‘kakj + aiyr — ZYklaijkl)
+ 2C1'.Y(8,] - aa,-]-) (22)

Fiber orientation calculations are performed con-
currently with the mold filling simulation. The
orientation tensor components are calculated at
each layer subdividing local part thickness, for
each element in the mesh, by a fourth-order Ru-
nge-Kutta method for the time integration.

The Eq. (22) requires the velocity gradient at
the centroid of element at each layer.

U, Uy u,
w=l v v v @3)
0 0 0

However, the filling simulation provides only no-
dal pressures and shear velocity gradients, u. and
v, from Eq. (11), at the centroid of element at
each layer. In order to evaluate the spatial deriva-
tives of velocity in x and y directions, one needs
the nodal velocities. Because the velocity is prop-
rotional to the pressure gradient, one can find
the velocities u and v using Eq. (12) at the cent-
roid of element at each layer. Then, nodal veloci-
ties are evaluated by a global averaging procedure,
i.e. weighted by the associated subvolume of nei-
ghboring elements.

The Eq. (22) also requires the spatial gradients
of orientation tensor. An ad hoc procedure was
developed to evaluate the spatial gradients of the
orientation tensor in view of the upwinding
scheme. In Fig. 2, the directional derivatives of
the orientation tensor components, based on the
local coordinate system of element (e), between
centroids of element (e) and element (e,) are gi-
ven by

Va,-,» M Ih = == (24)

where 1, is a unit vector of a vector (Ax‘i+ Ay’ﬁ),
directed from the centroid of element (e) to that
of element (e), k=1, 2. This is rewritten as fol-
lows

Fig. 2. Treatment of convection term for fiber orien-
tation.

The Korean ]J. of Rheology, Vol. 5, No. 2, 1993
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6a,,>(e”) A+ aatj(ek)
ox dy

Ayk — alj_(?k) _ aij(ek)y k — 1, 2
(25)

As far as the upwinding scheme is concerned, two
elements for k=1 and 2 are chosen from the up-
winding direction associated with the element (e),
as indicated in Fig. 2. From the above two linear
algebraic equations (25), one can find the spatial
derivatives of orientation tensor, da;/dx and 0
a;/0dy. Here one needs the tensor transformation
of orientation state of element (e:) to the local
coordinate system of element (e). As a special
case, when the plane of element (e) is different
from that of element (e), it is assumed that the
orientation state of fibers is preserved across the
folds. The assumption is that the orientation state
in the bent plate is the same that of flat plate.
For this assumption one needs an additional ten-
sor transformation which rotates the fibers by the
angle 0 between the folds.

To start the numerical simulation it is needed
to specify the initial orientation of fibers at the
gates. It may be noted that the fiber orientation
at the gate is usually not known. Thus the initial
orientation state at the gate may be assigned as
either random distribution or aligned distribution
in the flow direction. As the melt front advances
during mold filling process, more elements will
be included in the computational domain. In each
time step, elements which include at least one
full filled vertex node are considered as new ele-
ments to be added for that step. The initial orien-
tation state at the new elements may be obtained
by convecting the orientation state from neighbo-
ring element which is selected in view of the up-
winding scheme. Omitting the convection terms,
Eq. (22) is integrated over the time step using
the velocity gradients and orientation state of the
neighboring element. It provides the orientation
of the fiber that has started at the neighboring
element at the beginning of the time step and
arrived at the new element at the next time step.

The overall numerical scheme for the mold fil-
ling flow together with the fiber orientation is
schematically summarized in Fig. 3. The computer

s A5 A 235, 1993

I Read the input data I

Initialization

Is the mold full ?

No

Relaxation pressure field
and determine the time step

l Update temperature field for a time stepj

Find velocity gradient field
and Update orientation field for a time step

[ Advance the flow front by updating fill factor ]

Fig. 3. Overall numerical scheme.

program developed in the present study can cal-
culate the coupled flow field and the flow-induced
fiber orientation in the injection molding of arbit-
rary thin three-dimensional geometries.

4. Results of Numerical Analysis

Numerical results for two different cavity geo-
metries will be discussed in the present section.
The thermal properties and polymer melt viscosity
of polypropylene used in the following numerical
simulations are as follows;

density, p=0.77 gm/cm®

specific heat, C,=3.46E+07 erg/(gm K)

thermal conductivity, k=1.51E+ 04 erg/(sec cm
K)

coefficient of viscosity function, n=3.5E-01

coefficient of viscosity function, B=9.6E-02 gm/
(cm sec)

coefficient of viscosity function, C=4.8E-04 (gm/
(cm sec?)y !

coefficient of viscosity function, T,=5.9E+03
K
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4.1. Numerical Results with a Tension Test
Specimen

Numerical simulations have been carried out
for a cavity geometry of a tension test specimen
with a pin end gate. The dimension of a tension
test specimen of ASTM standard is as follows;

length over-all=18.3 cm

width over-all=1.9 cm

length of narrow section=5.7 cm

wideth of narrow section=0.6 cm

thickness=0.2 cm
and the input data are as follows;

inlet flow rate, Q=5 cm®/sec

inlet melt temperature, T, =200C

mold wall temperature, T,=30C

the number of fibers per unit volume, n=1/mm

length of fiber, L=1.0 mm

diameter of fiber, D=0.04 mm

phenomenological coefficient, C;=0.001

3

Fig. 4 shows the finite element mesh of tension

A
X
FoobR F
E ......... E
292
Do D"
G DA c
B ...... e B‘
SKERERE 20
6

N\ s
(A

Fig. 4. Finite elment mesh for a tension test speci-
men with 520 elements and 327 nodes.

test specimen, which contains 520 elements, 327
nodes and 14 grid points through the thickness
direction. Fig.5(a) and (b) show the successive
flow fronts and the velocity fields, respectively,
when the cavity gets filled. One can see the diver-
ging flow around the gate followed by parallel
flow, converging-parallel-diverging and parallel
flow. Fig. 6 shows the orientation fields at the end
of filling at four different layers when a random
orientation is imposed at the gate as an initial
condition. Three eigenvectors with the magnitude
of each eigenvalue of the second-order orientation
tensor are plotted to represent the orientation
state. Fig. 6(a) is the orientation distribution at
the grid point 1, core layer (i.e. the center layer).
Here the flow around the gate is extensional and
fibers are seen to align in the direction perpendi-
cular to the flow direction. Fig. 6(b) and (c) are
the orientation distribution at the grid point 3 and
5, at which the normalized half gap thickness

i
he | l:'l \‘\:!
L1z | ‘.\ :l”‘
P i

S
(@

Fig. 5. Filling simulation results for a tension test
specimen: (a) filling pattern (step incre-
ment=0.0464 sec, filling time=0.8807 sec)
and (b) velocity field.
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Fig. 6. Fiber orientation state when the cavity is fil-
led for a tension test specimen: (a) at z=0,
(b) at z=0.2b, (c) at z=0.4b and (d) at z=0.9
b.

Gate

Center Layer

Fig. 7. Longitudinal (on y—z plane) fiber orientation
state with a view direction along x-direction
for a tension test sepcimen at cross section
A—A’ indicated in Fig. 4.

equals to 0.2 and 0.4 respectively. Here the flow
involves both shear and extensional effects. Fig. 6
(d) presents the orientation distribution at the
grid point 13, skin layer (i.e. surface layer), at
which the normalized half gap thickness equals
to 0.9. It is clear that shear effects are dominant
here with fibers tending to align in the flow direc-
tion. Fig. 7 shows the longitudinal fiber orientation
state at cross section A—A’ indicated in Fig. 4.
Most of the fibers are aligned to the flow direction
with a slight inclination toward the center layer.
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Fig. 8. Transverse (on x—z plane) fiber orientation
state with a view direction along y-direction
for a tension testk specimen at cross section
B—B', C-C', D—-D’, E-E’ and F—F' indi-
cated in Fig. 4.
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Fig. 9. Clamping force versus fiber volume fraction
with a constant inlet flow rate, 5 cm®/sec, for
a tension test specimen.

Fig. 8 shows the transverse fiber orientation state
at several cross sections indicated in Fig. 4. Here,
one can see the complex fiber orientation state.
But at converging flow region, cross section C—
C’, fibers are inclined to the inward. While at di-
verging flow region, cross section E—E’, fibers
are inclined to the outward.

4.1.1. Effect of the Concentration of Fibers

Fig. 9 shows the effect of fiber volume fraction
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on the clamping force. This effect results from
the calculation of the coupled flow field in the
present study. One can find that the clamping fo-
rce increases asymptotically as the number of fi-
bers increases as expected. In this particular case,
when the fiber volume fraction is greater than
3.1%, n becmes larger than 1/(DL? so that the
average distance between fibers for aligned orien-
tation state, hauignes, 1S used for h, as explained in
Eq. (5). It may just be mentioned that most of
fibers are found to be aligned to the flow direction
except near the gate according to numerical anal-
ysis results. Therfore, this ad hoc treatment for
determining h seems to be acceptable.

Fig. 10 shows the variation of the velocity com-
ponents u and v across the gapwise direction at
two different elements for two cases of fiber vo-
lume fractions. At the element 6 at which the ran-
dom initial orientation state is imposed at every
layer, the difference of the magnitude of x and
y directional velocity components decreases as the
volume fraction increases. This tendency might
be explained by the fact that the coupling effect
as indicated in Eq. (12) becomes stronger as the
number of fibers per unit volume n, thus N inc-
reases. At the element 20 near the gate, the velo-
city profile tends to be flattened as the volume
fraction increases. It may be just mentioned that,
in the narrow section of the tension test specimen,
the velocity profile remains almost unchanged
with the volume fraction. The out-of-plane compo-
nent of the fiber orientation tensor a; in the nar-
row region is almost zero at every layer (see Fig.
7), resulting in insignificant effect of fibers on the
velocity field according to Eqs. (12) and (13).

Fig. 11 shows the variation of the temperature
across the gapwise direction at the element 20.
One can find that the volume fraction of fibers
has little effect on the variation of temperature.

4.1.2. Effect of the fiber-fiber interaction coef-
ficient C,

The dimensionless coefficient C; describes the
strength of the randomizing effect of mechanical
interaction between fibers. Fig. 12 shows the fiber
orientation state for C;=0.05 which should be co-
mpared with Fig. 6 for C;=0.001. It is clear that
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i
VELOCITY( cm/ sec)
b
Fig. 10. Variation of velocity components along the
gapwise direction for a tension test speci-

men: (a) at element 6 and (b) at element
20 indicated in Fig. 4.

the fiber orientation state approaches to the ran-
domized orientation state, as the magnitude of C;
increases. The flow field is also affected by the
magnitude of C,. Fig. 13 shows the effect of C;
on the clamping force with the fiber volume frac-
tion n=3.1% fixed. It is found that the clamping
force increases as the magnitude of C; increases
because the extra stress term increases as the
fiber orientation becomes more randomized.

In case of the phenomenological coefficient C;
being zero, a stable orientation state is observed
near the center layer and is found to be almost
the same as those in Fig.6 with C;=0.001. But
near the surface layer one can observe an unsta-
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Fig. 11. Variation of temperature along the gapwise

direction for a tension test specimen at ele-
ment 20 indicated in Fig. 4.
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Fig. 12. Fiber orientation state with C;=0.05 when

the cavity is filled for a tension test speci-
men: (a) at z=0, (b) at z=0.2b, (c) at z=04
b and (d) at z=0.9b.

ble oscillatory oirentation state. For instance, Fig.
14(a) shows the transient behavior of orientation
tensor component in case of C; being zero at the
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Fig. 13. Clamping force versus fiber-fiber interaction
coefficient C; with the fiber volume fraction
n=3.1% fixed and a constant inlet flow rate,
5cm?/sec, for a tension test specimen.
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Fig. 14. Effect of the dimensionless fiber-fiber inte-
raction coefficient C; for a tension test sep-
cimen at element 292 (z=0.85b) indicated
in Fig.4: (@ C;=0.0 and (b) C;=0.001.
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element 292 indicated in Fig. 4 especially near the
surface layer. In such a case, it is well known
that in the simple shear flow fiber oscillates with
a constant period. This behavior depends on the
fiber aspect ratio. Especially, for fibers with an
infinite aspect ratio, no oscillatory behavior is ob-
served [20]. In Fig. 14(b) it can be seen that the
small interaction coefficient C; of 0.001 has the
effect of suppressing the oscillatory behavior.

4.1.3. Dependence on Initial Conditions

To investigate the effect of the initial orienta-
tion state at the gate, an aligned orientation state
was intentionally introduced at the gate with the
same input data as the case of Fig.5 to 8. Fig. 15
shows the transient fiber orientation states at the
grid point 1, center layer, with the aligned initial
condition at the gate as injection mold filling pro-
ceeds. At the initial stage, fibers around the gate
are aligned to be perpendicular to the flow direc-
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07700 G AN

RN AR
@ (b © @

Fig. 15. Transient fiber orientation state at core la-
yer (z=0) with the aligned initial condition
at the gate: (a) at t=0.081sec, (b) at t=
0.255 sec, (c) at t=0.557 sec and (d) at t=
0.881 sec.

tion due to the strong diverging flow as shown
in Fig. 15(a). But, as the melt front advances, fi-
bers near the gate tend to be aligned with the
initial orientation as indicated in Fig. 15(b)-(d).
This change of orientation of fibers near the gate
as melt flow proceeds might be explained as fol-
lows: the diverging flow around the gate becomes
weaker due to the geometrical effect of the ten-
sion test specimen and the convective transport
from the gate becomes relatively domiant. It may
be noted that fiber orientation away from the gate
is not affected by the initial orientation. Also, it
should be mentioned that the difference between
the case with an aligned initial condition and that
with the random initial condition at the gate is
observed only at layers close to the center layer.
At layers close to the wall, the magnitude of velo-
city is smaller than the center layer, so the shear
flows become dominant compared with the conve-
ctive transport from the gate. One may recall that
the fiber tends to be aligned with the velocity
direction when the shear flow is dominant like
in the skin layer. In this regard, the difference
between the two cases becomes smaller as the
layer becomes closer to the wall. One can also
observe that the initial orientation state of the
melt front has little effect on the final orientation
state when the cavity gets filled from the transient
fiber orientation states in Fig, 15. Even though the
evolution equation for orientation tensor is an ini-
tial value problem, the final orientation state de-
pends largely on the velocity gradient fields rather
than the initial orientation state.

In the present study it is assumed that fibers
remain in a surface parallel to the midsurface
while they are moving from the gate to their final
positions. However, this assumption is not valid
near the melt front region because of the fountain
flow effect. Fibers near the melt front region will
be deposited to certain layers and subsequently
stay at the same layers as the melt front advances.
As far as the fiber deposited to a certain layer
is concerned, the orientation of the fiber just arri-
ving at the layer should be regarded as an initial
orientation with respect to the evolution equation
of the orientation tensor. In this regard, as the

The Korean J. of Rheology, Vol. 5, No. 2, 1993



122 S.T. Chung and T.H. Kwon

initial orientation state of the melt front is found
to have little effect on the final orientation state
when the cavity gets filled, the final configuration
of orientation distribution will show little depen-
dence on the fountain flow effect even if one neg-
lects the fountain flow effecft at the flow front.
Of course, it would be much more desirable to
take into account the fountain flow effect in the
flow simulation and the orientation simulation.
However, this will require a lot more complicated
analysis and computation time, which is beyond
our capability at this moment, and thus the cur-
rent approach seems to be justifiable.

4.2. Three-Dimensional Example

4.2.1. Podium with a Square Hole

In order to demonstrate the capability of the
present work for three-dimensional simulations,
chosen is a three-dimensional thin cavity geome-
try of a podium with a square hole. The dimen-
sion of a podium is as follows; maximum width=
10. cm, height=3.0 cm, width of a square hole=
2.0cm and thickness=0.2 cm. And the input data
are as follows; inlet flow rate=>50cm?®/sec, inlet
melt temperature=200C, mold wall temperature
=307, the number of fibers per unit volume=1/
mm’, length of fiber=1.0 mm, diameter of fiber=
0.04 mm and phenomenological coefficient C;=
0.01. Figs. 16 and 17 are numerical simulation re-
sults for the filling pattern and fiber orientations,
respectively. In Figs. 16 and 17, two graphical re-
sults from two different view directions are disp-
layed to show the overall behavior in this three-
dimensional cavity geometry. In Fig. 16, it is easily
found that the weldline is formed behind the
square hole. Fig. 17 shows the fiber orientation
state of the three different layers including the
core and the skin layer. One should observe the
complex orientation state along the weldline be-
hind the obstacle. And the orientation state does
not change across the edges since we assumed
the preserved orientation state across the folds.
This result is favorably compared with Frahan’s
report [12] in the center layer. It may be noted
that Frahan’s work has calculated the fiber orien-
tation only at the center layer, as opposed to the
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rear view

front view

Fig. 16. Filling pattern for a podium with a square
hole for constant inlet flow rate, 50 cm®/sec
(step increment=0.031sec, filling time=
0.59 sec).

present study.
5. Conclusions

A numerical simulation method has successfully
been developed to predict the three-dimensional
fiber orientations of short-fiber-reinforced thermo-
plastics during the injection molding filling pro-
cess in three-dimensional mold cavities. The mold
filling simulation via a FEM/FDM is based on a
new pressure field equation incorporating the ad-
ditional stress due to presencke of fibers. A com-
pact tensor representation is adopted describing
the fiber orientation state at each grid point of



Numerical Simulation of Injection Molding Filling Process of Short-Fiber-Reinforced Thermoplastics

rear view

rear view

front view

()

Fig. 17. Fiber orientation state for a podium with
a square hole: (a) at 1 layer (z=0), (b) at
2 layer (z=0.27b) and (c) at 7 layer (z=0.96
b).

every element centroid across the thickness of
the part. A fourth-order Runge-Kutta method is
used to solve the evolution equations of the se-
cond-order orientation tensor using an upwinding
scheme for the covection terms. The calculation
of the orientation tensor is based on the local coo-
rdinate system of each element. So, tensor trans-
formation of the orientation tensor is required be-
tween the neighboring elements in order to deal
with convection terms. Since it is assumed that
the fiber orientation state is preserved across the
folds, additional tensor transformation is required
to evaluate the convection terms when the melt
flows across the fold in an arbitrary three-dimen-
sional cavity space. In this way it is possible to
predict the transient fiber orientation state in an
arbitrary three-dimensional cavity geometry du-
ring entire injection mold filling process.

front view

rear view

front view
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