Controlled Release of Insulin through Glucose Oxidase Immobilized Composite Poly(vinyl Alcohol)/Chitosan Blend Membrane

글루코오즈가 고정화된 Poly(vinly Alcohol)/Chitosan 블렌드 복합막을 통한 인슐린의 방출조절

  • Kim, Jin Hong (Dept. of Biotechnolgy, Studies of Industry, Chung Ang University) ;
  • Shim, Jin Ki (Dept. of Ind. Chem., Col. of Eng., Hanyang Universky, Seoul 135-791, Korea) ;
  • Lee, Young Moo (Dept. of Ind. Chem., Col. of Eng., Hanyang Universky, Seoul 135-791, Korea) ;
  • Son, Tae Il (Dept. of Biotechnolgy, Studies of Industry, Chung Ang University)
  • Published : 1993.08.01

Abstract

The permeation of insulin was conducted through glucose oxidase(GOD) immobilized composite membrane composed of poly(vinyl akohol)/chitosan blend and porous polyamide membrane. The permeation coefficient of insulin through GOD-immobilized membrane was in the order of $10^{-6}{\sim}10^{-7}\textrm{cm}^3cm/\textrm{cm}^2sec$. The sensitivity of the composite membrane to the glucose concentration was high in a low glucose concentration resulting from the oxygen depletion from the membrane. The permeation of insulin through composite membrane made of PVA/chitosan and porous polyamide membrane was changed by pH and glucose concentration. The permeability was progressively increasing with the glucose concentration at least up to 500mg%.

글루코오즈(GOD) 옥시다제가 고정화된 PVA/키토산 플렌드막과 다공성 폴리아미드 복합막을 통해 인슐린의 투과거동을 살펴보았다. GOD가 고정화된 막을 통한 투과계수는 $10^{-6}{\sim}10^{-7}\textrm{cm}^3cm/\textrm{cm}^2sec$이었다. 복합막의 클루코오즈 농도에 대한 변화는 낮은 글루코오즈 농도에서 높았는데 이는 막으로부터 산소의 고갈 때문이었다. PVA/키토산 및 다공성 폴리아미드막을 통한 인슐린의 투과는 글루코오즈 농도에 따라 500mg%까지 점차 증가하였다.

Keywords

References

  1. Sixth Annual Report to director Appendix to diabetes Mellitus Coordination Committee
  2. J. Controlled Release v.8 J.Heller
  3. Science v.206 M.Brownlee;A.Cerami
  4. J. Biomed. Mat'l Res. v.15 M.Singh;P.Vasudevan;T.J.M.Sinha;A.R.Ray;M.M.Misro;K.Guha
  5. J. Controlled Release v.1 S.Y.Jeong;S.W.Kim;M.J.D.Eenink;J.Feijin
  6. J. Biomed. Mat'ls Res. v.19 J.Kost;T.A.Horbert;B.D.Ratner;M.Singh
  7. Polymer Journal v.16 K.Ishihara;M.Kobayashi;N.Ishimaru;I.Shinohara
  8. J. Appl. Polym. Sci. v.44 J.H.Kim;J.Y.Kim;Y.M.Lee;K.Y.Kim
  9. J. Appl. Polym. Sci. v.27 C.Y.Sung;M.S.Jun
  10. Anal. Chem. Symp. Ser. v.17 S.Ikeda;K.Ito;T.Kondo;K.Ichikawa;T.Yukawa;H.Ichihashi
  11. Anal Chem. v.57 D.A.Gough;J.Y.Lucisano;P.H.S.Tse
  12. Analytical Biochem. v.72 M.M.Bradford
  13. J. Appl. Polym. Sci. v.27 C.Y.Sung;M.S.Jun
  14. J. Appl. Polym. Sci. v.45 J.H.Kim;J.Y.Kim;Y.M.Lee;K.Y.Kim
  15. J. Controlled Release v.2 G.Albin;T.A.Horbert;B.D.Ratner
  16. Makromol. Chem. v.118 H.Yasuda;C.E.Lamaze;L.O.Ikenberry